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Abstract

This paper aims to develop tools for anticipating systemic and abrupt fluctua-
tions in asset prices, focusing on the Brazilian economy. While the literature on
systemic risk has advanced significantly with the introduction of robust machine
learning techniques offering superior predictive capabilities, most studies remain cen-
tered on the U.S. economy. To address this gap, we propose a combination of three
machine learning models tailored to predict systemic events in Brazil, achieving an
accuracy of 84%. The first model is a random forest algorithm that forecasts reces-
sions based on macroeconomic indicators. The second and third models analyze asset
price behaviour to identify potential systemic events, collectively enhancing predictive
performance in a complex economic environment.
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1 Introduction

Systemic risk refers to the potential collapse of an entire financial system or market, sig-

nificantly impacting interest rates, exchange rates, and asset prices, thereby affecting the

broader economy. Systemic crises can arise from natural disasters, such as pandemics,

tsunamis, or earthquakes, or they may be triggered by financial factors, including market

manipulation, labor strikes, energy price shocks, or bank failures1. Notably, systemic risk

is not solely driven by external shocks. The normal functioning of markets can, over time,

generate systemic fragility, necessitating the implementation of macroprudential regula-

tory measures. A well-known example is the work of Diamond and Dybvig (1983), which

demonstrates a sunspot-driven bank run equilibrium.

A seminal paper by Burns (1946) introduced an approach to measuring market cycles,

emphasizing the need to analyze multiple time series to better understand economic fluctu-

ations. Later,Stock and Watson (1988) proposed a model for economic cycles, highlighting

the role of unobservable factors in explaining these phenomena. Stock (1989) revisited eco-

nomic indicators developed by Burns (1946) in collaboration with the NBER (National

Bureau of Economic Research), leading to the creation of three indicators, including the

recession index. More recently, Stock and Watson (2008) developed a recession probability

model using coincident and leading variables. Addionally, Estrella and Mishkin (1998) was

the first to incorporate variables such as interest rate, stock prices, and spreads to estimate

recession probabilities.

Several studies have estimated recession probabilities based on the presence of unob-

served common factors that can be extracted through linear combinations, such as trends,

cycles, seasonality and volatility2. These studies use probit model to estimate recession

probability. More recently, Costa et al. (2023) proposed a model using the framework of

Issler and Vahid (2006) incorporating big data, as advocated by Stock and Watson (2014).

The key advantage of big data is that it enables the model to provide real time recession

predictions.

Given that systemic risk can emerge from a variety of sources, it is challenging to

1Bisias et al. (2012)
2 Engle and Kozicki (1993), Vahid and Engle (1993), Engle and Issler (1995) and Issler and Vahid (2006)

2



define a fixed set of explanatory variables capable of reliably predicting abrupt systemic

fluctuations in asset prices. To address this issue, researchers have tried to use variables

that, on one side, are very sensitive of a wide range of events, and, on the other side, can be

associated with observed situations of systemics collapses. This approach has facilitated the

development of effective predictive models. For example, Liu and Moench (2016) proposed

a model that predict recession in the US economy as a metric of systemic risk. In its

proposal, the difference in interest rates (interest rate term structure spreads) is used,

using a probit model to quantify the probability of a recession. Notably, this approach has

gained widespread adoption and is currently employed by several financial institutions as

a key metric for systemic risk management.

The development of statistical field and data science methods have provided new op-

portunities for construction models with a better potential to deal with a large range of

variables - an essential feature when anticipating systemic price fluctuations. Several stud-

ies have applied machine learning techniques to address similar challenges using data from

US and Europe (Wang et al. (2021); Vrontos et al. (2021); Nyman and Ormerod (2017)).

However, research focused on the Brazilian economy remains scarse. In this context, our

objective is to develop a robust methodology for measuring systemic risk in Brazil, leverag-

ing recent modeling advancements while avoiding a mere replication of approaches designed

for the U.S. economy.

The brazilian recession literature is extensive in articles referring to measuring banking

systemic risk (Tabak et al. (2013); Guimarães et al. (2022); Capelletto and Corrar (2008);

Datz (2002); Ng (2012)). As previously discussed, systemic risk arises from a wide range of

situations. Thus, focusing on banking systemic risk is insufficient, as other macroeconomic

variables are involved in such phenomenon and must be incorporated into the modeling

approach.

In this context, the work of Chauvet and Morais (2010) discussed a time-varying au-

toregressive probit model to predict recessions in Brazil using economic data with different

frequencies. However, the use of machine learning models applied to the Brazilian economy

are essentially used for inflation forecast. For example, Garcia et al. (2017) and Araujo and

Gaglianone (2023) focus on predicting the Consumer Price Index (CPI) for Brazil, detailing
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the datasets used and their sources.

This paper aims to enhance tools for anticipating systemic and abrupt variations in asset

prices by applying machine learning techniques to Brazilian economic data. Additionally,

we propose a methodology for predicting recessions as early as possible by integrating two

auxiliary indicators into our machine learning framework. We evaluate Logistic Regression,

Decision Trees, Random Forest, and XGBoost models motivated by the work of Zhang et al.

(2020); Leo et al. (2019) and Zhu (2020). Furthermore, we incorporate the Turbulence Index

and the Absorption Ratio, as defined by Kritzman and Li (2010); Kritzman et al. (2010),

to enhance predictive performance.

2 Methodology

2.1 Data

The data set consists of 60 different variables divided into four groups. The first group

consists of price indexes and interest rates. The second aggregates information about the

activity of the economy, such as the GDP and car production, for example. The third

group consists of fiscal variables, such as debt as a percentage of GDP and in nominal

terms. Finally, the last one is the set of financial data. All variables are presented in Table

5 in Appendix A. All information was obtained on the Brazilian Central Bank website3 for

the period between January 2002 and December 2024, on a monthly basis. Our approach

for spiting the training and test set was made not only about data sample, but also thinking

about the recessions periods. As recession isn’t a common economic event we thought to

include some period in the test set for evaluating the predictive power of machine learning

models. So, the training set consists of data between January 2002 and December 2014,

and the test set was between January 2015 and December 2024.

Some models are sensitive when data have different scales, negatively affecting modeling

quality. One method to overcome this problem is the use of data normalization, a technique

in which the aim is to standardize scales within a predicted range, transforming the data

3https://www3.bcb.gov.br/sgspub/localizarseries/localizarSeries.do?method=

prepararTelaLocalizarSeries
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used into a standardized unit of measurement. Thinking about possible data leaks between

the training and testing bases, the calculation was established on the training basis.

A recession for Brazil is defined as two negative quarters in a row. It should be noted

that there may be divergences between recession dates from diverse sources, since the

concept of recession may be different according to the author, and source. We used the

definition of two negative quarter GDP for the sake of clarity and simplification, since other

concepts tend to be a little more nuanced.

The vast majority of observations are for periods without recession. For the case of this

study, less than 18% of the 276 data points were target labels for periods of true economic

recession in Brazil. Because of that, the data were imbalanced, which can interfere with

machine learning modeling, generating bias in its results. A key point is the evolution of tree

models in machine learning are capable of dealing with imbalanced datasets. (Fernández

et al. (2018))

2.2 Machine Learning approaches

The application of machine learning techniques in this context fits the problem we want to

solve. This technique is very appropriate for solving problems that can be addressed via

classification of results and also due to the vast capacity to deal with a large number of

variables. In general, machine learning techniques for this specific area fall into classification

techniques which have the ability to demonstrate the probability of a certain class of the

model occurring or not. In general, given a set of training data (x1, y1), ..., (xn, yn) models

for this type of task can identify two classes: true (1) and false (0).4

f : RD → {1, 0} (1)

To conclude which model presents the best performance for the proposed objective,

the use of statistical metrics can be used to evaluate its performance. Normally, in order

to improve performance, hyperparameter optimization techniques are used. The models

evaluated in this work focused on different classes of machine learning, from the most classic

4See James (2013) and Deisenroth et al. (2020)
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to Bagging and Boosting techniques. Four different techniques are discussed: Logistic

Regression, Decision Tree, Random Forest, and XGBoost.

2.2.1 Logistic Regression

Logistic regression is a classic statistical technique and is appropriate when the depen-

dent variable is dichotomous (binary) and can present independent variables in diverse

ways. The data classification capacity refers to the sigmoid function used, as shown in

Equation 2. (DeMaris (1995))

P (y = 1|x) = 1

1 + e−β0+β1x
(2)

As the dependent variable of logistic regression is nonlinear, its cost function must be

derived through the maximum likelihood estimate, which will be minimized.

θ̂ = argmin
1

m

m∑
i=1

L(f(x(i); θ), y(i)) (3)

Where θ is the weight, L is the loss function, i is the data space for (x(i), y(i)) and m

the total number of instances. Finally, the classification between classes will be given by

the probability resulting from the model, as shown below.

Decision(x) =

1 if P(y=1—x)>0.5

0 otherwise
(4)

Logistic regression is a widely used technique but has some negative points such as not

solving problems that present non-linear relationships in addition to requiring that there

is no collinearity between the data which, depending on the data used, may exist.

2.2.2 Decision Trees

Decision Trees are non-parametric supervised learning models used for both classification

and regression tasks. These structures represent a hierarchical series of choices, in which

each node in the tree corresponds to a question about the attributes of the data, and the
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edges connect the answers to these questions. (Safavian and Landgrebe (1991); Swain and

Hauska (1977))

The quality of candidates to be separated by each node is calculated using an impurity

or loss function (H), this function being dependent on the task to be performed (regression

or classification). For this work, the Gini criterion was used, described by Equation 5.

H(Qm) =
∑
k

pmk(1− pmk) (5)

Where pmk is the resulting classification for a class k for a node m.

Decision trees are models with a certain robustness but can be very easy to overfitting

the data, since only one tree is created to adjust (and learn) all the variables present in the

modeling.

2.2.3 Random Forest

Random Forest is a machine learning algorithm based on decision trees. Its construction

takes place through multiple independent decision trees that combine their predictions to

obtain a more accurate and robust result. This procedure is feasible due to the use of

techniques such as bootstrapping and bagging, which increase the diversity of the trees

created. (Kullarni and Sinha (2013); Parmar et al. (2019); Shaik and Srinivasan (2019))

The bagging method was proposed by Breiman (1996) and presents itself as a solution

to reduce the variance of a data set. To do this, a data set is generated by bootstrapping

sampling of the original data.

f̂bag(x) =
1

B

B∑
b=1

f̂ ∗b(x) (6)

The equation above represents the Bagging process where B represents the different sets

generated by bootstrapping and f̂ ∗b(x) is the model to be trained for a given set. Then,

the classification models are trained independently and, finally, a result is generated by

aggregation, in the case of the classification task, this aggregation is voting.

Each tree will give a rating for each instance, votes from all trees are combined and

counted. The class that presents the highest number of votes will be the classification
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for the analyzed instance. Equation 7 describes the margin function which represents the

confidence of tree classification.

margin(x, y) = avkI(hk(x) = y)−maxj ̸=yavkI(hk(x) = j) (7)

2.2.4 XGBoost

The XGBoost algorithm resembles that of Random Forest. In XGBoost, a series of decision

trees are created in sequence, in which each tree tries to correct the errors of the previous

tree (boosting), resulting in a model with high robustness and accuracy. Furthermore,

regularization and automatic feature selection techniques are used. (Chen and Guestrin

(2016))

Equation 8 describes the calculation established by each tree.

Fm(X) = Fm−1(X) + αmhm(X, rm−1) (8)

Where αm and rm are the regularization terms and the residuals computed in the ith

tree, hm is the function trained to predict.

Just like the Random Forest model, XGBoost has the ability to deal with a wide range of

variables and avoid overfitting due to the techniques used in its modeling, such as boosting.

2.3 Hyperparameter optimization

To optimize the models’ hyperparameters, the GridSearch technique was used. This tech-

nique performs a complete search across the entire subset of hyperparameter space of

the algorithm in question (Liashchynskyi and Liashchynskyi (2019)). the hyperparameter

search space for logistic regression consisted of penalty, stopping criteria, and regulariza-

tion strength. Basically, for tree models, they shared some search hyperparameter such as

number of trees, maximum depth, minimum number of samples required to be at a leaf

node, minimum number of samples required to split an internal node. To evaluate the

performance of the models tested within the hyperparameter search space, the F1-Score

metric was used, with the TimeSeriesSplit technique being used for cross-validation.
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2.4 Evaluation Metrics

To choose the best model, error metrics related to supervised learning for classification

models were evaluated, namely: Accuracy, Precision, Recall, F1-Score and ROC-AUC. The

purpose of a classification model is to generate classes, in this case binary (True and False,

1 and 0, respectively). Knowing this, it is necessary to establish statistical methods capable

of evaluating models and to do so, the classes generated by the model are evaluated. (Hand

(2012))

As a result, these binary results can be in four ways:

• True Positive (TP): correct classification of the Positive class.

• False Negative (FN): error in which the model predicted the Negative class instead

of Positive (type 2 error).

• False Positive (FP): error in which the model predicted the Positive class instead of

Negative (type 1 error).

• True Negative (TN): correct classification of the Negative class.

Equation 9 describes the calculation of accuracy, which is one of the metrics capable of

evaluating a classification model in general, quantifying how many classes the model got

right. Accuracy quantifies the number of correct answers that the model obtained, for true

and false, analyzed independently.

Accuracy =
TP + TN

TP + FN + TN + FP
(9)

Equation 10 describes the calculation for quantifying precision for the true class. In

other words, if the positive class is associated with the occurrence of a recession, the

precision criterion sends the following message: within the set of times that the model

indicated the occurrence of a recession, what is the proportion of times that this recession

event fact occurred.

Precision =
TP

TP + FP
(10)
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Recall quantifies the sensitivity of the model in classifying data to a given expected

class. Equation 11 describes the calculation for quantifying sensitivity to the true class.

In other words, and again assuming that the positive class indicates the occurrence of a

recession, the message would be within the set of times in which a recession was observed,

what is the proportion of times that the model previously indicated this occurrence.

Recall =
TP

TP + FN
(11)

Equation 12 describes the calculation of the F1-Score, which is the harmonic mean

between Precision and Recall.

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(12)

The Receiver Operating Characteristic (ROC) is also used in the evaluation in order to

increase the probability to use the best model. The ROC is a curve that demonstrates how

well a machine learning model can distinguish between two classes. For its determination,

the true positive and false positive rates are used. A straight line is usually drawn on the

diagonal of this graph, symbolizing a random classifier which would have a 50% chance of

identifying the class of the analyzed instance.

2.5 Auxiliary Indicators

The papers of Kritzman and Li (2010) and Kritzman et al. (2010) define the Turbulence

Index and the Absorption Ratio. The Turbulence Index refers to a situation in which asset

prices, given their historical pattern of oscillation, start to show different behavior (extreme

movements, decoupling of assets, convergence of uncorrelated assets, etc.). Equation 13

describes the mathematical expression for calculating the Turbulence Index, which was

derived from the Mahalanobis Distance, and was previously discussed by Chow et al. (1999).

dt = (yt − µ)Σ−1(yt − µ)′ (13)

Where yt is the vector of returns for period t, µ is the average of historical returns, Σ

is the covariance matrix.
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The Absorption Ratio seeks to identify periods in which the level of risk (volatility)

between assets is coupled, signaling a situation of spread of volatility between different

assets. Equation 14 describes its expression, which is modeled as the fraction of the total

variance compared to the set of eigenvectors.

AR =

N∑
i=1

σ2
Ei

N∑
j=1

σ2
Aj

(14)

Where N is the number of assets, σ2
Ei

is the variance of the ith eigenvector, σ2
Aj

is the

variance of the jth asset.

3 Results and discussion

3.1 Machine Learning

The database was divided into in-sample and out-of sample groups for analysis, in which

performance metrics were evaluated. Initially, the models were trained without any type

of hyperparameter optimization and their performance metrics were computed. Then, hy-

perparameter optimization was performed using the GridSearch technique, and its metrics

were measured again. The model with the best performance in both cases was the Random

Forest model. The results are ilustrated in Table 1 and Table 2. The hyperparameter

optimization technique, GridSearch, was carried out using the F1-Score as an evaluation

metric, with 6 iterations and use of TimeSeriesSplit to create the cross-validation with 4

folds and no data shuffling.

Additionally to the random forest model, we conclude that XGBoost is also a suitable

candidate. Logistic regression does not have many hyperparameters, because of that we

have identical results with and without hyperparameter optimization. The results presented

are in line with the advantages and disadvantages of each model discussed previously.

Logistic Regression presenting the worst performance due to its low capacity to deal

with a large number of variables and the need for linear relationships between the data and

the lack of multicollinearity Deisenroth et al. (2020). On the other hand, Random Forest
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Models Accuracy Precision Recall F1-Score AUC

Logistic Regression 37.38% 66.83% 54.11% 32.78% 64.95%

Decision Tree 71.92% 67.36% 62.17% 62.85% 62.17%

Random Forest 82.24% 80.24% 75.56% 78.63% 81.24%

XGBoost 72.90% 70.09% 72.28% 70.58% 80.34%

Table 1: Performance evaluation metrics of machine learning models (Logistic Regression,

Decision Tree, Random Forest and XGBoost) before the hyperparameter optimization pro-

cess using GridSearch.

Models Accuracy Precision Recall F1-Score AUC

Logistic Regression 37.38% 66.83% 54.11% 32.78% 64.95%

Decision Tree 68.22% 66.53% 68.86% 66.39% 66.92%

Random Forest 84.11% 81.49% 82.86% 82.08% 84.57%

XGBoost 74.77% 71.40% 72.86% 71.93% 79.33%

Table 2: Performance evaluation metrics of machine learning models (Logistic Regression,

Decision Tree, Random Forest and XGBoost) after the hyperparameter optimization pro-

cess using GridSearch.

and XGBoost presented the best performances because they are robust models capable

of dealing with different relationships between data and presenting techniques to avoid

overfitting models such as bagging for Random Forest and boosting for XGBoost.

The ROC curves can be seen in Figure 1 and Figure 2. It is possible to observe the

performance improvement of the Random Forest without hyperparameter optimization,

since its curve tends to get closer to the ’perfect curve’, which would be towards the value

1.0 of the TPR shaft. The Decision Tree and Logistic Regression curve are close to the

“random” curve, which is the dashed line. This line is defined as random if the model had

a 50% chance of classifying a given class, its curve would have this representation.

After training the Random Forest model, it was possible to obtain the recession prob-

ability graph (class 1) for Brazil, month/month, as shown in Figure 3. It is possible to

observe the recession probability (black line), applied to moments of historical recession

(hatched regions) beyond the model’s decision threshold (probability of 0.5).
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Figure 1: ROC curve for machine learning models before hyperparameter optimization.

TPR: True Positive Rate; FPR: False Positive Rate.

Figure 2: ROC curve for machine learning models after hyperparameter optimization.

TPR: True Positive Rate; FPR: False Positive Rate.

The assertiveness of the model compared to history is notable, except in the period of

COVID-19, due to the lack of explanatory data for the phenomenon that occurred: the

pandemic was characterized as an economically exogenous event.
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Figure 3: Probability resulting from the Random Forest model for predicting recession in

the Brazilian economy.

3.2 Feature Importance

Models such as Random Forest were classified as black boxes due to their lack of inter-

pretability. However, techniques have been developed to enable the analysis of variables

that generally impact the decision-making of each node motivated by the specified metric,

such as permutation importance.

3.2.1 Permutation Importance

Using the permutation importance technique, a random shuffle is performed between the

data of one of the variables present in the model and then it is measured how much this mod-

ification would affect the predictive capacity of the model. The process occurs iteratively,

but the calculation of feature importance can be represented by Equation 15. (Altmann

et al. (2010))

ij = s− 1

K

K∑
k=1

skj (15)

Where s is the reference result for the model, K is the number of variables, skj is the
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model result for the randomly shuffled variable.

The result of the importance permutation tells us how much the model’s error will

increase if that variable is randomly shuffled; the higher its value, the more importance

that variable has for the model given the moment in time analyzed (new predictions can

generate a new result, due to the dynamics of the new data used).

Figure 4: Result of the permutation importance analysis for the variables of the Random

Forest model. Positive influences are show.

Therefore, for the prediction analyzed, ”SELIC” and the “Consolidated public sector

net debt %” presented greater importance in machine learning modeling, specific for the

Random Forest, than the other variables to carry out the prediction.

3.3 Auxiliary Indicators

The random forest model performed well in classifying the period as either recession or non-

recession, but it was unable to predict the recession. In this case, the model is not suitable

to an risk manager or an investor. To address this issue, we incorporate the Turbulance

Index and Absorption Ratio Models to our main model.

Our work uses Ibovespa, Selic, SP&500, Treasury, Commodities Index, and Real Estate

Index as financial variables to incorporate the Turbulance Index and the Absorption Rate

to the analysis.
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Figure 5: Result of modeling the Turbulence Index for the Brazilian economy.

Figure 6: Result of the Absorption Ratio modeling for the Brazilian economy.

Initially we took them separately for analytical purposes, and both graphs (Figure 5 and

Figure 6) show the critical values obtained through their models in dark hatched regions,

the lighter hatched regions refer to moments of recessions in Brazil. According to the

literature for both models, a threshold of 75% (values above the third quartile) was defined
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to determine critical values, that is, values that indicate systemic risk.

It is possible to notice the presence of regions of critical values that precede periods of

economic recession in Figure 5 and Figure 6. It is noteworthy that, among all historical

periods of recession, the moment that preceded the 2009 recession was the one in which

both indicators had the capacity to precede a recession 6 months in advance.

3.3.1 Comparison to VIX

As a way of validating the two indicators, a comparison was established with the VIX, a

volatility index calculated using S&P 500 stock options.

In Figure 7, we can see a comparison between the Turbulence Index and the VIX. It

is straightforward to notice that the indices are congruent, showing similar movements,

including in amplitude. Figure 8 shows the comparison between the Absorption Rate and

the VIX. In periods that preceded crises in the Brazilian economy, the absorption rate was

comparable to the VIX, but with greater amplitudes, which helps in a clearer signaling of

subsequent recessions.

Figure 7: Comparison between the Turbulence Index model and VIX data.
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Figure 8: Comparison between the Absorption Ratio model and VIX data.

4 Final Model

The random forest model, illustrated in figure 3 was not able to detect the recession in

2008. However, the turbulance index, figure 5, and the absorption rate, figure 6, detected

an abnormality in the analyzed pairs, which may indicate a situation of systemic risk for

that period. It is worth returning to the main practical objective of developing a systemic

risk prediction model: to prevent a possible situation of recession/systemic risk, through

actions to reduce exposure to risk. In this sense, the auxiliary indicators seem to have a

greater potential for anticipating recessions, while the model in figure 3 showed a greater

capacity to validate a recession at the time of its onset. Observing the dynamics of the

three graphs (Figure 3, Figure 5 and Figure 6) it can be noted that the last two generated

warnings before the recession in 2003, 2009 and 2014. In this way, the three models

considered signaled a high degree of complementarity.

We tested the hypothesis that the accessory indicators would have the capacity to assist

in the result generated by the recession probability model through a weighted composition

of its results, which took us to develop a final model with greater predictive potential. This

weighting was developed using a data lag of 6 months before a period of recession, select-

ing three historical periods when the acessory indicators and the machine learning model

predicted a recession period, in which we sought to solve a linear system of equations. The
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goal is finding the multiples of these indicators which would result in a true classification,

that is, recession. For this to happen, its result must be equal to or greater than 0.5.

0.5 ≤


αMLX + βTIY + γARZ

αMLX + βTIY + γARZ

αMLX + βTIY + γARZ

(16)

Where X = Y = Z = {x|x ∈ R, 0 ≤ x ≤ 1} are the probabilities found in the 6-month

time window determined to carry out the system construction, α is the coefficient for the

machine learning model, β is the coefficient for the turbulence index model and γ is the

coefficient for the absorption ratio.

0.5 ≤



α[αvkI(hk(xX) = y)−maxj ̸=yavkI(hk(x) = j)] + β[(yt − µ)Σ−1(yt − µ)′] + γ[

N∑
i=1

σ2
Ei

N∑
j=1

σ2
Aj

]

α[αvkI(hk(xX) = y)−maxj ̸=yavkI(hk(x) = j)] + β[(yt − µ)Σ−1(yt − µ)′] + γ[

N∑
i=1

σ2
Ei

N∑
j=1

σ2
Aj

]

α[αvkI(hk(xX) = y)−maxj ̸=yavkI(hk(x) = j)] + β[(yt − µ)Σ−1(yt − µ)′] + γ[

N∑
i=1

σ2
Ei

N∑
j=1

σ2
Aj

]

(17)

We use 2009 recession to selected the weights due to the fact that both accessory

indicators presented critical values before this period, but also generated a final model

with a lower number of false positives.

The final model is composed of 39.3% of the Random Forest Model, 42.5% of the

Turbulence Index and 18.2% of the Absorption Ratio. The final model is represented in

Figure 9.

19



Figure 9: Comparison between the machine learning model, Random Forest, and the final

model generated by weighting the three models presented for measuring systemic risk in

the Brazilian economy: Random Forest, Turbulence Index and Absorption Ratio.

Looking at Figure 9, it can be seen that the Final Model had the ability to give signs

of recession before its implementation. These events can be observed graphically before

the crises in 2003, 2009 and 2014. Through Table 3, it is possible to observe, in bold,

the moments in which the Final Model presented an indication of systemic risk before the

crises highlighted above.
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Date Random Forest Final Model Recession

01/07/2002 0.0641 0.1760 0

01/08/2002 0.0312 0.4081 0

01/09/2002 0.0735 0.6139 0

01/10/2002 0.0795 0.1515 0

01/11/2002 0.1585 0.3282 0

01/12/2002 0.2385 0.2420 0

01/01/2003 0.9166 0.9166 1

01/07/2008 0.0147 0.5501 0

01/08/2008 0.0806 0.5149 0

01/09/2008 0.0494 0.7594 0

01/10/2008 0.5839 0.5839 1

01/11/2008 0.8897 0.8897 1

01/12/2008 0.9334 0.9334 1

01/01/2009 0.9788 0.9788 1

01/09/2013 0.0520 0.5681 0

01/10/2013 0.0544 0.2506 0

01/11/2013 0.0629 0.1763 0

01/12/2013 0.0788 0.1421 0

01/01/2014 0.2553 0.2886 0

01/02/2014 0.1818 0.0933 0

01/03/2014 0.2638 0.0941 0

01/04/2014 0.6465 0.6465 1

Table 3: Values found for the machine learning model, Random Forest, and the final model,

weighting between the three models presented (Random Forest, Turbulence Index and

Absorption Ratio) through the 6-month window before confirmation of a historic recession.
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5 Conclusion

The recession probability model was developed using Random Forest, a supervised learning

technique for classification tasks. In addition to generating a binary classification, the

model also provides the probability of a given event occurring. The result present in figure

3 demonstrate a strong alignment between the model’s predictions (periods in which the

probability exceeds 0.5) and historical recession periods. The additional models, shown

in figure 5 and figure 6, serve as early warning indicators for critical moments (potential

recession or systemic risk events) by analyzing selected financial assets. This analysis

essentially measures the impact of abnormal movements in one or more indices relative to

the broader market. Notably, some of these identified critical moments precede historical

recessions, reinforcing the model’s potential as an early warning tool.

The combination of the three models tailored to predict systemic events in Brazil

achieved an accuracy of 84%. To the best our knowledge, the literature on systemic

risk in the Brazilian economy remains scarce and, to date, has not incorporated recent

advancements in statistical and data science methodologies.

The proposed model demonstrates robustness and achieves satisfactory performance

metrics for a classification model based on economic variables. Additionally, the probabilis-

tic output of the model has proven effective in identifying recessionary periods, highlighting

its potential as a valuable tool for systemic risk assessment in Brazil.
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