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Abstract

Decision makers often rely on the same advisees over long periods. Advice should be
taken with caution when communication is cheap talk because advisors may have their
own agenda. Still, repeated interaction allows for agreements that cannot be reached
in static interactions. To explore such possible agreements in strategic information
transmission, we study a repeated game version of the Crawford and Sobel (1982)
model, with a new state of the world drawn at every period of the game from an
identical and independent uniform distribution. We first find a version of the folk
theorem where patient enough players reach perfect information transmission. We
also look at repeated partition equilibria and find that repeated interaction allows for
improvements in communication (more and better-distributed partitions) for impatient
players. Moreover, we also show that if the Receiver’s action rule favors the Sender,
it allows for improvements in communication. Finally, we show that some level of
favorable action towards the Sender is welfare improving.

Keywords: Cheap talk, Repeated game, Strategic information transmission.
JEL Codes: D83, C73

1 Introduction

In many real-life situations, decision makers do not have all the information about the policy
consequences. Information can be gathered from informed parties with deeper knowledge
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than the decision maker. However, communication often takes the form of cheap talk, and
the informed parties have distinct preferences over the policy. In such cases, information
transmission is restricted or fails entirely, especially in short-term interactions. Still, long-
term relations between the decision maker and the informed parties allow more complex
arrangements. In this paper, we explore new possibilities for communication with repeated
interaction of cheap-talk games.

In cheap talk communication, players can costlessly send any kind of message. There is
a long literature on cheap-talk, with Crawford and Sobel (1982) (CS model henceforth) as
the cornerstone model. In some situations, the same players engage in cheap-talk communi-
cation through a long time span, to convey information about a changing state of the world.
As an example, we can think of a lobby group that conveys information to policy makers in
every period. Repeated interaction creates opportunities to improve communication, using
continuation payoffs to sustain cooperation. Although many papers study strategic informa-
tion transmission in repeated games, such as Aumann and Hart (2003), Renault et al. (2017,
2013), the structure of CS model was not studied in a repeated game setting. The goal of
this paper is to fill this gap.

The CS model presents a situation where a Sender has superior information than a Re-
ceiver, who undertakes an action that affects both players’ payoffs. The Receiver’s optimal
policy is state contingent, and more information allows him to make a better decision. How-
ever, the two players have a conflict of interest. They desire different actions given the
same state of the world. The results show that perfect communication is not possible when
the state space is continuous. The intuition is that, if the Receiver believes in a message
reporting the precise state of the world, the Sender wishes to lie in order to induce his her
desired outcome. So, there is no equilibria where the Receiver trusts an exact information.
However, some communication can be achieved with partition equilibrium. This class of
equilibria consists of limiting communication to coarse partitions of the state space. Mes-
sages do not inform the precise state of the world, but instead an interval (partition) where
true state lies. The partitions are set to allow for truthful communication. The decision
making processes is improved with superior (but still imperfect) information.

We study this setup in a repeated game context, where at every period the state of the
world changes (drawn from an independent distribution) and an action is chosen. The CS
model becomes the stage game of our repeated game. We explore two classes of equilibria.
First, we study perfect information transmission. Using trigger strategies, we find that if
players are patient enough there can be perfect information transmission. The logic follows
that of the folk theorem. Players adopt triggers strategies with credible punishment and
agree on a fixed action rule for the receiver following a truthful precise message from the
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sender. The continuation payoff and the threat of punishment prevent the sender from
deviating truthful communication when players are sufficiently patient.

The second class we study is the repeated partition equilibria. We use the continuation
payoff to compute the partitions that allow truthful communication. Using the logic of trigger
strategies, we find that repeated interaction changes the structure of communication, allowing
a greater number of partitions, with different positions along the state space. Moreover, the
improvements in communication are reached for any level of patience (even near zero).

Another dimension we explore in repeated game are the Receiver’s action rules. In the
static game, the Receiver chooses his best action given the information available. In repeated
games, however, the action that can be shifted to favor the Sender’s preferences. An action
shift decrease the Receiver instantaneous payoff, but can also improve communication. When
the action rule favors the Sender, the Receiver faces a "trade-off" between instantaneous
payoff and improved communication. A local analysis of this trade-off shows that favoring
the Sender is welfare improving, when the action shift is small. That is, not favoring the
Sender is a dominated equilibrium.

One of the many applications of the CS model is lobbying. Translating our model to
lobbying makes sense, since a part of the literature views lobbies as information providers,
but with different objectives as in Austen-Smith (1993) and Schnakenberg (2016). Also,
repeated interactions are important for as shown by i Vidal et al. (2012). So, our model
combines these two aspects and finds that repeated information provision can be related to
influence (favorable policies). However, favoring the lobby can be welfare improving, at least
for low levels of influence.

The importance of our paper comes from understanding what level of cooperation can
be built from repeated interaction in the CS model. Many papers have studies models of
repeated information transmission, but surprisingly, none of them adopt a setting where the
stage game can be described as direct version of the CS model. For example Renault et al.
(2013) and Renault et al. (2017) describe Sender-Receiver games where the state of the world
follows a Markovian chain, so the game’s history matters in every given stage of the game
(and the stage game is also different from ours). Also, Forges and Koessler (2008) presents
a model where the information is verifiable, or at least, partly verifiable, thus moving away
from the original CS model. In all their results, communication is improved with repeated
interaction, but the results hold to patient players, making them a version of a folk theorem,
while our in our paper, we find improvements in communication regardless of the players
patience.

Another paper that follows closely the CS model is that of Golosov et al. (2014). However,
they assume the state of the world is the same throughout the game’s many periods (with
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many decisions). So they find a complex and rich communication equilibrium. Yet, their
game structure depicts a different type of strategic situation than ours. Golosov et al.
(2014) communicates better with Aumann and Hart (2003) and Aumann and Maschler
(1995), which describe a frontier of long cheap talk communication for a class of games of
incomplete information. But all these models look at a long (and sometimes open) period
of communication before actions are chosen on games of incomplete information. We, on
the other hand, look at the repeated game version of cheap talk, where the parameter that
makes information incomplete is drawn at every period.

The remainder of the paper is organized as follows. The next section presents the model
and the benchmark results of the static game. Section 3 presents the results for perfect
information transmission. Section 4 presents the repeated game partition equilibrium with
and without an action shift. Section 5 discusses our results in the spirit of lobbying literature
and finally, Section 6 concludes.

2 The model

The model features two players, the Sender and the Receiver. The Receiver must undertake
an action, yt ∈ R, but is uninformed about the consequences of this action. His payoff
depends on a random variable, mt, that comprises the state of the world. The true state mt

belongs to an interval [m,m] and is know to the Sender. She, in turn, has a conflict of interest
with the Receiver, expressed in a different bliss point given the realization of the state mt.
The Sender can offer a non-verifiable signal, s ∈ S, so communication is cheap-talk, meaning
the message space is not ex ante specified. Plus, the Sender cannot offer hard information
(or any other actions) to back his claims.

The receiver’s instantaneous payoff given by

u (yt,mt) = − |yt −mt| ,

So that u is a module loss function that reaches a bliss point when yt = mt.
1 The Sender’s

instantaneous preferences are given by

v(yt,mt) = − |yt −mt − b| ,

with b > 0. This are similar to the Receiver’s preferences, but with a different bliss point of
yt = mt + b. The intuition is that, given a state of the world mt, the Sender desires a higher

1The original CS model has a general approach that does not specify a functional form. Their running
example, however, uses a quadratic loss function.
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action yt, by a size b.
This stage game is repeated over time, stating from time one until infinity. At every

period t a new state of the world, mt, is drawn from the same uniform distribution over
[m,m], which is constant and independent over time. The players’ preferences are also time
independent and they have an inter temporal discount factor of δ. Thus, the Receiver’s
preferences over a sequence of actions and states, (y,m) are given by

U (y,m) =
∞∑
t=1

δtu (yt,mt)

and the Receiver’s preferences over a sequence of actions and states are given by

V (y,m) =
∞∑
t=1

δtv (yt,mt) .

To sum up, the repeated cheap-talk game has two players, the Sender and the Receiver.
The Sender’s strategies are a sequence of messages, s = (s1, s2, . . .), with each st ∈ S, while
the Receiver’s strategies are a sequence of actions y = (y1, y2, . . .), with each yt ∈ R. Finally,
the payoffs are given by V (y,m) and U (y,m) for the Sender and Receiver respectively. We
will study stationary perfect bayesian equilibrium of this game.

2.1 Benchmarks

We begin looking at the equilibrium of the stage game as these will be useful for the construc-
tion of equilibrium of the repeated game. The first benchmark result is the non-existence of
a perfect revelation equilibrium. A perfect revelation equilibrium is one where the Sender’s
message is exactly the true state, s = m, and the receiver believes the true message and
sets the action equal to the state, y = s. The problem with such strategy is that, once
the Sender anticipates the Receiver will believe the signal s, he benefits from sending a non
truthful message s = m+b. Therefore, the Sender’s signal cannot be trusted and this cannot
be an equilibrium. This reasoning is summarized in the following lemma below

Lemma 1. Perfect revelation (signal s = m and action y = s) is never an equilibrium of
the static game.

On the other hand, no information revelation is an equilibrium of the stage game. If we
suppose the Receiver does not believe any of the Sender’s signals, he will choose an action
that maximizes his uninformed utility. The Sender then, knowing no signal will be trusted,
chooses not to send any message at all. CS call this the babbling equilibrium.
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Lemma 2. There exists a babbling equilibrium of the stage game, where no message is sent
and the Receiver chooses the optimal action without information. Such action is given by
y = (m+m)/2. We denote the static payoff of this equilibrium by v and u for the Sender and
Receiver respectively.

The babbling equilibrium is one where no communication takes place. It is a lower bound
for players’ payoffs.

Finally, we have another equilibrium where some communication takes place, even if
imperfectly, called the partition equilibrium. In this equilibrium, the state space is divided
into small segments. The communication takes place by reporting the partition where the
true state lies. That is, if there are n partitions, a1, ..., an−1, an = 1, and the true state
m ∈ [aj−1, aj], the signal informs "the true state lies between aj−1 and aj". Upon receiving
the truthful signal, the Receiver chooses the optimal policy within the partition, which is
yj = (aj+aj−1)/2. The partitions are chosen in order to satisfy conditions that impose the
communication will be truthful, these are called arbitrage conditions by CS. They impose
that given m̃ ∈ [aj−1, aj], the Sender must prefer to report the truthful partition

−
∣∣∣∣aj−1 + aj

2
− m̃− b

∣∣∣∣ ≥ − ∣∣∣∣aj + aj+1

2
− m̃− b

∣∣∣∣
and ∣∣∣∣aj−1 + aj

2
− m̃− b

∣∣∣∣ ≥ − ∣∣∣∣aj−2 + aj−1

2
− m̃− b

∣∣∣∣
When we approximate the true state m̃ to the partition aj, from above or below, we get

the following inequality
aj+1 − aj = aj − aj−1 + 4b (1)

This is a difference equation that imposes the partitions must be increasing in size (provided
b is positive) in order to achieve truthful communication. The resulting partitions are smaller
to the left and larger to the right of the state space. This difference equation has a solution,
that leads to the following lemma.

Lemma 3. There exists a n−partition equilibrium of the stage game where the Sender’s
signals are the partitions, aj and the Receiver’s action rule is the midpoint of the reported
partition, y(aj) = aj+aj−1/2. The maximum number of partitions n∗, satisfies

2n∗ (n∗ − 1) b < m−m
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and the partitions given by the following rule

aj =
j

n∗
m+

(n∗ − j)
n∗

m− 2bj (n∗ − j) .

Lemma 3 shows the solution is exactly the same os in the CS example with quadratic
preferences. One important aspect from Lemma 3 is that if you have a partition equilibrium
with n∗ > 2, then you also have other partitions equilibria with n < n∗ partitions (they sat-
isfy all conditions). Therefore, n∗ is the maximum number of equilibrium partitions. From
Lemma 3 we find that when the conflict of interest b decreases, the number of partitions de-
crease (weakly) and also the position of partitions on the state space change. To understand
the change in position, imagine the number of partitions n is fixed. If we make b tend to
zero, the partitions become evenly distributed along the state space. As we shall see, having
evenly distributed partitions increase welfare.

Lemma 4. In a partition equilibrium defined by Lemma 3, welfare increases as the number of
partitions increase, and as the partitions become more evenly distributed. Therefore, welfare
increases as the conflict of interest, b, decreases.

As this is a simple model with relative few parameters, we present a numerical example,
which we will return to throughout the paper

Example. Let the parameters be m = 28, m = 0 and b = 2. For these parameters, we have
a maximum of 3 partitions since m−m = 28 > 2bn (n− 1) = 24. The partitions are given
by a3 = 28, a2 = 32/3, and a1 = 4/3.

The results from these benchmarks will be important to the equilibria discussed in the
following sections.

3 Perfect information transmission

We now look at our first equilibria in a repeated game setting. It seems natural to begin with
the most informative equilibrium possible, which we call the Perfect information transmission
equilibrium. From Lemma 1, we know such equilibrium it is impossible to reach in a static
game due to lack of commitment. But since repeated interaction allows for new possible
arrangements, we can verify if such equilibria exists.

Remember from section 2 that stage game is repeated every period, and in every period
a new state mt is draw from an independent distribution. We seek an equilibrium based
on trigger strategies that allow players to reach greater perfect communication. We’d like
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an equilibrium that features perfect communication, so the sender’s signal st = mt in every
period. In turn, the receiver sets an action that is shifted towards the Sender’s preference.
We denote this shift by d. For simplicity, we assume the action shift is constant over time and
is independent of the message st. That means the action set in every period is yt = st + d.2

For obvious reasons, we restrict attention to action shifts that are smaller than the conflict
of interest, that is b ≥ d ≥ 0. The mechanics of the proposed equilibrium is relatively simple.
The Sender promises to send a precise truthful message in every period while the receiver
promises to reward him with a favorable action after receiving the information. as this is

Trigger strategies also require credible punishments from the proposed equilibrium strate-
gies. That is, a description of the off the equilibrium strategies. Off-the-equilibrium strategies
should impose the toughest credible punishment for the players. We assume the punishment
is to to play a babbling equilibrium forever, stating the next period. Since players observe
their payoff at the end of every stage, this strategy is perfectly implementable. Moreover,
since babbling is an equilibrium of the static game, it constitutes a credible punishment, so
we this strategies satisfy subgame perfection.

Let us now look at the conditions that support this equilibrium. We begin looking at the
Sender’s incentives. If she complies to the proposed strategy, her instantaneous payoff will
be constant over time and equal to v = − (b− d). If the equilibrium is played forever, his
payoff is

V = −b− d
1− δ

.

In case of deviation, the players get their payoff from a babbling equilibrium, which is

v = −(m−m)

4
− b2

(m−m)
.

Finally, the Sender can increase her instantaneous payoff if she deviates from the trigger
strategy and sends a signal st = mt + b− d in which case she enjoys an instantaneous payoff
of zero (because the Receiver implements yt = mt+b). The perfect information transmission
must satisfy

−(b− d)

1− δ
≥ 0− δ

1− δ

[
(m−m)

4
+

b2

(m−m)

]
. (2)

Now, let us look at the incentives for the receiver. If he complies to the proposed strategy,
his instantaneous payoff is u = −d. When repeated infinitely, this becomes

U =
−d

1− δ
.

2We could think of more complex action shifts, as multiplicative shifts, or even making them conditional
to the state mt or the time period. But as a first pass, we focus on linear and constant shift.
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In turn, the instantaneous payoff from playing a babbling equilibrium is given by

u =
m−m

4
,

while the deviation that gives the highest instantaneous payoff is to set the action equal to
the signal, that is yt = st. This gives him a payoff of zero. So, in order to play this trigger
strategy, it must be that

− d

1− δ
≥ 0− δ

1− δ
m−m

4
. (3)

So, from (2) and (3) we have the combined conditions for β and d that compose our first
proposition

Proposition 1. There exists a trigger strategy equilibrium of the repeated cheap-talk game
with perfect information transmission with an action shift d ∈ [0, b] provided players are
sufficiently patient, that is δ ≥ δ∗, where

δ∗ = max

{
4 (m−m) (b− d)

(m−m)2 + 4b2
,

4d

(m−m)

}
.

Proposition 1 is a variation of a folk theorem, showing that patient players can overcome
the conflicts of static games. Notice that the two equilibrium conditions have opposite signs
regarding the action shift d. The condition for the Sender is decreasing with respect to d.
This means that a greater action shift makes it possible for less patient Senders to comply
to a trigger strategy equilibrium. On the other hand, the condition for the Receiver is
increasing with respect to d, meaning that a a greater d implies Receivers must be more
patient to comply to the trigger strategy.

Working with those conditions, we get the following two corollaries

Corollary 1. The minimum cutoff δ∗ is achieved with a action shift given by

d∗ =
(m−m)2 b

2
[
(m−m)2 + 2b2

] . (4)

This expression is found by choosing the action shift d that makes the two conditions
within the max operator equal. The corollary shows that the actions shift can be used to
ease the conditions and help sustain a perfect information transmission.

The second corollary shows that perfect information transmission can be achieved even
with an action shift of zero.

Corollary 2. There exists a δ̌ ≥ δ∗ that can sustain perfect information transmission even
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with d = 0. It is given by

δ̌ =
4 (m−m) b

(m−m)2 + 4b2
. (5)

Corollary 2 shows that a positive action shift is not a necessary condition to achieve
perfect information transmission. The construction of the trigger strategy equilibrium is
such that the babbling equilibrium is the punishment. In such punishment, the Sender has
an uncertain payoff. On the other hand, in a perfect information transmission equilibrium,
his payoff is constant over time. As he dislikes uncertainty and enjoys no action shift in
babbling, he may comply to the "no shift" trigger strategy equilibrium if he is patient
enough. However, the space of parameters where perfect information transmission can be
achieved is smaller with an action shift of zero.

All these perfect information transmission equilibria are equivalent in terms of welfare,
as the sum of players payoffs is always equal to −b/(1−δ) regardless of the policy bias. If we
are to think of this model in the spirit of lobby games, the payoff of the Receiver should have
more weight than that of the Sender and we should look for the equilibrium with the lowest
action shift d possible.

Example. With the same parameters of our running example. If we take an action shift of
d = .5, then the cutoff delta that sustains perfect information transmission is δ∗ = 0, 21.

The actions shift that minimizes the cut off delta is d∗ = 784/792 = 0, 9898..., reaching
a cutoff delta of δ∗ = 0, 1414.... Finally, the lowest delta that support perfect information
transmission with a action shift of zero (d = 0) is δ̌ = 0, 28.

The results from this section present the conditions for achieving a perfect information
equilibrium. From Corollary 1, we know that the cutoff δ∗ is positive, which shows that
for low δ, perfect information transmission will not be achieved. If, however, players are
not patient enough, there are still improvements in communication that can be achieved in
partition equilibria.

4 Repeated partition equilibrium

In the previous section, we saw that perfect information transmission is possible for patient
players. So, why should we take a step back, and study equilibria where less information
is transmitted. The fact is, in partition equilibrium, the Sender’s short-term gain from
misinformation is much smaller in a partition equilibrium. She is cannot induce the Receiver
to choose her optimal policy. So, with different payoffs for deviation, a repeated partition
equilibrium can be found whenever the static game has a partition equilibrium. Therefore,
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the repeated partition equilibrium can be sustained in a different range of parameters than
the perfect information equilibrium. In particular, we will show the partition equilibrium
can be supported with low levels of δ.

In section 2.1, we saw that the partitions are found using a kind of truth telling condition.
In a partition, the Sender is indifferent between which partition to report. We combine this
logic to that of a trigger strategy, using the continuation payoffs to create a higher benefit
of complying to the proposed strategy. As a result, we are able to achieve more informative
structure of communication. The trigger strategy proposes a given partition equilibrium to
be played in each stage. If both players play according to the proposed equilibrium, the
same partition equilibrium will be played in the next period. If one player does not play
according to the proposed strategy, the players will play babbling equilibrium forever. The
partitions are set according to the expected payoff of the repeated partition equilibrium. In
turn, this payoff depends on the partitions. So the equilibrium must be a fixed point of the
expected continuation payoff.

In order to ease the exposition, we begin looking at the case only the Sender complies
to the trigger strategy. That is, we find partitions that are incentive compatible taking into
account the continuation payoff and the threat of punishment. However, the Receiver keeps
choosing her optimal static action but he agrees to punish in case the Sender deviates from
the trigger strategy. In turn, we look at an equilibrium where the Receiver moves away from
her optimal action and favors the Sender with a linear action "shift".

4.1 Sender’s trigger strategy

In a static partition equilibrium, remember the signal space is divided into smaller partitions,
{a1, a2, . . . , an}, and communication reveals where the true state lies. The partitions are set
in such way that the communication is truthful, that is, the sender wishes to inform the
correct partition. In the static game, there is no commitment, so the Receiver chooses the
best policy for him, given the information he receives. As a first pass, we will assume the
receiver still chooses his best policy in every period, given the received information. This
allow us to focus on the conditions for information transmission for the Sender.

We compute the partitions from the condition for truthful communication, as in the static
game. In a repeated game, this condition is now based on a trigger strategy equilibrium. The
trigger strategy is based on a proposed partition equilibrium, a deviation and a punishment.

We will compute partitions presuming we are in a stable equilibrium in the following
periods. Therefore, the continuation payoff, Evr, is fixed for the definition of the partitions.
Of course, future payoffs depend on the equilibrium partitions, which means the partitions
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are going to be defined recursively.
We begin with a signal sj = aj informing the state mt lies within partition [aj−1, aj] . The

receiver then sets action yt = (aj+aj−1)/2. This partitions sustain communication if

EV
((
yj, y

2
)
,
(
sj, s

2
))
≥ EV

((
y′, y2

)
,
(
s′, s2

))
,

where y2 and s2 are the sequences of expected actions and signals in trigger strategy
equilibrium, from tomorrow to infinity and y2 and s2 are the respective sequences of actions
and signals in a babbling equilibrium, from tomorrow to infinity. This condition boils down
to

v
(
yj, sj

)︸ ︷︷ ︸
Equilibrium

+

δ

1− δ
Evr︸ ︷︷ ︸

Continuation
≥

v (y′, s′)︸ ︷︷ ︸
Deviation

+

δ

1− δ
Ev︸ ︷︷ ︸

Punishment

We will begin looking at a simple type of condition that prevents the Sender from report-
ing the state lies in the superior adjacent partition (in the proof, of the next proposition, we
show that this is indeed the relevant condition). Then the trigger strategy becomes

−
∣∣∣∣aj + aj−1

2
− m̂− b

∣∣∣∣+
δ

1− δ
Evr ≥ −

∣∣∣∣aj+1 + aj

2
− m̂− b

∣∣∣∣+
δ

1− δ
Ev

We then approximate m̂ to the border of the partition, aj, this condition boils down to

aj + aj−1

2
− aj − b ≥ aj + b− aj+1 + aj

2
− δ

1− δ
[Evr − Ev] .

And, finally, we get:

(
aj+1 − aj

)
≥
(
aj − aj−1

)
+ 4b− 2

δ

1− δ
[Evr − Ev] (6)

As in the static game, the conditions for information transmission in partition equilibrium
boils down to a difference equation. This condition is linear, as (1), but (6) has an additional
term, related to δ and to the difference in the continuation payoff from a repeated partition
and a babbling equilibrium. This additional term works as a reduction of the conflict of
interest between the players. Unlike in the static game, this condition holds in inequality.3

3We can find another condition, limiting the maximum size of the partitions when we the true state lies
within [aj , aj+1]. When mj ∈ [aj , aj+1], then truthful communication imposes

−
∣∣∣∣aj + aj−1

2
− m̃− b

∣∣∣∣+ Ev ≤ −
∣∣∣∣aj+1 + aj

2
− m̃− b

∣∣∣∣+ Evr
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But such condition limits the size of partitions from above. Since welfare is increasing
with respect to the number of partitions, we restrict attention to (6) by assuming it holds
with equality.

As mentioned before, (6) only defines the partitions implicitly, since the continuation
payoff Evr depends on the partitions which, in turn, depend on the continuation payoff. So
partition are defined recursively and we must check if the equilibrium indeed exists. The
Proposition below shows that is indeed the case.

Proposition 2. There exists a repeated partition equilibrium of the repeated cheap-talk game.
The partitions of a repeated game n−partition equilibrium are characterized by

aj =
j

n
m+

n− j
n

m− 2j (n− j) b′, (7)

where
b′ = max

{
b− δ

2 (1− δ)
(vr − v) , 0

}
,

and

vr = −
n∑
j=1

∫ aj

aj−1

∣∣∣∣aj + aj−1

2
− x− b

∣∣∣∣ dx
Moreover, the maximum number of partitions n is highest integer that satisfies

(m−m)

b′
> 2n (n− 1) (8)

The important aspect of Proposition 2 is that b ≥ b′. That means the continuation payoff
from repeated interaction can be simplified as a static partition equilibrium with a smaller
bias. With a smaller conflict of interest, the number of partitions is weakly superior. That is
evident since the left hand-side of condition (8) is decreasing with respect to b′, potentially
allowing for a higher n∗. Additionally, from (7) it is straightforward to check the partitions
are more evenly distributed as b′ decreases.4 From Lemma 4, we know that more evenly
distributed partitions increases induce higher welfare. So, the repeated interaction improves
communication and increases welfare.

Making m̃ approximate aj from the right, and manipulating the expression, gives us

(aj+1 − aj) ≤ (aj − aj−1) + 4b+
2δ

1− δ
[Evr − Ev]

The condition above is different from (6), showing that we have some slackness to define the partitions.
However, as we focus on informative equilibrium, we focus on condition (6) since it allows the greater number
of partitions for the same set of parameters.

4To understand this point more clearly, imagine the number of partitions is fixed while b̂ tends to zero.
In that case, the partitions would be equal and each with size (m+m)/n.
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Corollary 3. The n−partition equilibrium has a weakly greater number of partitions, which
are more evenly distributed than the static equilibrium, for every δ > 0.

Notice that Proposition does not establishes a minimum parameter of impatience, delta.
In fact, it holds even for very small delta, since even the difference between the payoff of any
partition equilibrium and the babbling equilibrium is positive. So, even for ε positive delta,
the positions of the partitions are going to be different from the static partition equilibrium.
Therefore, the partition equilibrium can be understood as the most informative equilibrium
for deltas below the threshold, of Corollary 2, δ̌.

Corollary 4. There exists a repeated partition equilibrium of the repeated cheap talk game
for every non negative δ ≥ 0. In particular, if δ > 0, the equilibrium partitions are different
from those of the static game.

To highlight our results, we look at our running example, in a repeat game version.

Example. Considering the same parameters of our running example, if we take a delta
of δ = 0.2, the partition equilibrium has at most 3 partitions, as in the static game. The
partitions are approximately given by a3 = 28, a2 ≈ 12.52, and a1 ≈ 3.19. If, alternatively,
δ = 0, 3, then there are up to 4 partitions in equilibrium, approximately given by a4 = 28,

a3 ≈ 14.18, a2 ≈ 4.91, and a1 ≈ 0.18. Remember that with δ > 0.28, the players can achieve
perfect information transmission.
If, on the other hand, the delta is δ = 0.01, the equilibrium has at most 3 partitions, given
by a3 = 28, a2 = 10.73, and a1 = 1.4, slightly different from the static partition equilibrium.

The example highlights the results from Corollary 3, that is, as players become more
patient, the communication is improved, the number partitions increase as they become more
evenly distributed. Finally, the example also shows the partitions change even if players are
impatient (low delta).

4.2 Action shift

In section 4.1 we presumed the receiver always chose his optimal policy, given the information
he receives. That is, if he receives signal st = [aj−1, aj], he chooses policy pt = (aj+aj−1)/2,
which is the midpoint of the partition. But there are different strategies the receiver can
adopt. We will look at trigger strategies where the receiver chooses an action with a constant
shift from his optimal policy. That is, given a signal st = [aj−1, aj], the receiver chooses policy
pt = (aj+aj−1)/2 + d. This rule specifies that, whatever the partition, the implemented policy
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is midpoint of the partition plus a shift in favor of the Sender’s preferred action.5 Clearly,
the action shift must be greater than zero and smaller than the bias, 0 ≤ d ≤ b, if not, the
policy would be Pareto inferior.

The logic of looking for strategies with a more favorable policy is that the Sender condi-
tions for truthful communication are eased and information transmission can improve. The
reason players cannot make such arrangements in the static game is that receiver lacks com-
mitment to announce a favorable policy in "exchange" for improved communication, because
when he receives information, he is no longer bound to offer an action shift that the reduces
his payoff. But the strength of the trigger strategy is exactly to allow for players to overcome
conflicts of the static game, such as lack of commitment.

On the other hand, the action shift creates the possibility of deviation for the receiver, as
he can deviate from the proposed policy by choosing his optimal action in the static game.
Therefore, we must also impose a condition for the Receiver to comply to the proposed
trigger strategy equilibrium. But let us begin with the conditions for the Sender. Again, we
take the continuation payoff, Evr as given and look at the partitions that can be sustained
in equilibrium. We begin looking at the conditions for truthful communication.

Let a signal sj = aj inform the state mt lies within partition [aj−1, aj] . The receiver then
sets action y = (aj+aj−1)/2 + d. This partitions sustain communication if

EV
((
yj, y

2
)
,
(
sj, s

2
))
≥ EV

((
y′, y2

)
,
(
s′, s2

))
,

where y2 and s2 are the sequences of expected actions and signals in trigger strategy
equilibrium, from tomorrow to infinity while y2 and s2 are the respective sequences of actions
and signals in a babbling equilibrium, from tomorrow to infinity. This condition boils down
to

v
(
yj, sj

)︸ ︷︷ ︸
Equilibrium

+

δ

1− δ
Evr︸ ︷︷ ︸

Continuation
≥

v (y′, s′)︸ ︷︷ ︸
Deviation

+

δ

1− δ
Ev︸ ︷︷ ︸

Babbling

If the sender do not wish to send a message informing the state is on the adjacent
partition, we get

−
∣∣∣∣aj + aj−1

2
− m̂− (b− d)

∣∣∣∣+
δ

1− δ
Evr ≥ −

∣∣∣∣aj+1 + aj

2
− m̂− (b− d)

∣∣∣∣+
δ

1− δ
Ev.

5We could look at different, more complex, ways for the policy to favor the Sender. For example a
multiplicative shift, or a shift conditional on the partition. Given the linear nature of the model, we focus
on this linear shift as a first pass.
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As we approximate m̂ to aj in regular conditions, this becomes

aj + aj−1

2
− aj − (b− d) ≥ aj + (b− d)− aj+1 + aj

2
− δ

1− δ
[Evr − Ev] .

which simplifies to

aj+1 − aj = aj − aj−1 + 4 (b− d)− δ

1− δ
[Evr − Ev] . (9)

This is a difference equation that defines a transition rule for the partitions. Again, it
shows partitions must be increasing in size. However, the action shift d reduces the increment
necessary to achieve a truthful communication. It works as an additional reduction of the
conflict of interest beyond that originated from the continuation payoff.

On the other hand, we must also look at the Receiver’s condition to comply to the
proposed trigger strategy equilibrium. The timing of the stage game is such that he receives
the signal st ∈ [aj−1, aj] and expects it to the truthful. He then updates his beliefs and
computes his expected stage game payoffs, given by

E (ut | st) = − 1

aj − aj−1

∫ aj

aj−1

∣∣yjt −m− b∣∣ dm,
therefore, when the receiver complies to the equilibrium, the payoff is

E (urt | st) = − 1

aj − aj−1

∫ aj

aj−1

∣∣∣∣aj + aj−1

2
− (m− d)− b

∣∣∣∣ dm,
and if he deviates,

E
(
uDt | st

)
= − 1

aj − aj−1

∫ aj

aj−1

∣∣∣∣aj + aj−1

2
−m− b

∣∣∣∣ dm,
The trigger strategy is sustained if

E (urt | st)︸ ︷︷ ︸
Equilibrium

+

δ

1− δ
Eur︸ ︷︷ ︸

Continuation
≥

E
(
uDt | st

)︸ ︷︷ ︸
Deviation

+

δ

1− δ
Eu︸ ︷︷ ︸

Babbling
(10)

One aspect of the Receiver’s condition is that it is signal contingent. That means that,
given the given an equilibrium partition, the receiver may be tempted to comply in some
states, but not on others. Evidently, in order reach a stable equilibrium, the condition must
hold for every partition. Luckily, we can restrict attention to the first partition. If the
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Receiver complies in the first partition, he complies in all other partitions. It is summarized
in the following lemma.

Lemma 5. If the receiver does not deviate from the trigger strategy in the first partition,
then he does not deviate in other partitions. Therefore, the condition for the receiver to
comply to a trigger strategy equilibrium

E
(
urt | s1

t

)︸ ︷︷ ︸
Equilibrium

+

δ

1− δ
Eur︸ ︷︷ ︸

Continuation
≥

E
(
uDt | s1

t

)︸ ︷︷ ︸
Deviation

+

δ

1− δ
Eu︸ ︷︷ ︸

Babbling
,

where

E (urt | s1) = − 1

a1 −m

∫ a1

m

∣∣∣∣a1 −m
2

+ d−m− b
∣∣∣∣ dm,

and

E
(
uDt | s1

)
= − 1

a1 −m

∫ a1

m

∣∣∣∣a1 −m
2

−m− b
∣∣∣∣ dm.

This condition simplifies to

d2

a1 −m
≤ δ

1− δ
[Eur − Eu]

Lemma 5 simplifies the Receiver’s conditions that sustain the equilibrium. Notice that
when the first partition is very small, the incentives to deviate become too big. When the
Receiver was choosing his static best, d = 0, and the condition would be met trivially. Plus,
new partitions emerged very small in size. If we were to allow such small partition when
d > 0, would violate his condition. condition may not be met when the first partition is too
small. Therefore, this condition works as a minimum size of the first partition.

Now we are in position to present the equilibrium

Proposition 3. The partitions of a repeated game n−partition equilibrium with a policy shift
are characterized by

aj =
j

n
m+

n− j
n

m− 2j (n− j) b̃,

where
b̃ = max

{
b− d− δ

2 (1− δ)
(vr − v) , 0

}
,

and

vr = −
n∑
j=1

∫ aj

aj−1

∣∣∣∣aj + aj−1

2
− x− (b− d)

∣∣∣∣ dx
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Moreover, the maximum number of partitions n is highest integer that satisfies

(m−m)

b̂
> 2n (n− 1)

and
d2

a1 −m
≤ δ

1− δ
[Eur − Eu] ,

where

Eur = −
n∑
j=1

∫ aj

aj−1

∣∣∣∣aj + aj−1

2
+ d− x

∣∣∣∣ dx
Plus, there exists a positive d < b for which there is a partition equilibrium of the repeated

cheap talk game, with a policy shift whenever there is a partition equilibrium (without a policy
shift) of the static cheap talk game.

Proposition 3 shows that the action shift is an addition factor reducing the partitions. It
allows greater number and more evenly distributed partitions. Thus, the action shift works
as an additional reduction of conflict of interest. It carries the same results from Corollaries
3 and 4. So, the threat of punishment in a babbling equilibrium and an action shift together
can improve information transmission.

Example. Again, let us turn to our running example with m = 28, m = 0, b = 2, and
δ = 0, 2, plus, with an action shift of d = 0, 5. Then, the equilibrium has 4 partitions, given
by a4 = 28, a3 ≈ 15.35, a2 ≈ 6.46, and a1 ≈ 1.35, and the trigger strategy for he Receiver
is slack. Remember from section 4.1 that with these same parameters (and a d = 0), the
partition equilibrium had only 3 partitions. So, the action shift allowed for an additional
partition. Moreover, remember from the example in section 3 that with an action shift of
d = 0, 5 and a level of impatience of δ = 0, 2, there is no equilibrium with perfect information
transmission (the minimum delta to sustain perfect information transmission is δ = 0, 21).

The action shift also raises new questions regarding welfare. Without the action shift,
the Receiver was always maximizing his payoff. The Sender also benefited from repeated
interaction since it improves communication. With the action shift, the Sender gains from
a more beneficial action and from the improved communication, thus she is better of with
the action shift d ∈ [0, b]. The Receiver, on the other hand, faces a trade-off. With a
greater shift, the he has an inferior policy but with improved communication. In particular,
if the effect of communication is dominates, an action shift can be welfare improving. The
following proposition addresses this issue

Proposition 4. The derivative of the action shift, d, on the Receiver’s payoff is given by
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the derivative below

∂U

∂d
=


1

1−δ
2n

∆m

[
−d+ b̃

(n2−1)
3

]
for d ≤ 1

3

[
2b− δ

1−δ (vr − v)
]

1
1−δ

1
∆m

[
− (2n− 1) d− (a1 −m) + 2b̃

(n3−n)
3

+ ∆m−2n(n−1)
2n

]
for d > 1

3

[
2b− δ

1−δ (vr − v)
] .

We notice that ∂U/∂d is not continuous, is piecewise negative with respect to d, but it is positive
for near zero d.

Proposition 4 presents the derivative of Receiver’s payoff with respect to the policy bias.
Although the derivative is a non monotone and discontinuous function, we find that it is
positive near zero. This shows that some policy shift is welfare improving (zero shift is not
optimal). Given the expression complexity, hard to identify a closed form solution for an
optimal policy shift since, the derivative jumps with the number of partitions in equilibrium.
The Proposition also highlights the importance of improving communication, with greater
number and more evenly distributed partitions. Even with a policy that directly harms
the receiver, the indirect effect of communication compensates, at least for a range of small
action shifts.

The results from Proposition 4 are also distinct from what we get in perfect information
transmission. In that case, once information is transmitted perfectly, the policy shift only
transfers payoff from the Receiver to the Sender. But as all information is being transferred,
there’s no marginal increase in communication. Aggregate surplus is maximized for any shift
above the δ cutoff from Proposition 1.

5 Lobbying

One of the many applications of the cheap talk game is lobbying. Whereas the predominant
view of lobbies is that of rent seeking (GH and many others), a branch of the literature
views them as information providers. In that alternative view, lobbies naturally have better
information than policy makers because of their are directly impacted by the policy. However,
conflicts of interest could limit that transmission to the policy maker as seen in Austen-Smith
(1993) and Schnakenberg (2016). So we can see the cheap talk model fits the description of
this strategic situation.

In particular, evidence from i Vidal et al. (2012) on revolving door politics indicates that
long term relationships are also important for lobbying. They show that the market value
of lobbying firms decrease if the former (politician) boss of a current employee fails to be
reelected. This points out that lobbying influence might not take place as quid pro quo of
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money in exchange for favorable policy.
In our paper we bring together the two elements of cheap talk communication and re-

peated interaction. The Sender is the lobby while the receiver is the policy maker. All the
results apply almost directly to the example of information lobbying. However, one impor-
tant difference is that, typically, the policy maker’s payoff is the society’s welfare. Therefore,
Proposition 4 takes the interpretation of the derivative of welfare with respect to a policy
shift.

The interpretation is that lobbies end up getting a favorable policy (or capture) in ex-
change for the information they are providing. However, we show that, at least for low level
of influence, the favorable policy is welfare increasing, since it eases communication that ul-
timately improves decision making. Thus, repeated interaction between lobbyists and policy
makers may indeed result in influence, even without money contribution. The catch is that
such influence may actually be welfare improving.

6 Conclusion

In this paper we analyzed an infinitely repeated version of Crawford and Sobel (1982) model.
We focus on two classes of equilibria based on trigger strategies. We first study a perfect
information transmission equilibrium, where the Sender reveals the true state of the world at
every period and the Receiver chooses an action "shifted" towards the Sender’s preferences.
This equilibrium is sustained when players are patient enough. Moreover, the minimum
patience level has a V-shaped relationship with the action shift granted by the Receiver.

We also find a class of partition equilibrium in repeated games. The repeated partition
equilibrium follows the same structure of the static partition equilibrium, but the continua-
tion payoff works as a reduction of the conflict of interests. Therefore, the repeated interac-
tion allows for richer information transmission, with a weakly greater number of partitions
and and better positions partitions. That is, repeated interaction improves the strategic
communication. Importantly, this equilibrium exists even for impatient players (even near
zero impatience).

The communication also improves with an action shift, in favor of the Sender’s prefer-
ences. If the Receiver sent shift actions in favor of the Sender, this allows for improved
information transmission. This results in a trade-off for the Receiver, between better infor-
mation and inferior action. The trade-off is complex, as the relationship between action shift
and Receiver’s payoff is not continuous. Nevertheless, we find that a zero action shift is not
optimal. So, the Receiver benefits from choosing an action that favors the Sender, at least
for low levels of favoring. The results show that new and richer equilibria can be found in a
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repeated CS model.

Appendix

Proof of Lemma 1. Lemma 1 states that perfect information transmission is not an equi-
librium. By perfect information transmission we mean an equilibrium where the Sender’s
signal is s = m and the Receiver’s action is y = s = m.

In order to reach a contradiction, let us assume that the sender offers a signal s = m for
any state. Upon receiving a truthful signal, the Receiver chooses s = m, his optimal action
is to choose action y = s = m. However, if the Receiver’s action is to choose y = s, the
Sender’s best response is to choose s = m + b. Therefore, sending a signal s = m is not a
best response. Therefore, perfect information transmission is not an equilibrium of the static
game.

Proof of Lemma 2. The so called Babbling equilibrium features no information transmission,
that is, the Sender’s signal is s = ∅ and the Receiver chooses his best action given he does
not know any information beyond the prior.

Let us assume the Receiver chooses

max
y

1

m−m

∫ m

m

− |y −m| dm

or

max
y

1

m−m

[∫ y

m

−(y −m)dm+

∫ m

y

−(m− y)dm

]
,

which has y = (m−m)/2 as maximum. Since the Receiver chooses y regardless of the signal,
the Sender is indifferent between any message, and can choose s = ∅. Therefore, babbling is
an equilibrium of the static game, which proves Lemma 2.

Moreover, the players payoffs in a babbling equilibrium are given by

u =
1

m−m

[∫ m−m
2

m

−(
m−m

2
−m)dm+

∫ m

m−m
2

−(m− m−m
2

)dm

]
which, after straightforward algebra, simplifies to

u = −m−m
2

Finally, the Sender’s payoff in a babbling equilibrium is given by
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u =
1

m−m

[∫ m−m
2

+b

m

−(
m−m

2
+ b−m)dm+

∫ m

m−m
2

+b

−(m− b− m−m
2

)dm

]
,

which, after straightforward algebra, simplifies to

v = −m−m
2

− b

m−m

Proof of Lemma 3. A partition equilibrium features a set of messages that equal the set
partitions itself (for simplicity, reporting s = aj means the Sender is reporting the true
state lies between aj−1 and aj) and the Receiver’s action rule is to chose the midpoint of
the reported partition. Although this proof reproduces results from (Crawford and Sobel
(1982)), we will solve it in detail since it offers subsidies for future propositions in our paper.

Let us begin showing that choosing the midpoint of the partition is the optimal action
rule provided the Sender chooses partitions truthfully. If the state m lies within partition
[aj−1, aj] then Receiver’s best response is given by

max
y
Eaj [− |y −m|] =

1

aj − aj−1

∫ aj

aj−1

− |y −m| dm

or

max
y

1

aj − aj−1

[∫ y

aj−1

(m− y)dm+

∫ aj

y

(y −m)dm

]
The derivative of this expression is given by

(y − y) +

∫ y

aj−1

(−1)dm− (y − y) +

∫ aj

y

1dm = 0

which becomes
−(y − aj−1) + (aj − y) = 0.

Simple manipulation shows that

y =
aj + aj−1

2
.

The next step is to find the partitions that induce the Sender to communicate partitions
truthfully. Let us continue assuming the true state m belongs to partition [aj−1, aj]. For
truthful communication, given any m within the partition, the sender wants to reveal the
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correct partition.
We begin looking at deviations to the adjacent superior partition [aj, aj+1]. If we take

two different states m > m′ with m,m′ ∈ [aj−1, aj], let us show that if the Sender reports the
true partition with m, then she must also choose the true partition with m′ as well. Let us
begin showing that for any m′ < aj+aj−1/2− b, the Sender will never deviate to the upwards
adjacent partition. The sender does not deviate when

−
∣∣∣∣aj + aj−1

2
−m′ − b

∣∣∣∣ ≥ − ∣∣∣∣aj+1 + aj

2
−m′ − b

∣∣∣∣ (11)

where the action y was already replaced by the Receiver’s action rule. But when m′ <
(aj+aj−1)/2− b, (11) becomes

m′ + b− aj + aj−1

2
> m′ + b− aj+1 + aj

2
, (12)

which holds directly since aj+1 > aj−1. Thus, we do not have to look for any deviation for
any such states.

But again, let us consider m and m′. If the Sender reports the true partition with m it
must be that

−
∣∣∣∣aj + aj−1

2
−m− b

∣∣∣∣ ≥ − ∣∣∣∣aj+1 + aj

2
−m− b

∣∣∣∣ (13)

We want to show that the above condition implies that (11) also holds.
For simplicity, we will assume that aj+1−aj > 2b for any j and then check ex-post if this

holds. Since this is a module function, we need to consider different cases. Remember that
m,m′ ≥ (aj+aj−1)/2− b. With these two conditions, the first inequality above becomes

aj + aj−1

2
−m− b ≥ m+ b− aj+1 + aj

2

and since m > m′, we must have

aj + aj−1

2
−m′ − b > aj + aj−1

2
−m− b ≥ m+ b− aj+1 + aj

2
> m′ + b− aj+1 + aj

2

therefore, for any m > m′, if the Sender reports the correct partition with m she will report
the correct partition with m′. Using this same logic, we can show that if the Sender does not
wishes to report the upwards adjacent partition, she also does not wishes to falsely report a
greater partition. Thus, if she does not deviates to the upwards adjacent partition, she does
not deviate to any other partition to the right.
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Another implication is that to ensure the Sender will always report the correct partition,
we must check if she has the right incentives when for the highest state within the partition,
that is, when m = aj.

We will consider a state m that approximates aj from the left, so that m ∈ [aj−1, aj].
The Sender will report the correct partition if (13) holds. As m approaches aj this becomes

aj + aj−1

2
− aj − b ≥ aj + b− aj+1 + aj

2

Reorganizing this expression, we get the following transition rule.

(aj+1 − aj) ≥ (aj − aj−1)− 4b (14)

Now, we must look at deviation to the downwards adjacent partition. We now consider
two states m < m′, with m,m′ ∈ [aj, aj+1]. We begin noting that, if m′ > (aj+1+aj)/2, then
the sender will never report the partition is aj. That is because when such condition holds,
the inequality

−
∣∣∣∣aj + aj−1

2
−m′ − b

∣∣∣∣ ≤ ∣∣∣∣aj+1 + aj

2
−m′ − b

∣∣∣∣
becomes

aj + aj−1

2
−m′ − b ≤ aj+1 + aj

2
−m′ − b

Therefore, if m′ ≥ (aj+1+aj)/2, then, she never deviates. If, on the other hand, m ≤ m′ ≤
(aj+1+aj)/2, then if

−
∣∣∣∣aj + aj−1

2
−m− b

∣∣∣∣ ≤ ∣∣∣∣aj+1 + aj

2
−m− b

∣∣∣∣
Becomes

aj + aj−1

2
−m− b ≤ −a

j+1 + aj

2
+m+ b (15)

Since m′ ≥ m, we get from (15)

aj + aj−1

2
−m′ − b < aj + aj−1

2
−m− b ≤ −a

j+1 + aj

2
+m+ b < −a

j+1 + aj

2
+m+ b.

So the Sender does not wish to deviate to aj.6 This implies that it is enough to check the
6As in the for deviation to the upwards adjacent partition, we can show quite directly that if Sender

does not wish deviate to the downward adjacent partition, she also does not wish to deviate to any further
downward partition.
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incentives for truthful communication on the lowest point in a partition, that is, aj. We will
choose an m′ that approaches aj from the right, so that m′ always belong to [aj, aj+1]. If the
Sender communicates the correct partition, it must be that

−
∣∣∣∣m′ − aj + aj−1

2
− b
∣∣∣∣ ≤ − ∣∣∣∣m′ − aj+1 + aj

2
− b
∣∣∣∣

As m′ tends to aj, this inequality becomes

aj + aj−1

2
− b− aj ≤ aj + b− aj+1 + aj

2
, (16)

which, after straightforward algebra, becomes

(aj+1 − aj) ≤ (aj − aj−1) + 4b. (17)

Combining (14) and (17), we get

(aj+1 − aj) = (aj − aj−1) + 4b. (18)

This difference equation is the basis of the expression for the partitions. We can write
(18) as

aj+1 − 2aj + aj−1 = 4b (19)

This is a second-order, linear difference equation with terminal conditions an = m and
a0 = m. We can solve this with a particular integral ap = 2bj2, the complementary function
is given by ac = A1vk + vkjA2. Where vk, with k = 1, 2 are the solutions to the auxiliary
equation λ2 − 2λ+ 1 = 0, based on (19). That is

v =
2±
√

4− 4

2
= 1.

So there is a unique solution. A given partition is the sum of the two solutions, that
is aj = ap + ac. From the initial and terminal condition we find the constants for the
complementary function. Since a0 = m, we get

m = A1.

From the terminal condition, we get

m = m+ nA2 + 2bn2,
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rearranging, gives

A2 =
m−m
n

− 2nb

Therefore, the full expression for any given partition is

aj = m+ j
m−m
n

− 2jnb+ 2bj2

which simplifies to

aj =
j

n
m+

n− j
n

m− 2bj(n− j).

This proves the first part of the Lemma. The second part of Lemma 3 regards the maximum
number of partitions, n∗ in a given equilibrium. We can find, n∗ by ensuring that a1 is above
a0 = m. That is, we find the number of partitions such that

m

n∗
+
n∗ − 1

n∗
m− 2b(n∗ − 1) > m.

This expression can be rearranged to

m−m
b

> 2n∗(n∗ − 1)

Which completes the proof. One important feature of this proof is that n∗ is the maximum
number of partitions. But we can construct equilibria with a smaller number of partitions
n < n∗.

Proof of Lemma 4. In order to show how the number and position of the partitions affect
welfare we must distinguish two effects. The first is the impact of b on the position of the
partitions, and the second is the impact of b on the number of partitions in equilibrium.
From Lemma 3, we have the following difference equation (14).

(aj+1 − aj) = (aj − aj−1) + 4b

and
aj =

j

n
m+

n− j
n

m− 2bj(n− j).

Combining the two, we get

aj − aj−1 =
m−m
n

− 2b (n− 2j + 1) (20)

So we have an expression for the size of the partitions as a function of b. Now let us look at
the expressions for the payers’ expected payoff. Let us begin with the receiver. The expected
payoff given a set of partitions is
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E(u(y,m)) =
1

m−m

n∑
j=1

∫ aj

aj−1

−
∣∣∣∣aj + aj−1

2
−m

∣∣∣∣ dm
which can be re-written as

E[u(p,m)] =
1

m−m

n∑
j=1

∫ aj+aj−1

2

aj−1

(
m− aj + aj−1

2

)
dm+

∫ aj

aj+aj−1

2

(
aj + aj−1

2
−m

)
dm


We solve this integral to get the following expression

E(u) = −
n∑
j=1

(aj − aj−1)2

4(m−m)
.

with (aj − aj−1) given by (20)
Let us now compute the Sender’s payoff.

E(v(p,m)) =
1

m−m

n∑
j=1

∫ aj

aj−1

−
∣∣∣∣aj + aj−1

2
− b−m

∣∣∣∣ dm
which can be expanded to

E[v(p,m)] =
1

m−m

n∑
j=1

∫ aj+aj−1

2
−b

aj−1

(
m+ b− aj + aj−1

2

)
dm+

∫ aj

aj+aj−1

2
−b

(
aj + aj−1

2
− b−m

)
dm

 ,
(21)

when (m−m) ≥ 2bn2. That expression can be simplified to

E(v) =
n∑
j=1

(aj − aj−1)2

4(m−m)
− nb2

m−m
.

When (m − m) < 2bn2, the first partition’s size is smaller than 2b, so ((a1−a0)/2 − b) <
a0 = m and we compute expected payoff from different equation than (21). The payoff is
given by

E[v(p,m)] = 1
m−m

∑n
j=2

[∫ aj+aj−1

2
−b

aj−1

(
m+ b− aj+aj−1

2

)
dm+

∫ aj
aj+aj−1

2
−b

(
aj+aj−1

2
− b−m

)
dm

]
,

+ 1
m−m

[∫ a1
m

(a
1−m

2
− b−m)dm.

]
(22)
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which simplifies to

E(v) =
1

m−m

[
n∑
j=1

(aj − aj−1)2

4
− nb2 − b(a1 −m)

]
.

So, if we consider the case where (m−m) ≥ 2bn2

The derivative of both players’ payoff with respect to b is given by

∂E(u)

∂b
=
∂E(v)

∂b
=

1

m−m

n∑
j=1

[
(aj − aj−1)

2
× 2j(n− j)

]
> 0.

If, on the other hand, (m−m) < 2bn2, then the expected payoff for the Sender is given
by (22) and we have

∂E(v)

∂b
=

1

m−m

[
n∑
j=2

[
(aj − aj−1)

2
× 2j(n− j)

]
+ b2j(n− j)

]
> 0

Therefore, in every case, an increase in b, keeping the number of partitions n fixed, increases
the players payoff.

[Still incomplete!!]

Proof of Proposition 1. Proposition 1 argues there exists a trigger strategy equilibrium of
the repeated cheap-talk with perfect information transmission with an action shift of d ≤ b.
The result is a combination of the Sender’s and receiver’s trigger strategy. Manipulating (2),
we get the following condition for the impatience parameter δ

δ ≥ (m−m) (b− d)

(m−m)2 + 4b2

Now, manipulating (3), we get

δ ≥ 4d

(m−m)

So the two trigger strategy place restrictions on the minimum value of δ, which must be
greater than both cutoffs. Therefore, provided

δ ≥ δ∗ = max

{
(m−m) (b− d)

(m−m)2 + 4b2
,

4d

(m−m)

}
both trigger strategies will be met and the players will sustain a perfect information

transmission equilibrium.
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Proof of Corollary 1. The cutoff δ from Proposition 1 is a function of the action shift d.
Thus, it is interesting to find the value of d that leads to the lowest δ∗. Since δ∗ is the
maximum of two cutoffs, one increasing with respect to d and the other decreasing with
respect to d. As δ∗ must be grater than both cutoffs, the lowest δ∗ is that when both cutoffs
are equal. Therefore, d∗ is found by the equation below

(m−m) (b− d∗)
(m−m)2 + 4b2

=
4d∗

(m−m)

Then, straightforward manipulation leads to (4). This completes the proof.

Proof of Corollary 2. Corollary 2 argues that if players are patient enough, there exists an
equilibrium with d = 0. It is simply to replace d = 0 on (4) to get

δ̌ =
4(m−m)b

(m−m)2 + 4b2
,

which ends the proof

Proof of Proposition 2. The proof of Proposition 2 has two main parts. The first one is
finding the partitions for a given synthetic conflict of interest parameter b̂

b̂ = max

{
0, b− δ

2(1− δ)
[Evr − v]

}
(which is a function of a given vr). The second part consists of showing that the Sender’s
expected payoff

Evr = −
n∑
j=1

∫ aj

aj−1

∣∣∣∣aj + aj−1

2
− x− b

∣∣∣∣ dx (23)

is bounded and continuous with respect to b̂. This conditions ensure that there exist a
fixed point in vr, that is a given vr that induces a synthetic conflict of interest b̂ that leads
to the to exact payoff vr. Let us begin with the first part of the proof.

Much like in the proof of Lemma 3, we will compute the equilibrium partitions from the
difference equation (6). However, before we can use such condition, we must show that the
Sender will not deviate from partitions that follow such rule.

We focus on deviations in the current period, assuming that the Sender will not deviate
in future periods when following the stationary equilibrium strategy (in the spirit of trigger
strategy equilibrium). So, for the deviations considered here, we will fix the future strategies
and associated payoff sequencies.
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It is simple to check that the Receiver’s optimal strategy is still to choose the midpoint
of the reported partition today, just as we have shown in the proof of Lemma 3. Then, we
must look at the Sender’s decision to which information to reveal. Again, we are looking for
partition equilibrium, so the signal structure are the partitions. We must then show when
the partitions induce truth telling for every possible state m.

Let us begin assuming the true state mt belongs to partition [aj−1, aj]. Let us look at
deviations towards the adjacent superior partition, [aj, aj+1]. If we take two different states
mt > m′t, with mt,m

′
t ∈ [aj−1, aj], let us show that if the Sender does not wishes to send

message st = [aj, aj+1] when the state is m, then she will also not deviate when the state is
m′. That is, if

−
∣∣∣∣aj−1 + aj

2
−mt − b

∣∣∣∣+
δ

1− δ
Evr > −

∣∣∣∣aj + aj−1

2
−mt − b

∣∣∣∣+
δ

1− δ
v (24)

Then it must be that

−
∣∣∣∣aj−1 + aj

2
−m′t − b

∣∣∣∣+
δ

1− δ
Evr > −

∣∣∣∣aj + aj−1

2
−m′t − b

∣∣∣∣+
δ

1− δ
v (25)

We can have three distinct relevant cases to consider. m′ < m < (aj+aj−1)/2 − b, m′ <
(aj+aj−1)/2− b < m < (aj+1+aj)/2− b and (aj+aj−1)/2− b < m′ < m < (aj+1+aj)/2− b.

Let us begin looking at the cases where m′ < (aj+aj−1)/2− b. In such cases

m′ + b− aj + aj−1

2
+

δ

1− δ
Evr > m′ + b− aj+1 + aj

2
+

δ

1− δ
v

A careful inspection of the inequality above reveals that the inequality always holds, provided
the partitions are increasing and the payoff from the trigger strategy is greater than the payoff
from a babbling equilibrium. Therefore, if m′ < (aj+aj−1)/2− b, the Sender will never deviate
to the upwards adjacent partition. This rules out the first two cases.

We then have to tackle the case where (aj+aj−1)/2− b < m′ < m < (aj+1+aj)/2− b. Is such
case, inequality (24) becomes

aj + aj−1

2
− b−m+

δ

1− δ
Evr > m+ b− aj+1 + aj

2
+

δ

1− δ
v

But since m′ < m, we have

aj + aj−1

2
− b−m′ + δ

1− δ
Evr >

aj + aj−1

2
− b−m+

δ

1− δ
Evr >

> m+ b− aj+1 + aj

2
+

δ

1− δ
v > m′ + b− aj+1 + aj

2
+

δ

1− δ
v
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which ensures that (25) holds. Therefore, we only have to consider the deviation around
the partitions. That is, when m→− aj. In that case, we must have

aj + aj−1

2
− b− aj +

δ

1− δ
Evr ≥ aj + b− aj+1 + aj

2
+

δ

1− δ
v (26)

Manipulating (26) gives us (6). This difference equation (6), can be reorganized to

(aj+1 − aj) ≥ (aj − aj−1)− 4b′ (27)

with

b′ = max

{
b− δ

2(1− δ)
[Evr − v], 0

}
,

and this leads to a solution much like the one in Lemma 3, but with a different conflict of
interest b′. Therefore, we can compute partitions in a similar expression from that of Lemma
3. However, the partitions depend on the Sender’s payoff, which in turn, depend on the
partitions. So, there is a circular definition which can be solved by a fixed point.

We will tackle the fixed point for the Sender’s payoff function. It is a function of the
partitions, which in turn are a function of b′, which is a function of the Sender’s expected
payoff Evr. In order to have a fixed point, Evr must be a superior hemi-continuous, compact
and nonempty correspondence of itself.

We begin defining the set where the correspondence belongs to. The payoff of the babbling
equilibrium is a lower bound in terms of payoff for the sender. Any partition equilibrium
will yield a greater payoff for the sender. On the other hand, the payoff function is a loss
function which is never greater than zero. So the Sender’s payoff belongs to the set Θ ≡ [v, 0].
Therefore, the Sender’s payoff for any partition equilibrium belongs to Θ, which is a compact
and closed set.

Now we show that the Sender’s payoff function is a continuo, us function of b′, which
in turn, is a continuous function of Evr. The Sender’s expected payoff (23) is the sum of
many module functions that can take different forms. If in a given partition j′ we have
(aj
′−aj′−1)/2− b > aj

′−1 the contribution of this partition to the overall payoff is given by

1

∆m

∫ aj
′
+aj
′−1

2
−b

aj′−1

(
−a

j′ + aj
′−1

2
+ b+m

)
dm+

∫ aj
′

aj
′
+aj
′−1

2
−b

(
−m− b+

aj
′
+ aj

′−1

2

)
dm

 =

− 1

∆m

[
(aj
′ − aj′−1)2

4
+ b2

]
where ∆m = m−m But if (aj

′−aj′−1)/2− b < aj
′−1 then the contribution of this partition to
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the payoff is given by

1

∆m

∫ aj
′

aj′−1

(
−m− b+

aj
′
+ aj

′−1

2

)
dm = − 1

∆m
b(aj

′ − aj′−1)

Therefore, we must find the partition k that splits the payoff in each of these rules.
So, for a given expected payoff Evr, that defines the synthetic b′ to we find the number

of partitions n. Then, we apply the difference equation (27) to find the partitions and we
find the partitions. Then we find the k such that

ak + ak−1

2
− b ≤ak−1

ak+1 + ak

2
− b ≥ak

which becomes

ak − ak−1 ≤2b

ak+1 − ak ≥2b

Using that

aj − aj−1 =
∆m

n
− 2b′(n− 2j + 1)

we get that k is the positive integer that satisfies

n− 1

2
+

b

2b′
− ∆m

4b′n
≤ k ≤ n+ 1

2
+

b

2b′
− ∆m

4b′n
(28)

Notice that k can be zero
that defines the Sender’s payoff

Evr = − 1

∆m

[
n∑
j=k

(
(aj − aj−1)2

4
+ b2

)
+ b(ak −m)

]
, (29)

where k is the integer that satisfies (28). Since Evr is a continuous functions of the partitions,
the direct relationship between b′ and Evr is continuous. However, n and k are integers
numbers, implicitly defined by b′. Therefore, we must show that Evr is continuous with
respect to n and k. Let us begin looking at n. There is a new partition every time
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∆m

b′
= 2n(n− 1)

which can be rewritten as

∆m

n
= 2b′(n− 1) (30)

In this case, the first partition is given by

a1 =
m

n
+
n− 1

n
m− 2b′(n− 1)

which, using (30), gives a1 = m. Therefore, the first partition has size zero. So the
Sender’s payoff from this equilibrium with n partitions is identical to his payoff from an
equilibrium with n − 1 partitions, since the mass of the first partition is zero. Effectively,
the partitions are equal between the two equilibria. That is, when ∆m

b′
= 2n(n− 1), then

Evr(n) =
n∑
j=1

∫ aj

aj−1

∣∣∣∣aj + aj−1

2
−m− v

∣∣∣∣ dm = Evr(n−1) =
n−1∑
j=1

∫ aj

aj−1

∣∣∣∣aj + aj−1

2
−m− v

∣∣∣∣ dm
Therefore, the Sender’s payoff is continuous with respect to n.
Now, let us look at changes at k. Let us look at the case where

ak + ak−1

2
− b <ak−1

ak+1 + ak

2
− b =ak

ak+2 + ak+1

2
− b >ak+1

therefore
ak+1 − ak = 2b

So the payoff from this partition is given by

1

∆m

[∫ ak+1

ak

(
−m− b+

ak+1 + ak

2

)
dm

]
=

1

∆m

[∫ ak+1

ak+1+ak

2
−b

(
−m− b+

ak+1 + ak

2

)
dm

]

+
1

∆m

∫ ak+1+ak

2
−b

ak

(
−a

k+1 + ak

2
+ b+m

)
dm
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where the right-hand side is the Sender’s payoff from an equilibrium computed with k−1.
Therefore, the welfare function is continuous with respect to k.

Since Evr is a continuous function from Θ → Θ, there exists a fixed point in Evr.
Therefore, there exists an equilibrium set of partitions for our repeated cheap talk game. In
particular, since Evr > v, there are more partitions in equilibrium and the partitions are
better positioned along the state space, since b > b′. This completes the Proof of Proposition
2.

Proof of Corollary 3. Since the partitions are computed using the effective conflict of interest
b′ < b, it is straightforward to check that there is a weakly greater number of partitions and
that the partitions are more evenly distributed.

Proof of Corollary 4. From the expression of b′, it is straightforward to notice b′ < b when-
ever δ > 0. Therefore, from corollary 3, we have an equilibrium with weakly greater number
of partitions, and more evenly distributed partitions.

Proof of Lemma 5. The Receiver’s decision to comply to a trigger strategy is conditional on
the message he receives. Assuming the message is truthful, after he receives the message
he can update the information about the state m. So, we can compute the expected payoff
after receiving a message mj

t by

E
(
urt |sj

)
=

1

aj − aj−1

∫ aj

aj−1

∣∣∣∣aj + aj−1

2
+ d−m

∣∣∣∣ dm
which becomes

E
(
urt |sj

)
=

1

aj − aj−1

∫ aj

aj+aj−1

2
+d

(
aj + aj−1

2
+ d−m

)
dm+

∫ aj+aj−1

2
+d

aj−1

(
m− aj + aj−1

2
− d
)
dm


which simplifies to

E
(
urt |sj

)
= − 1

aj − aj−1

[
(aj − aj−1)2

4
+ d2

]
(31)

Now, we must compute the payoff from deviating a trigger strategy in a repeated partition
equilibrium. In such case, the message is truthful and informs the true partition. So, the
best the receiver can do is to choose the midpoint of the partition, just as in section 4.1.
Then, his payoff from the deviation is given by
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E
(
uD|sjt

)
= − 1

aj − aj − 1

[
(aj − aj−1)2

4

]
(32)

Then, from (10), we know that, given a message mj, the Receiver complies to the trigger
strategy if

d2

aj − aj−1
≤ −E(ur − u),

where the right side is positive. This condition must be satisfied for every partition. Thus,
the smaller the partition, the greater the receiver’s payoff from deviating. Since partitions
are increasing in size, it must be that the first partition has the highest payoff from deviation.
Then, if the receiver does not wish to deviate in case the state falls into the first partition,
he does not wish to deviate in any other partition. Therefore, complience to the trigger
strategy mean

d2

a1 −m
≤ −E(ur − u), (33)

This completes the proof.

Proof of Proposition 3. This proof has X parts. For the first part, we will define a synthetic
equilibrium. The synthetic equilibrium is one where partitions are defined by the Sender’s
transition rule for truthful communication, given by equation (9). In a synthetic equilibrium,
we ignore the receiver conditions to comply to the trigger strategy. from (9) we can define a
modified conflict of interest b̃ in the spirit of the proof of Proposition 2. The b̃ is denoted by

b̃ = max

{
b− d− δ

2(1− δ)
[Evr − v] , 0

}
With this substitution, we are able to compute the partitions of the synthetic equilibrium,

just as in the proof of Lemma 2. So, even though a positive d means the Receiver is tilting
the policy towards the Sender’s preferences, the compliance to the trigger strategy is the
same as in an equilibrium where the Sender is not favored, but has a smaller conflict of
interest b.

One important aspect of this synthetic equilibrium is that, if we have an equilibrium with
n∗ ≥ 2, then, there also exists an equilibrium with n∗ − 1, since it satisfies all conditions.
This will be important for the remainder of this proof.

Given the similarities to the proof of Proposition 2, the synthetic equilibrium satisfies
the following conditions

aj =
j

n
m+

n− j
n

m− 2j (n− j) b̃,
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where
b̃ = max

{
b− d− δ

2 (1− δ)
(vr − v) , 0

}
,

and

vr = −
n∑
j=1

∫ aj

aj−1

∣∣∣∣aj + aj−1

2
− x− (b− d)

∣∣∣∣ dx
Moreover, the maximum number of partitions n is highest integer that satisfies

(m−m)

b̂
> 2n (n− 1)

The two last conditions are related to the Receiver conditions to comply to the trigger
strategy. In particular, condition (33) depends on the Receiver’s continuation payoff Eur

and the size of the first partition a1.
So, when is a synthetic equilibrium a really an equilibrium? It is a matter of checkin

whether the Receiver complies to this trigger strategy. Therefore, if conditions from Lemma
3 are satisfied. That is, if

d2

a1 −m
≤ δ

1− δ
[Eur − Eu] , (34)

where

Eur = −
n∑
j=1

∫ aj

aj−1

∣∣∣∣aj + aj−1

2
+ d− x

∣∣∣∣ dx
If it is satisfied, then, we have an equilibrium. Otherwise, we can reduce the number

of partitions, since there is a synthetic equilibrium with fewer partitions. This synthetic
equilibrium with fewer partitions has a smaller payoff for the Receiver and a greater size for
the first partition, so there are greater chances condition (34) is satisfied. Still, that does not
ensure there exists an equilibrium with a smaller number of partitions, since the condition
may not be met even with a smaller n. Plus, if the number of equilibrium partitions is two,
there is no chance the Receiver will comply to a policy shift in a babbling equilibrium.

So, when can we be sure there is a partition equilibrium with a policy shift in a cheap talk
game? One way to answer this question is to look at (34) imagining d = 0 in the repeated
partition equilibrium. In such case, the receiver’s expected payoff Eur is greater than the
payoff of the babbling equilibrium u, and the right side of (34) is zero. Therefore, we can find
a positive d (possibly near zero) that such that this condition will still hold. Therefore, if
there exists a partition equilibrium with no policy shift cheap talk game, there is a repeated
partition equilibrium with a positive policy shift d in the repeated cheap talk game. This
completes the proof.
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Proof of Proposition 4. This proof is organized in two parts. The first one is to compute the
Receiver’s expected payoff as a function of the policy shift d. The second part is to take the
derivative of this function. We begin computing the Receiver’s expected payoff. There are
two possibilities for this expression, the first one is given by

Eur = −
n∑
j=1

∫ aj

aj−1

∣∣∣∣aj + aj−1

2
+ d− x

∣∣∣∣ dx
which can be written as

Eur =
n∑
j=1

∫ aj+aj−1

2
+d

aj−1

(
x− aj + aj−1

2
− d
)
dx+

∫ aj

aj+aj−1

2
+d

(
aj + aj−1

2
+ d− x

)
dx


this expression becomes

Eur =
n∑
j=1

[(
x2

2
− xa

j + aj−1

2
− xd

)
|
aj+aj−1

2
+d

aj−1 +

(
x
aj + aj−1

2
+ xd− x2

2

)
|ajaj+aj−1

2
+d

]

which becomes

Eur =
n∑
j=1

[
−1

2

(
aj + aj−1

2
+ d

)2

−
(

(aj−1)2

2
− aj−1

(
aj + aj−1

2
+ d

))]
n∑
j=1

[
aj
(
aj + aj−1

2
+ d

)
− (aj)2

2
− 1

2

(
aj + aj−1

2
+ d

)2
]

which simplifies to

Eur = −
n∑
j−1

[
(aj − aj−1)2

4
+ d2

]
will be such whenever 2d < a1 −m.

Otherwise, the Receiver’s welfare will be
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Eur =
n∑
j=2

∫ aj+aj−1

2
+d

aj−1

(
x− aj + aj−1

2
− d
)
dx+

∫ aj

aj+aj−1

2
+d

(
aj + aj−1

2
+ d− x

)
dx


∫ aj+aj−1

2
+d

m

(
x− a1 +m

2
− d
)
dx

This expression simplifies to

Eur = −
n∑
j=2

[
(aj − aj−1)2

4
+ d2

]
− 1

2

(
a1 −m

2
+ d

)2

Now, we can use the fact that

aj − aj−1 =
∆m

n
− 2b̃(n− 2j + 1)

and a1 = m/n+ (n−1)m/n−2(n−1)b̃ to find the derivative of these expressions with respect
to d.

When 2d < a1 −m, we have

∂Eur

∂d
= −

n∑
j=1

[
(aj − aj−1)

2
2(n− 2j + 1)

]
− 2nd

which simplifies to

∂Eur

∂d
=

2b̃n

3

(
n2 − 1

)
− 2nd

while, if 2d > a1 −m, we have

∂Eur

∂d
=

2b̃n2

3
(n− 1)−

(
∆m

n
− 2b̃(n− 1) + d

)
(2n− 1)

which completes the proof.
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