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Abstract 
 

We provide reference forecasts for CO2 emissions from burning fuel fossil and cement production in Portugal 
based on an ARFIMA model approach and using annual data from 1950 to 2017. Our reference projections 
suggest a pattern of decarbonization that will cause the reduction of 3.3 Mt until 2030 and 5.1 Mt between 
2030 and 2050. This scenario allows us to assess effort required by the new IPCC goals to ensure carbon 
neutrality by 2050. For this objective to be achieved it is necessary for emissions to be reduced by 39.9 Mt 
by 2050. Our results suggest that of these, only 8.4 Mt will result from the inertia of the national emissions 
system. The remaining reduction on emissions of 31.5 Mt of CO2 will require additional policy efforts. 
Accordingly, our results suggest that about 65.5% of the reductions necessary to achieve IPCC goals require 
deliberate policy efforts. Finally, the presence in the data of long memory with mean reversion suggests that 
policies must be persistent to ensure that these reductions in emissions are also permanent. 
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Reference Forecasts for CO2 Emissions 
from Fossil-Fuel Combustion and Cement Production 

in Portugal 

 

1. Introduction 

The purpose of this article is to provide reference forecasts for CO2 emissions in Portugal. 

We consider both aggregate emissions and each of its main sources – solid fuels, liquid 

fuels, gas, and cement production. Our ultimate objective is to compare our reference 

forecasts with the relevant emissions targets and thereby ascertain how much of an 

additional policy effort is necessary to achieve such targets. 

There is strong scientific evidence confirming the warming the planet's climate system, 

with increasing temperature of the atmosphere and oceans, rising sea levels, melting ice, 

among others, whose most likely causes are the increased concentration of anthropogenic 

greenhouse gas emissions in the atmosphere [see, for example, IPCC (2014)].  

Recently, the Intergovernmental Panel on Climate Change [see IPCC (2018)] has pointed 

out that limiting global warming to 1.5°C would require “rapid and far-reaching” transitions 

in land, energy, industry, buildings, transport, and cities. Moreover, global net 

anthropogenic emissions of CO2 would need to fall by about 45% from 2010 levels by 2030, 

reaching ‘net zero’ around 2050. These new targets were, in general terms, incorporated 

into the Roadmap for Carbon Neutrality, released as a Portuguese Ministerial Council 

Resolution in July 2019 [RNC2050 (2019)]. 

Identifying the proper reference scenario is a critical first step in ascertaining the extent of 

the policy efforts required to achieve any policy target for emissions, and thereby 

determining the costs involved in achieving such goals. Hence, there are two key policy 
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questions in these matters in Portugal. The first question deals with identifying what will 

emissions in 2030 and 2050 be under a reference or baseline scenario. We follow the IPCC 

definition of baseline scenario, which assumes that no mitigation policy or measure 

beyond those that are already in place and/or legislated or planned for implementation. 

The second question, and as a corollary, is the determination of the dimension of the 

additional policy efforts needed to accomplish such emission targets.  

Specifying a reference scenario, as in the typical reference scenario projections, means 

predicting a path to CO2 emissions that reflect existing demographic trends, prospective 

trends for energy and industrial processes, for the services, residential, transport and 

waste sectors, as well as, ongoing policy commitments. This conventional approach to 

establishing reference scenarios, however, introduces a large number of working 

assumptions and a great degree of arbitrariness in their specifications, thereby clouding 

the information it intends to provide. 

This paper uses an autoregressive fractionally integrated moving average approach 

[ARFIMA], to provide reference forecasts for CO2 emissions in Portugal based on a 

comprehensive statistical analysis of the different time series and recognizing the possible 

presence of long-memory through fractional integration. Accordingly, our forecasts rely 

strictly on the most basic statistical fundamentals of the stochastic processes that underlie 

emissions. As such, they capture the information included in the sample, and implicitly 

assume that the observed trends will continue in the future. Thus, these forecasts provide 

the most fundamental reference case emissions forecast [see Belbute and Pereira (2015) 

for an application of this forecasting methodology to develop reference scenarios for world 

CO2 emissions). In addition, this methodology recognizes that emission patterns are 

subject to a great degree of inertia due to consumption patterns and production 
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technologies. Accordingly, a focus on a methodology that highlights the relevance of long-

term dynamics is fundamental. 

There is now an extensive literature on fractional integration, which goes well beyond the 

stationary/non-stationary dichotomy to consider the possibility that variables may follow 

a long memory process [see, among others, Diebold and Rudebusch (1991), Lo (1991) 

Sowell (1992a) and Palma (2007)]. The ARFIMA methodology is inspired by a budding 

literature on the analysis of energy and carbon emissions based on a fractional integration 

approach [see, for example, Barassi et al.(2011), Apergis and Tsoumas (2011, 2012), Barros 

et al. ( 2016) and Gil-Alana et al. (2015) and Belbute and Pereira (2016, and 2017)].  

In this literature, long-range dependence is characterized by a hyperbolically-decaying 

autocovariance function and by a spectral density that approaches infinity as the 

frequency tends to zero [see among others, Baillie (1996), Diebold and Rudedusch (1989) 

and Delgado and Robinson (1994)]. The intensity of this phenomena can be measured by 

a differencing parameter, which includes the stationary and the non-stationary cases as 

particular cases. 

‘Long memory’ means that there is significant dependence between observations widely 

separated in time, and from a policy perspective, the effects of shocks are temporary but 

long lasting. Therefore, the only way to achieve permanent effects is to adopt permanent 

policies. In contrast, the traditional stationary/non-stationary dichotomy would suggest 

that the effects of transitory policies are either short-lived (stationary case) or permanent 

(non-stationary case). This more rigid approach is bound to lead to misleading policy 

implications by either identifying short lived effects where the effects may actually be long 

lasting or by identifying as permanent, effects that may actually be mean reverting. 
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Accordingly, the fractional integration properties of CO2 emissions have important policy 

implications for the specification of long-term reference case scenarios for emissions. 

All of these issues are of great relevance in the context of the Portuguese experience. In 

the last three decades, Portugal has implemented policies aligned with the international 

guidelines and policy targets for climate change, namely the European Union climate 

change strategy, the Kyoto Protocol and, more recently, the Paris Agreement [see, for 

example, the Strategic Framework for Climate Policy, QEPiC 2030 (2015) and the Roadmap 

for Carbon Neutrality, RNC2050 (2019)]. As a result, we have observed the introduction of 

natural gas, the strategic option in favor of renewable energy sources, the stimulus 

towards energy efficiency, and the participation in the European Union Emissions Trading 

Scheme. These policy efforts have contributed both to the successful completion of the 

first Kyoto Protocol’s period of compliance objectives and the reduction in emissions 

observed since 2002. Still, there is a keen awareness that there is much to be done. 

The remainder of this paper is organized as follows. Section 2 presents the data set. Section 

3 provides a brief technical description of the methodology used. Section 4 discusses the 

empirical findings, considering first the fractional integration analysis and then the 

accuracy of in-sample forecasts. Section 5 presents and discusses our reference forecasts 

vis-à-vis other available reference forecasts and national policy scenarios. Finally, section 

6 provides a summary of the results, and discusses their policy implications. 

2. Data: Sources and Description  

2.1   Data Sources 

Aggregate CO2 emissions in Portugal are the sum of four components: CO2 emissions from 

burning fossil fuels – solid/coal, liquid/oil, and gas, and CO2 emissions from cement 
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production. There are no CO2 emissions from gas flaring. Moreover, we do not consider 

emissions from land use, nor from land-use change and forestry. All variables are 

measured in million metric tonnes of carbon per year (Mt, hereafter), and were converted 

into units of carbon dioxide by multiplying the original data by 3.664, the ratio of the two 

atomic weights.  

We consider annual data for CO2 emissions in Portugal for the period between 1950 and 

2017. The data until 2014 is from the Carbon-Dioxide Information Analysis Centre - CDIAC 

[see Le Quére et al. (2015) and Boden et. al. (2017)]. This data set contains information 

going back to 1870. Nevertheless, given the profound structural changes that occurred 

after World War II, we only use data starting in 1950.  

We obtained emissions between 2015 and 2017 by using the information reported in the 

National Inventory of GHG Emissions, PNIRGHG (2019). While this source only goes back 

to 1990 and, therefore, in and of itself provides a rather inadequate sample size, it is a very 

helpful source in extending the CDIAC series. We started by checking the consistency of 

the two data series for the period they overlap, i.e., 1990-2014. We find they are very 

closely related something to be expected as the central sources of information for the 

CDIAC are the national inventory reports. Specifically, the two series are statistically 

cointegrated in growth rates. With this in mind, we obtain the values for the different 

emissions for 2015-2017 by simply applying the growth rates of CO2 emission from the 

PNIRGHG (2019) figures for CO2 emission levels without net CO2 from land use, land use 

change and forestry.  
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2.2 Description of the Data 

Table 1 presents summary information about our data. It includes information about total 

CO2 emissions in the first year of each decade as well as the mean shares per decade of 

emissions from combustion of solid, liquid, and gas fossil fuels and from cement 

production in the total emissions.  

 [Insert Table 1 around here] 

In the second half of the 20th Century, total CO2 emissions grew at a steady pace. This trend 

was reverted in the last two decades with emissions decreasing progressively until the end 

of the sample period. Annual CO2 emissions peaked in 2002 at 66.7 Mt. By 2017, emissions 

reached 50.8 Mt, a figure 20% and 5.6% above the 1990 and 2010 reference levels, 

respectively. For perspective, Portugal's total CO2 emissions in 2017 represent about 1.4% 

of total European Union emissions and just 0.13% of worldwide emissions.  

CO2 emissions from solid fossil fuel combustion represented on average over the sample 

period a little more than 18.6% of total emissions. These emissions reached their lowest 

point in relative terms in the 1970s and have shown a relatively steady increase ever since. 

In the last few years of the sample, they represented 22.7% of total emissions.  

The combustion of liquid fuels was the dominant source of CO2 emissions during the 

sample period, contributing on average to around 61.4% of total emissions. In the 1970s 

and 80s they represented close to 80% of the total, a number that has significantly declined 

ever since. By the last years of the sample, they amounted to 54.9% of emissions. 

Natural gas has developed rapidly after its introduction in 1998. Accordingly, related CO2 

emissions has increased significantly. The average share from gas in aggregate emissions 
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for the period 1998–2017 was 12.7%, a share that has been steadily increasing over the 

last three decades to reach 17% over the last years of the sample.  

Finally, CO2 emissions from cement production account for 7.1% of total emissions over 

the sample period. These emissions peaked in the 1970s, 80s, and 90s. Their relative share 

of emissions decreased in the last two decades to reach just 5.3% in the most recent years 

of the sample. 

3.  Fractional Integration 

3.1  Fractionally-Integrated Processes 

A fractionally-integrated process is a stochastic process with a degree of integration that 

is a fractional number, and whose autocorrelations decay slowly at a hyperbolic rate of 

decay. Accordingly, fractionally-integrated processes display long-run rather than short-

term dependence and for that reason are also known as long-memory processes  

A time series 𝑥𝑡 = 𝑦𝑡 − 𝛽𝑧𝑡  is said to be fractionally integrated of order 𝑑, if it can be 

represented by 

 (1 − 𝐿)𝑑𝑥𝑡 = 𝑢𝑡 ,          𝑡 = 1, 2, 3, … (1)  

where,  𝛽 is the coefficients vector, 𝑧𝑡 represents all deterministic factors of the process,  

𝑦𝑡,  and 𝑡 = 1, 2, … 𝑛, 𝐿 is the lag operator, 𝑑 is a real number that captures the long-run 

effect, and 𝑢𝑡 is  𝐼(0).   

Allowing for values of “𝑑” in the interval between 0 and 1 gives an extra flexibility that may 

be important when modeling long-term dependence in the conditional mean. Indeed, in 

contrast to an 𝐼(0) time series (where 𝑑 = 0) in which shocks die out  at an exponential 

rate, or an 𝐼(1) process (where 𝑑 = 1) in which there is no mean reversion, shocks to the 
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conditional mean of an 𝐼(𝑑) time series with 0 < 𝑑 < 1 dissipate at a slow hyperbolic 

rate.  More specifically, if −0.5 < 𝑑 < 0, the autocorrelation function decays at a slower 

hyperbolic rate but the process can be called anti-persistent, or, alternatively, to have 

rebounding behavior or negative correlation. If 0 < 𝑑 < 0.5, the process reverts to its 

mean but the auto-covariance function decreases slowly as a result of the strong 

dependence on past values. Nevertheless, the effects will last longer than in the pure 

stationary case ( 𝑑 = 0 ). If  0.5 < 𝑑 < 1,  the process is non-stationary with a time-

dependent variance, but the series retains its mean-reverting property. Finally, if 𝑑 ≥ 1, 

the process is non-stationary and non-mean-reverting, i.e. the effects of random shocks 

are permanent [for details see, for example, Granger and Joyeux (1980), Granger (1980, 

1981), Sowell (1992a, 1992b), Baillie (1996), Palma (2007) and Hassler et all (2016), Belbute 

and Pereira (2016)]. 

3.2  ARFIMA Processes 

An autoregressive fractionally integrated moving average model is a generalization of the 

autoregressive moving average [ARMA] model which frees it from the I(0)/I(1) dichotomy, 

therefore allowing for the estimation of the degree of integration of the data generating 

process. In an ARMA process, the autoregressive components alone are important to 

assess whether or not the series is stationary. In the case of the ARFIMA model, the 

autoregressive and the moving average terms are a part of the model selection criteria. 

Accordingly, the ARFIMA approach provides a more comprehensive and yet more 

parsimonious parameterization of long-memory processes than the ARMA models. 

Moreover, in the ARFIMA class of models, the short-run and the long-run dynamic  is 

disentangled by modeling the short-run behavior through the conventional ARMA 
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polynomial, while the long run  is captures by the fractional differencing parameter, 𝑑 [see, 

among others, Bollerslev and Mikkelsen (1996)]. 

If the process {𝑢𝑡} in (1) is an autoregressive moving average process of order p and q, 

then {𝑥𝑡} is a ARFIMA(p, d, q) process:  

 𝜙(𝐿)(1 − 𝐿)𝑑𝑥𝑡 = 𝜃(𝐿)𝑒𝑡 (2)  

where  

𝜙(𝐿) = 1 − 𝜙1𝐿 − 𝜙2𝐿
2 −  …  − 𝜙𝑝𝐿𝑝 = 0 

𝜃(𝐿) = 1 + 𝜃1𝐿 + 𝜃2𝐿
2 +  …  + 𝜃𝑝𝐿𝑞 = 0 

are the polynomials of order 𝑝 and 𝑞 respectivelly, with all zeroes of lying outside the unit 

circle, and with  𝑒𝑡 as white noise. Clearly, the process is stationary and invertible 

for −0.5 < 𝑑 < 0.5. 

The estimation of the parameters of the ARFIMA model 𝜙, 𝜃, 𝑑, 𝛽 and  𝜎2 is done by the 

method of maximum likelihood. The log-Gaussian likelihood of 𝑦  given parameter 

estimates 𝜂̂ = (𝜙̂, 𝜃, 𝑑̂, 𝛽̂, 𝜎̂2) was established by Sowell (1992b) as 

ℓ((𝑦|𝜂̂)) = −
1

2
{𝑻log(2𝜋) + log|𝑽̂| + 𝑿′𝑽̂−1𝑿} (3)  

where  𝑋  represents a 𝑻- dimensional vector of the observations on the process  𝑥𝑡 =

𝑦𝑡 − 𝛽𝑧𝑡 and the covariance matrix  𝑽 has a Toeplitz structure.  

3.3  ARFIMA Forecasting and Prediction-Accuracy Assessment 

Given the symmetry properties of the covariance matrix, 𝑽can be factored as 𝑽 = 𝑳𝑫𝑳′, 

where 𝑫 = Diag(𝑣𝑡) and  𝑳  is lower triangular, so that;  
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𝑳′ =

[
 
 
 
 

1 0 0 … 0
𝜏1,1 1 0 … 0

𝜏2,2 𝜏2,1 1 … 0

⋮ ⋮ ⋮ ⋱ ⋮
𝜏(𝑇−1),(𝑇−1) 𝛾(𝑇−1),(𝑇−2) 𝜏(𝑇−1),(𝑇−3) … 1]

 
 
 
 

 (4)  

 

Moreover, let 𝜏𝑡 = 𝑉𝑡
−1𝛾𝑡, 𝛾𝑡 = (𝛾1, 𝛾2, … , 𝛾𝑡)

′ and 𝑉𝑡 is the 𝑡 ×  𝑡 upper left sub-matrix 

of 𝑽. 

Let 𝑓𝑡 = 𝑦𝑡 − 𝛽𝑧𝑡.  The best linear forecast of 𝑥𝑡+1 based on 𝑥, 𝑥2, … 𝑥𝑡 is  

 
𝑓𝑡+1 = ∑ 𝜏𝑡,𝑘𝑓𝑡−𝑘+1

𝑡

𝑘=1

 (5)  

Moreover, the best linear predictor of the innovations is 𝜀̂ = 𝐿−1𝑓 , and the one-step-

ahead forecasts for 𝑦̂, in matrix notation, is 

 𝑦̂ = 𝐿̂−1(𝑦 − 𝑍𝛽̂) + 𝑍𝛽.̂ (6)  

Forecasting is carried out as suggested by Beran (1994) so that 𝑓𝑇+𝑘
⬚ = 𝛾̃𝑘

′ 𝑉̂−1𝑓, where 

𝛾̃𝑘 = (𝛾̂𝑇+𝑘−1,   𝛾̂𝑇+𝑘−2, … , 𝛾𝑘) . The accuracy of predictions is based on the average 

squared forecast error, which is computed as  𝑀𝑆𝐸(𝑓𝑇+𝑘) = 𝛾0 − 𝛾′̃𝑘𝑉̂
−1𝛾̃𝑘. 

There is a wide diversity of loss functions available and their properties vary extensively. 

Even so, all of these share a common feature, in that “lower is better.” That is, a large value 

indicates a poor forecasting performance, whereas a value close to zero implies an almost-

perfect forecast. We use three average loss indicators: the Mean Absolute Percentage 

Error [MAPE], the Adjusted Mean Absolute Percentage Error [AMAPE], and the U-statist 

inequality coefficient. 
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The MAPE and the AMAPE are relative measures, in that they are percentages. In 

particular, the MAPE is the percentage error, and has the advantage of having a lower 

bound of zero. The lower the indicator the greater the model’s forecast accuracy. 

Nevertheless, this loss function has drawbacks in any practical application. First, with zero 

values, we have a division by zero issue. Second, the MAPE does not have an upper limit. 

The AMAPE corrects almost completely the asymmetry problem between actual forecast 

values, and has the advantage of having both a zero lower bound and an upper bound. Like 

the MAPE, the smaller the AMAPE, the greater the accuracy of predictions.  

The Theil inequality coefficient, as provided by the U-statistic, yields a measure of how well 

estimated values compares to a corresponding time series of observed values. It lies 

between zero and one, with zero suggesting a perfect fit. It can be decomposed into three 

sources of inequality: bias, variance, and covariance proportions coverage. The bias 

component of the forecast errors measures the extent to which the mean of the forecast 

is different from the mean of the recorded values. Similarly, the variance component tells 

us how far the variation of the forecast is from the variation of the actual series. Finally, 

the covariance proportion measures the remaining unsystematic component of the 

forecasting errors. Naturally, the three components add up to one. 

4. The Basic Empirical Results 

4.1 Preliminary Structural Break Analysis 

Preliminary Quandt-Andrews and Andrews-Ploberger tests for structural changes [see 

Andrews (1993) and Andrews and Ploberger (1994)] are reported in Table 2. These tests 

point to possible structural breakpoints for total CO2 emissions, emissions from liquid fuels 

and from cement production in 2002, for coal in 1995 and for cement production in 2008.  
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[Insert Table 2 around here] 

From a conceptual perspective, these are all reasonable structural break points. The year 

2002 corresponds to a turning point in total CO2 emissions in Portugal due to the full 

implementation of the international commitments under the Kyoto Protocol and the 

European Union effort sharing decisions. In turn, 1995 corresponds to the beginning of 

activity of the Pego power plant, one of the only two coal-operated power plants in the 

country. Finally, in 2008 there was a sharp decline in the production of cement, due to the 

economic and financial crisis and its devastating effects on the construction sector. 

4.2 Fractional Integration Analysis 

Table 3 presents the results of the estimations of the ARFIMA(𝑝, 𝑑, 𝑞)  models, using 

annual data from 1950 to 2017. The best specifications were selected using the Schwartz 

Bayesian Information Criterion [BIC] and include statistically significant autoregressive and 

moving-average terms.  

When included in the ARFIMA models, however, the dummy coefficients corresponding to 

the potential structural breaks identified in the previous section are not statistically 

significant. Furthermore, the best specification of the ARFIMA models as indicated by the 

BIC does not include structural breaks. For this reason, the empirical results in this paper 

do not consider structural breaks. Not surprisingly, the corresponding estimation results 

with structural breaks are not different in any meaningful way [and are available from the 

authors upon request]. 

 [Insert Table 3 around here] 

Overall, our results provide strong empirical evidence for the non-rejection of the presence 

of long memory for both aggregate CO2 emissions as well as its different components. The 
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estimated values of the fractional parameter 𝑑 are all between 0 and 1, thus allowing us 

to reject both the case of pure stationarity model (𝑑 = 0) and the case of a unit root model 

(𝑑 = 1). All series exhibit long-term memory as all estimated parameters 𝑑 lie within the 

interval (0, 0.5). Total emissions have a degree of persistence of 𝑑 = 0.447, which literally 

corresponds to the convex combination of the persistent levels estimated for each of its 

four individual components. In relative terms, emission from gas show the smallest degree 

of persistence, 𝑑 = 0.267, while emissions form cement production show the highest 

degree of persistence, 𝑑 = 0.478.  

With the exception of CO2 emissions from gas combustion, all of the estimates of the 

fractional integration parameter are statistically significant at 1%. The lower precision of 

the estimate for emissions from gas is due to the smaller sample size for this variable.  

Finally, the confidence intervals for the estimated fractional integration parameters are 

relatively narrow and always in the positive range. In all cases, however, the upper bound 

is slightly greater than 0.5, leaving open the marginal possibility that the different series 

may be non-stationary, though still would be mean reverting.  

4.3 In-Sample Global CO2 Emissions Forecasts 

Figure 1 plots the actual values against the in-sample forecasts for global CO2 emissions 

between 1950 and 2017. Table 4 summarizes our forecasting accuracy analysis for the in-

sample predictions.   

[Insert Figure 1 and Table 4 around here] 

In general, we get excellent in-sample predictions for both aggregate CO2 emissions and 

each one of its four components. The MAPE ranges from a minimum of 6.1% for total 

emissions to a maximum of 14.7% for emissions from coal. In addition, the percentage of 
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projected values outside the confidence interval ranges from a minimum of 1.5% for 

emissions from cement production to a maximum of 7.4% for emissions from coal 

combustion. 

In turn, the U-statistic shows a very small value, varying in a band between 0.03 and 0.09. 

This suggests that the predictions compare quite well with the observed values. 

Furthermore, the predictions are non-skewed and show a low variance. More than 90% of 

the prediction error in all components under analysis is non-systematic. The less precise 

results for natural gas emissions are, once again, due to its smaller sample size. 

5.   ARFIMA CO2 Emissions Forecasts and their Implications 

5.1  The ARFIMA Forecasts 2018 - 2050 

Having established a good forecasting performance of the different ARFIMA models, we 

use these estimates to forecast CO2 emissions until 2050. The detailed results are 

presented in Figure 2 and Tables A1 to A5 in the Appendix. In Table 5, we present summary 

results relative to the 2010 reference emissions. To facilitate comparisons, we follow the 

lead of the IPCC (2018) report, which considers 2010 as the reference year for emissions reductions 

targets. 

Total CO2 emissions are projected to decrease from 50.8 Mt in 2017 to 39.7 Mt in 2050. 

Emissions in 2030 and 2050 are forecasted to be about 6.9% and 17.5% below the 2010 

reference level (48.1 Mt), respectively. Accordingly, the projected reductions in emissions 

are more pronounced until 2030 – an average annual reduction of about 0.46 Mt, and 

noticeably slower in the next two decades – an average annual reduction of 0.26 Mt.  

 [Insert Figure 2 and Table 5 around here] 
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The general pattern of reductions projected for total emissions is also present, with some 

minor changes, at a more disaggregated level when we consider the four different 

individual components of total emissions. Noticeably, we project emissions for liquid fuel 

and gas fuel combustions to be always below the 2010 reference levels. In turn, we project 

emissions from solid fuel combustion and from cement production to be always above the 

2010 reference levels. Emissions from the combustion of liquid fuels are projected to 

decline by 2030 and 2050 to 20.6% and 29.4% below the 2010 level while the projected 

emissions from natural gas by 2030 and 2050 are 44.7% and 64.4% below the level in 2010, 

at a level of 3.7 Mt. In turn, projections of emissions from coal in 2030 and 2050 are 51.9% 

and 27.3% higher than the reference year while projected emissions from cement 

production will reach levels 13.5% and 5.7% above the 2010 levels by 2030 and 2050, 

respectively.  

5.2 The ARFIMA Forecasts and the IPCC Special Report 2018 and RNC2050 Targets 

Recently, the IPCC (2018) report has pointed that limiting global warming to 1.5°C would 

require “rapid and far-reaching” transitions in land, energy, industry, buildings, transport, 

and cities which will require a fall of global net anthropogenic CO2 emissions by about 45% 

from 2010 by 2030, and reaching ‘net zero’ around 2050. While the IPCC report focuses on 

global anthropogenic emissions as the reference variable, our projections focus only on 

CO2 emissions from fossil fuel combustion and cement production, to which we apply 

literally the broader IPCC goals. As such, in this exercise we ignore any national or source-

based differentiation in the international implementation of the IPCC2018 targets. 

The IPCC2018 emissions targets were applied and adopted in very general terms to the 

Portuguese case in the RNC2050 (2019), which establishes the strategic framework of 
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public policies in Portugal aiming at carbon neutrality in 2050. In reality, the RNC2050 

(2019) does not set specific targets for 2030 and 2050, but rather provides confidence 

intervals based on three alternative scenarios. Specifically, the RNC2050 (2019) points for 

2030 to a range of reduction in emissions of [-45%,-55%] and to carbon neutrality by 2050 

assuming a range in carbon sinks of [-85%,-90%], both relative to 2005. We apply the 

middle points of these ranges to the values for CO2 emissions from fossil fuels and cement 

production in 2005 to obtain the implicit RNC2050 targets for 2030 and 2050. Then, we 

change the base year from 2005 to 2010 in order to facilitate comparisons. According to 

these calculations, the RNC2050 targets represent a reduction of 32.2%% in emissions by 

2030 while carbon neutrality by 2050 requires a reduction of 83.0%, both relative to 2010 

levels. Ultimately, the RNC2050 (2019) projects a level of emissions by 2050 in line with 

IPCC 2018 guidelines, although by 2030 the projected reduction is slightly lower than the 

IPCC guidelines.  

[Insert Table 6 around here] 

The IPCC2018 and the RNC2050 policy targets are presented in lines 1 and 2 of Table 6. 

Under the IPCC targets, CO2 emissions in Portugal would have to decrease by 21.6 Mt or 

45% of 2010 emissions by 2030 and a further 18.3Mt, or a further 38% of 2010 levels, 

between 2030 and 2050. The total target accumulated reduction by 2050 is 39.9Mt, which 

corresponds to a reduction of 83% relative to 2010. Given our discussion about and 

without loss of generality, we can say that by construction, the objectives of the RNC2050 

for 2050 are the same as the IPCC. The projected trajectory of decrease in emissions under 

the RNC2050, however, is slightly less frontloaded, with a projected decrease of 32.2% in 

2030 relative to 2010 values.  
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Of the greatest importance is the comparison of these policy targets with our reference 

scenario. Line 3 of Table 6 indicates that the inertia effect estimated according to the 

ARFIMA model projections is responsible for the reduction of 6.9% of emissions by 2030 

and of 10.5% between this year and 2050, with a total cumulative reduction of 17.5%. This 

implies that the inertia of the Portuguese emissions system is very far from sufficient to 

generate the path of CO2 emissions necessary to achieve the IPCC targets towards carbon 

neutrality by 2050. 

Since our CO2 emissions forecasts provide the most fundamental reference case forecast 

of emissions, they can be used to assess the net policy effort necessary to achieve 

emissions goals. This information is provided in lines 4 and 5 of Table 6 and represents the 

difference between the IPCC and the RNC2050 policy targets and the ARFIMA model 

forecasts, respectively.  

Line 4 of Table 6 indicates that a policy effort that cuts 38.1% of the 45% needed to meet 

the IPCC mid-term target in 2030 will be necessary. The remaining 6.9% are achieved 

through the inertia of the emissions system. By 2050, maintaining a policy agenda 

consistent with the overall objective of an 82.3% reduction in emissions will require an 

additional policy effort of 27.4% relative to 2030 emission levels, while inertia will be 

responsible for reducing the remaining 10.6% of emissions this year. Accordingly, the 

inertia of the system will lead to just 17.5% of the total target reduction in emissions 

necessary by 2050 and the remaining efforts (-65.5%) will have to come from deliberate 

decarbonization policies.  

Moreover, our results indicate that to meet the RNC2050 (2019) mid-term targets in 2030, 

it is necessary a policy effort that leads to a reduction of CO2 emissions of 32.2% relative 
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to 2010 levels. Of these, 25.3% corresponds to the extra effort over the basic RNC2050 

reduction target due to the inertia of the emissions system. To achieve carbon neutrality 

by 2050 will require an extra reduction of CO2 emissions of 50.5% relative to 2010 levels, 

40.2% of which from deliberate decarbonization policies, and the remaining 10.6% will be 

achieved through the inertia of the emissions system. 

Finally, it should also be noted that the new IPCC guidelines impose a more stringent policy 

effort until 2030 - a 2.5% average annual reduction in emissions than the subsequent 20 

years – a 1.9% average annual reduction in emissions. The opposite is true under the 

RNC2050. This is a straightforward implications of different 2030 targets coupled with the 

same 2050 target in the two cases.  

6.  Summary, Conclusions, and Policy Implications 

This work uses an ARFIMA approach to evaluate the degree of persistence of total CO2 

emissions from fossil fuel combustion – coal, oil, and gas - and cement production in 

Portugal, and to make projections of CO2 emissions until 2050. These ARFIMA projections 

allow us to assess the policy effort required by the Portuguese authorities to enable the 

country to meet the new IPCC and RNC2050 targets and thereby contribute to the global 

effort to limit the average global average temperature rise to 1.5 ° C. 

Our empirical results suggest that CO2 emissions both at the aggregate level and for each 

of its four different components are fractionally integrated processes. Accordingly, they 

show long-memory and the effects of shocks tend to dissipate at a slow hyperbolic rate.  

Moreover, the degree of fractional integration does not significantly differ among all 

variables and the degree of fractional integration for aggregate CO2 emissions is very close 
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to the convex combination of the degrees of fractional integration for the four emission 

sources considered. 

In terms of projections for the CO2 emissions, our approach uses only the information 

included in the stochastic process underlying the baseline data, in a context in which the 

existing policies in 2017 remain invariant. Our projections for CO2 emissions suggest an 

inertial pattern of decarbonisation of the economy, which translates into emissions 

reductions of respectively 6.9% and 17.5% in 2030 and 2050 relative to 2010 levels. 

The policy effort required to reach carbon neutrality in 2050 is measured by the difference 

between the reduction of emissions required by the IPCC 2018 and RNC2050 targets and 

the ARFIMA emissions projections. Our results suggest that to achieve such policy targets 

by 2050, additional policy efforts are necessary leading to a reduction in emissions of 

65.5% of the 2010 levels. The required long-term policy effort is the same for the IPCC2018 

and RNC2050 since both have essentially the same objective for emissions in 2050. The 

direct application to Portugal of the IPCC2018 targets, however, requires a larger 

additional policy effort by 2030 (-45% relative to 2010 level) and, consequently, lower 

additional policy effort in the subsequent 20 years (-38% relative to 2010 levels) compared 

to the RNC2050 targets (-32.2% and -50.8%, respectively, relative to 2010 levels). 

Accordingly, if directly applied to Portugal, the IPCC2018 targets would lead to the need of 

frontloaded policies until 2030. By contrast, with the RNC2050 targets the greatest efforts 

would have to occur between 2030 and 2050. 

These results have important policy implications. First, our emissions projections capture 

the inertia effect underlying CO2 emissions and this exercise allows us to assess the policy 

effort involved in the intermediate and final targets. Trivially, the results confirm that the 
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underlying inertia of the reference scenario is insufficient to generate a path of CO2 

emissions that would generally achieve carbon neutrality by 2050 and in particular the 

intermediate IPCC targets. Accordingly, but not surprisingly, our forecasts support the 

contention of the IPCC (2018) report that active and deliberate additional policy efforts are 

crucial in attaining the desirable emission targets.  

Second, the long-memory nature of the emissions data implies that any policy shock will 

have temporary effects albeit longer lasting than suggested in a traditional analysis of 

stationarity. The mean reversal property of our estimates, however, implies that the policy 

effort must be persistent to produce equally persistent effects. This is particularly relevant 

in the framework of the national strategy for achieving carbon neutrality in 2050 where it 

will be crucial to promote permanent changes in behavior and not just short term fixes. 

Finally, the policy efforts required to achieve decarbonization – a reduction in emissions 

by 2050 equivalent to 65.5% of the 2010 reference levels - are very demanding and 

frontloaded if the IPCC2018 targets were to be strictly adopted. The magnitude and 

urgency of these efforts, however, does not seem to be not matched by the consideration 

of any significant actions in the current policy debate.  

Policy efforts toward the decarbonization of the Portuguese economy must necessarily 

include important changes such as a comprehensive elimination of pervasive fossil fuel 

subsidies; the elimination of the large market distortions present in electricity pricing; 

discontinuing coal-operated electricity production; continued promotion of electricity 

production from renewable sources; the promotion of abundant and readily available 

energy efficiency measures. Ultimately, they will require the establishment of a meaningful 

carbon emissions pricing - either though carbon taxation or emission trading markets.  
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Significantly, the Portuguese government announced the forced closure of the two major 

coal-operated power plants - Pego by 2021 and Sines by 2023. This is an important step in 

the right direction as these two power plants account for about 19% of the emissions in 

the country. Furthermore, this is a permanent change, the type of change necessary in 

light of the long-term memory of the emissions systems. Nevertheless, these forced 

closures will lead to a reduction in emissions that is less than 25% of the total reductions 

deemed as necessary under our projections. 

This paper provides an application and important implications for policy making for the 

case of the Portuguese emissions. Its relevance, however, is far from parochial. In fact, the 

need to identify a meaningful reference scenario for emissions is universal. Prospective 

mitigation policy assessment always requires identifying a benchmark scenario for 

emissions to determine the timing and magnitude of the policy efforts that are necessary. 

Defining a meaningful benchmark is best achieved by identifying a reference scenario 

reflecting the emissions that would exist at future dates in the absence of any emission 

targets and policies rather than using a recorded value in a particular year [see, for 

example, Markandya, (2019)]. The method presented in this paper has the advantage of 

generating such a reference scenario and one that reflects the long-term memory of the 

emissions system. Considering the long-term memory of the system is critical not only for 

the formulation of the most accurate reference forecasts but also for the understanding 

of the nature of the response of the emissions system to large policy changes or systemic 

shocks. 

Naturally, our method of identifying the reference scenario and concomitantly the policy 

efforts to achieve the necessary emission targets is not without limitations. First and 

foremost, by focusing on the inertia from the past, our approach may miss some of the 
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dynamics in the direction of greater environmental awareness and more environmental 

conscientious behaviors fueled by social media in the recent past. Our results suggest, 

however, that the wide gulf between the current emissions patterns and the current future 

emissions targets is highly unlikely to be bridged without clear, deliberate, comprehensive 

and substantial policy efforts. As such, identifying the timing and magnitude of these policy 

efforts requires a frequent update of the reference forecasts in light of the availability of 

new data, the implementation of new policies, and the consideration of potential 

exogenous shocks. For example, policies of the type of the forced closure of the coal-

operated power plants in Portugal and exogenous shocks such as the COVID-19 pandemic, 

while may or may not affect the inertia of the emissions system represent significant 

structural change that need to be considered in the development of future reference 

forecasts. 
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Table 1 – Portugal CO2 Emissions from Fossil Fuel Combustion and Cement Production 

Aggregate  
CO2 emissions 

Average Shares of Total Emissions (%) 

Years Mt Years 
Solid 
Fuels 

Liquid 
Fuels 

Gas 
Fuels 

Cement 
Production 

1950 5.621 1950-1959 37.0 56.7 - 6.3 

1960 8.218 1960-1969 26.2 66.6 - 7.2 

1970 15.246 1970-1979 9.6 81.8 - 8.6 

1980 26.963 1980-1989 12.4 78.1 - 9.5 

1990 42.286 1990-1999 24.5 66.3 3.3 8.2 

2000 62.680 2000-2009 19.9 60.6 12.3 7.2 

2010 48.097 2010-2017 20.9 54.9 18.9 5.3 

2017 50.784 2017 22.5 55.1 17 5.5 

1950-2017   1950-2017 18.4 62.4 12.7 7.1 
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Table 2 Quandt-Andrews and Andrews-Ploberger Structural Break Tests  

Variable 
Break 
point 

Quandt-Andrews Andrews-Ploberger 

t-test p-value t-test p-value 

Aggregate CO2  
emissions 

2002 18.981 0.002 6.430 0.002 

CO2 emissions  
from solid fuels 

1995 13.029 0.027 4.050 0.021 

CO2 emissions  
from liquid fuels 

2002 13.117 0.026 3.475 0.038 

CO2 emissions  
from gas fuels 

2011 3.276 0.847 1.086 0.481 

CO2 emissions  
from cement production 

2008 22.571 0.000 7.786 0.001 
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Table 3– Fractional-Integration Results: 1950-2017 

Variable Coefficient  Estimates  
Std. Err.  
(p-value) 

Confidence      
Intervals 

BIC  

Aggregate CO2 
emissions 

d 0.447 0.079 (0.000) [0.293 ; 0.601] 

331.742 p1 0.602 0.138 (0.000) [0.331 ; 0.873] 

p3 0.339 0.120  (0.005) [0.102 ; 0.575] 

CO2 emissions  
from solid fuels 

d 0.440 0.086 (0.000) [0.272 ; 0.608] 

216.876 p1 0.479 0.135 (0.000) [0.215 ; 0.743] 

p3 0.388 0.103 (0.000) [0.187 ; 0.590] 

CO2 emissions  
from liquid fuels 

d 0.469 0.044 (0.000) [0.383 ; 0.555] 

286.220 p1 0.532 0.099 (0.000) [0.337 ; 0.727] 

p 0.393 0.093 (0.000) [0.210 ; 0.576] 

Co2 emissions  
from gas fuels 

d 0.267 0.172 (0.121) [-0.071 ; 0.605] 
69.562 

p 0.951 0.059 (0.000) [0.835 ; 1.067] 

CO2 emissions  
from cement 
production 

d 0.479 0.031 (0.000) [0.419 ; 0.540] 
120.731 

p1 0.497 0.126 (0.000) [0.250 ; 0.744] 

Note: 𝑝 stands for the estimated value of the parameter associated with the 𝑥𝑡−𝑝 term of the autoregressive 

component. 
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Figure 1 - In-sample CO2 Predictions: 1950-2017 

a) Aggregate CO2 emissions 

 
b) CO2 emissions from solid fuels 

 

c) CO2 emissions from liquid fuels 

 
d) CO2 emissions from gas fuels 

 

e) CO2 emissions from cement production 

 
 

Note: The grey lines represent the upper and lower bounds of the 95% confidence interval. 
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Table 4 - In-Sample Forecasts Accuracy Analysis: 1950-2017 

  

CO2 Emissions 

Aggregate 
CO2 

  

Solid  
Fuel  

Liquid  
Fuel  

Gas 
Fuel  

Cement 
production  

Mean Absolute Percentage Error (MAPE) 6.1% 14.7% 7.3% 8.0% 12.8% 

Adjusted Mean Absolute Percentage Error (AMAPE)   3.9% 8.2% 4.5% 4.1% 7.3% 

Theil Inequality Coefficient 0.03 0.07 0.03 0.05 0.09 

Mean Squared Error decomposition:           

       Bias proportion 4.9% 3.4% 3.2% 4.3% 8.7% 

       Variance proportion 1.5% 0.0% 2.3% 1.0% 1.2% 

       Covariance proportion 93.5% 96.5% 94.5% 94.8% 90.1% 
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Figure 2 – CO2 emissions forecasts: 2018 - 2050 

a) Total CO2 Emissions 

 

 

b) CO2 Emissions from solid fuels 

 

 

c) CO2 Emissions from liquid fuels 

 

 

d) CO2 Emissions from gas fuels 

 

e) CO2 Emissions from cement production 

 

 

Note: The grey lines represent the upper and lower bounds of the 95% confidence interval. 
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Table 5 – CO2 Emissions Forecasts: Changes in Emissions Relative to 2010 Reference Levels (%)  

  
Aggregate 

CO2 
Solid fuel Liquid fuel Gas Cement 

2020 -1.7 66.3 -14.8 -29.9 19.4 

2030 -6.9 51.9 -20.6 -44.7 13.5 

2040 -12.5 38.0 -25.5 -56.0 9.0 

2050 -17.5 27.3 -29.4 -64.4 5.7 

 

  



32 
 

Table 6.  Reductions in CO2 Emissions Relative to 2010 (%) 

 2030 

2050 

Increment  over  
2030 

Total 

(1) IPCC (2018) Policy targets -45.0% -38.0% -83.0% 

(2) RNC2050 (2019) targets -32.2% -50.8% -83.0% 

(3) ARFIMA model -6.9% -10.6% -17.5% 

Policy efforts relative to ARFIMA model 

(4) IPCC (2018) targets              (1)-(3) -38.1  -27.4% -65.5% 

(5) RNC2050 (2019) targets     (2)-(3) -25.3 -40.2 -65.5% 

 

 

 

 

 

 

 

 

  



33 
 

APPENDIX 

 

Table A1 – Total CO2 Emissions Forecasts for 2018-2050 

Years 
Total co2 
emissions 

(forecasts - ft) 

Distançe to 
reference year      

(2010) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 47.800 -0.6 4.1 8.5 41.1 54.5 

2019 47.757 -0.7 4.9 10.3 39.7 55.8 

2020 47.303 -1.7 5.8 12.2 37.8 56.8 

2021 47.121 -2.0 6.5 13.8 36.4 57.9 

2022 46.949 -2.4 7.3 15.5 35.0 58.9 

2023 46.653 -3.0 8.0 17.2 33.5 59.8 

2024 46.382 -3.6 8.7 18.8 32.0 60.7 

2025 46.132 -4.1 9.4 20.4 30.7 61.6 

2026 45.858 -4.7 10.1 21.9 29.3 62.4 

2027 45.579 -5.2 10.7 23.5 28.0 63.2 

2028 45.307 -5.8 11.3 25.0 26.7 63.9 

2029 45.032 -6.4 11.9 26.5 25.4 64.6 

2030 44.755 -6.9 12.5 27.9 24.2 65.3 

2031 44.480 -7.5 13.1 29.4 23.0 66.0 

2032 44.206 -8.1 13.6 30.8 21.8 66.6 

2033 43.932 -8.7 14.1 32.2 20.7 67.2 

2034 43.661 -9.2 14.7 33.6 19.6 67.8 

2035 43.391 -9.8 15.1 34.9 18.5 68.3 

2036 43.124 -10.3 15.6 36.2 17.4 68.8 

2037 42.859 -10.9 16.1 37.6 16.4 69.3 

2038 42.596 -11.4 16.5 38.8 15.4 69.8 

2039 42.335 -12.0 17.0 40.1 14.4 70.3 

2040 42.078 -12.5 17.4 41.4 13.4 70.7 

2041 41.823 -13.0 17.8 42.6 12.5 71.1 

2042 41.571 -13.6 18.2 43.9 11.6 71.6 

2043 41.321 -14.1 18.6 45.1 10.7 72.0 

2044 41.075 -14.6 19.0 46.3 9.8 72.3 

2045 40.832 -15.1 19.4 47.4 9.0 72.7 

2046 40.591 -15.6 19.7 48.6 8.1 73.0 

2047 40.354 -16.1 20.1 49.8 7.3 73.4 

2048 40.120 -16.6 20.4 50.9 6.5 73.7 

2049 39.888 -17.1 20.7 52.0 5.8 74.0 

2050 39.660 -17.5 21.1 53.1 5.0 74.3 
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Table A2 – CO2 Emissions from Solid Fuels Forecasts for 2018-2050 

Years 

Total co2 
emissions 

forecasts (ft)                       
(Mt) 

Distançe to 
reference 
year: 2010                       

(%) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 10.697 69.8 1.6 14.8 8.1 13.3 

2019 10.628 68.7 1.9 17.7 7.5 13.7 

2020 10.476 66.3 2.2 20.8 6.9 14.1 

2021 10.437 65.7 2.4 23.0 6.5 14.4 

2022 10.365 64.6 2.6 25.4 6.0 14.7 

2023 10.248 62.7 2.9 27.9 5.5 14.9 

2024 10.156 61.2 3.1 30.1 5.1 15.2 

2025 10.066 59.8 3.2 32.2 4.7 15.4 

2026 9.961 58.2 3.4 34.4 4.3 15.6 

2027 9.860 56.6 3.6 36.4 4.0 15.8 

2028 9.764 55.0 3.7 38.4 3.6 15.9 

2029 9.664 53.4 3.9 40.3 3.3 16.1 

2030 9.565 51.9 4.0 42.2 2.9 16.2 

2031 9.470 50.4 4.2 44.0 2.6 16.3 

2032 9.375 48.8 4.3 45.8 2.3 16.4 

2033 9.282 47.4 4.4 47.5 2.0 16.5 

2034 9.191 45.9 4.5 49.2 1.8 16.6 

2035 9.102 44.5 4.6 50.8 1.5 16.7 

2036 9.015 43.1 4.7 52.4 1.3 16.8 

2037 8.930 41.8 4.8 53.9 1.0 16.8 

2038 8.848 40.5 4.9 55.4 0.8 16.9 

2039 8.767 39.2 5.0 56.9 0.6 17.0 

2040 8.689 38.0 5.1 58.3 0.4 17.0 

2041 8.613 36.7 5.1 59.7 0.2 17.1 

2042 8.539 35.6 5.2 61.0 0.0 17.1 

2043 8.467 34.4 5.3 62.4 -0.2 17.2 

2044 8.398 33.3 5.3 63.7 -0.4 17.2 

2045 8.330 32.3 5.4 64.9 -0.6 17.2 

2046 8.264 31.2 5.5 66.1 -0.7 17.3 

2047 8.200 30.2 5.5 67.4 -0.9 17.3 

2048 8.139 29.2 5.6 68.5 -1.0 17.3 

2049 8.079 28.3 5.6 69.7 -1.2 17.3 

2050 8.020 27.3 5.7 70.8 -1.3 17.4 

 

  



35 
 

Table A3 – CO2 Emissions from Liquid Fuels Forecasts for 2018-2050 

Years 

Total co2 
emissions 

forecasts (ft)                       
(Mt) 

Distançe to 
reference 
year: 2010                         

(%) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 25.403 -13.1 2.8 10.9 20.8 30.0 

2019 25.279 -13.6 3.4 13.3 19.7 30.8 

2020 24.901 -14.8 4.0 15.9 18.4 31.4 

2021 24.788 -15.2 4.5 18.0 17.4 32.1 

2022 24.656 -15.7 5.0 20.2 16.5 32.8 

2023 24.421 -16.5 5.5 22.5 15.4 33.4 

2024 24.239 -17.1 6.0 24.6 14.4 34.0 

2025 24.079 -17.7 6.4 26.7 13.5 34.6 

2026 23.894 -18.3 6.9 28.7 12.6 35.2 

2027 23.716 -18.9 7.3 30.8 11.7 35.7 

2028 23.551 -19.5 7.7 32.7 10.9 36.2 

2029 23.385 -20.0 8.1 34.7 10.0 36.7 

2030 23.220 -20.6 8.5 36.6 9.2 37.2 

2031 23.062 -21.1 8.9 38.5 8.5 37.7 

2032 22.908 -21.7 9.2 40.3 7.7 38.1 

2033 22.756 -22.2 9.6 42.1 7.0 38.5 

2034 22.608 -22.7 9.9 43.9 6.3 38.9 

2035 22.464 -23.2 10.2 45.6 5.6 39.3 

2036 22.323 -23.7 10.6 47.3 5.0 39.7 

2037 22.185 -24.1 10.9 49.0 4.3 40.1 

2038 22.050 -24.6 11.2 50.6 3.7 40.4 

2039 21.919 -25.0 11.4 52.2 3.1 40.7 

2040 21.790 -25.5 11.7 53.8 2.5 41.1 

2041 21.665 -25.9 12.0 55.3 1.9 41.4 

2042 21.542 -26.3 12.2 56.9 1.4 41.7 

2043 21.422 -26.7 12.5 58.3 0.9 42.0 

2044 21.305 -27.1 12.7 59.8 0.3 42.3 

2045 21.191 -27.5 13.0 61.3 -0.2 42.5 

2046 21.079 -27.9 13.2 62.7 -0.6 42.8 

2047 20.969 -28.3 13.4 64.1 -1.1 43.1 

2048 20.862 -28.7 13.6 65.4 -1.6 43.3 

2049 20.757 -29.0 13.9 66.8 -2.0 43.5 

2050 20.655 -29.4 14.1 68.1 -2.5 43.8 
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Table A4 – CO2 Emissions from Gas Forecasts for 2018-2050 

Years 

Total co2 
emissions 

forecasts (ft)                       
(Mt) 

Distançe to 
reference 
year: 2010                         

(%) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 7.570 -26.3 1.4 19.1 5.2 10.0 

2019 7.381 -28.1 1.9 25.6 4.3 10.5 

2020 7.202 -29.9 2.3 31.7 3.4 11.0 

2021 7.030 -31.5 2.6 37.5 2.7 11.4 

2022 6.863 -33.2 3.0 43.0 2.0 11.7 

2023 6.701 -34.8 3.2 48.4 1.4 12.0 

2024 6.544 -36.3 3.5 53.6 0.8 12.3 

2025 6.390 -37.8 3.8 58.7 0.2 12.6 

2026 6.240 -39.2 4.0 63.8 -0.3 12.8 

2027 6.094 -40.7 4.2 68.7 -0.8 13.0 

2028 5.951 -42.1 4.4 73.7 -1.3 13.2 

2029 5.813 -43.4 4.6 78.5 -1.7 13.3 

2030 5.678 -44.7 4.7 83.4 -2.1 13.5 

2031 5.546 -46.0 4.9 88.2 -2.5 13.6 

2032 5.418 -47.2 5.0 93.0 -2.9 13.7 

2033 5.294 -48.5 5.2 97.8 -3.2 13.8 

2034 5.173 -49.6 5.3 102.6 -3.6 13.9 

2035 5.055 -50.8 5.4 107.4 -3.9 14.0 

2036 4.941 -51.9 5.5 112.2 -4.2 14.1 

2037 4.829 -53.0 5.7 117.0 -4.5 14.1 

2038 4.722 -54.0 5.8 121.9 -4.7 14.2 

2039 4.617 -55.0 5.8 126.7 -5.0 14.2 

2040 4.515 -56.0 5.9 131.5 -5.3 14.3 

2041 4.417 -57.0 6.0 136.4 -5.5 14.3 

2042 4.321 -57.9 6.1 141.2 -5.7 14.4 

2043 4.228 -58.8 6.2 146.1 -5.9 14.4 

2044 4.138 -59.7 6.2 151.0 -6.1 14.4 

2045 4.050 -60.6 6.3 155.9 -6.3 14.4 

2046 3.966 -61.4 6.4 160.9 -6.5 14.5 

2047 3.884 -62.2 6.4 165.8 -6.7 14.5 

2048 3.804 -63.0 6.5 170.8 -6.9 14.5 

2049 3.727 -63.7 6.6 175.8 -7.0 14.5 

2050 3.652 -64.4 6.6 180.8 -7.2 14.5 
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Table A5 – CO2 Emissions from Cement Production Forecasts for 2018-2050 

Years 

Total co2 
emissions 

forecasts (ft)                       
(Mt) 

Distançe to 
reference 
year: 2010                        

(%) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 2.759 20.7 0.9 30.9 1.4 4.2 

2019 2.745 20.1 0.9 33.9 1.2 4.3 

2020 2.731 19.4 1.0 36.0 1.1 4.3 

2021 2.716 18.8 1.0 37.7 1.0 4.4 

2022 2.702 18.2 1.1 39.1 1.0 4.4 

2023 2.687 17.5 1.1 40.2 0.9 4.5 

2024 2.673 16.9 1.1 41.2 0.9 4.5 

2025 2.660 16.3 1.1 42.1 0.8 4.5 

2026 2.646 15.7 1.1 42.9 0.8 4.5 

2027 2.633 15.2 1.1 43.6 0.7 4.5 

2028 2.620 14.6 1.2 44.3 0.7 4.5 

2029 2.608 14.1 1.2 45.0 0.7 4.5 

2030 2.596 13.5 1.2 45.6 0.7 4.5 

2031 2.584 13.0 1.2 46.2 0.6 4.5 

2032 2.572 12.5 1.2 46.7 0.6 4.5 

2033 2.561 12.0 1.2 47.2 0.6 4.6 

2034 2.551 11.6 1.2 47.8 0.5 4.6 

2035 2.540 11.1 1.2 48.2 0.5 4.6 

2036 2.530 10.7 1.2 48.7 0.5 4.6 

2037 2.520 10.2 1.2 49.2 0.5 4.6 

2038 2.511 9.8 1.2 49.6 0.5 4.6 

2039 2.502 9.4 1.3 50.0 0.4 4.6 

2040 2.493 9.0 1.3 50.5 0.4 4.6 

2041 2.484 8.6 1.3 50.9 0.4 4.6 

2042 2.476 8.3 1.3 51.2 0.4 4.6 

2043 2.467 7.9 1.3 51.6 0.4 4.6 

2044 2.459 7.6 1.3 52.0 0.4 4.6 

2045 2.452 7.2 1.3 52.4 0.3 4.6 

2046 2.444 6.9 1.3 52.7 0.3 4.6 

2047 2.437 6.6 1.3 53.1 0.3 4.6 

2048 2.430 6.3 1.3 53.4 0.3 4.6 

2049 2.423 6.0 1.3 53.7 0.3 4.6 

2050 2.416 5.7 1.3 54.0 0.3 4.6 

 

 


