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Abstract

The asset pricing model derived from the Fama-French approach is extensively used

in asset risk premium estimation procedures. Even including a considerable number of

factors, it is still possible that omitted factors affect the estimation of this model. In

this work, we compare estimators robust to the presence of omitted factors in estimating

the risk premium in the Brazilian market. Initially, we applied the Mean Group and

Common Correlated Effects panel data estimators to detect the presence of omitted

factors. We then compare the results with those obtained by the estimator proposed

by Giglio and Xiu (2021), which uses a principal components approach to correct the

estimation in the case of omission of latent factors. We conclude that there is evidence

of omitted factors and the best estimator is the Common Correlated Effects estimator.

Keywords: Robust Estimation, Risk Premia, Asset Pricing, Misspecification.

1 Introduction

In 1993 Fama and French proposed the three-factor pricing model [11]. In that paper they

identified three systematic risk factors in stock returns, extending the usual estimation based

on the CAPM estimation to a multi-factor structure constructing characteristics based risk

factors. They built portfolios empirically to reproduce the market portfolio, size and book-

to-market systematic risks. However, evidence from studies by Novy-Marx [23] and Titman,

Wei, and Xie [29], show that the three-factor model can be insufficient, as they lose much of

1



the variation in average returns related to profitability and investment. With that in mind,

in 2015, Fama and French added the profitability and investment factors [13] to the three-

factor model, the so-called Five-Factor Model. They conclude that the Five Factor model

explains 71% to 94% of the cross-section variance in expected returns for size, book-to-market,

profitability and investment.

In 2017, Fama and French [14] tested the five-factor model for 4 regions - North America,

Europe, Japan and Asia Pacific - and despite the global model not having a fully satisfactory

result, the local models, that is, constructed with local data from each region, explained most

of the variance in returns, as expected.

There is a relevant literature on new factors for asset pricing, and the large number of

possible factors became known as the zoo factor, indicating that the estimation of traditional

models of three, four and five factors derived from the Fama-French approach may be subject

to problems caused by the absence of relevant risk factors in the estimation, leading to

inconsistent estimators of the risk premium of the factors included in the model. One of the

first to mention the zoo factor was Cochrane in 2011 [7]. Harvey, Liu and Campbell in 2015

[16], McLean and Pontiff in 2016 [21] and more recently Hou, Xue, and Zhang in 2017 [17]

talk about the zoo factor and how these factors can influence the risk pricing procedures.

Recognizing the importance of omitted factors in risk premium estimation, Giglio and Xiu

[15] propose a three-step method for estimating the risk premium of an observable factor that

is valid even in the presence of omitted risk factors in the model, in addition to also controlling

for a possible measurement error in the observable factors and also detecting whether if a

factor is spurious or "useless", in the sense that it does not influence the estimation.

We study two ways of using the five-factor model to price stocks with Brazilian data,

assuming that the relevance of the factors is constant over time. First, we focused our study

on the possible variable omission, and thus the existence of a possible bias in the estimation.

For this, we chose two estimators for panel data to estimate the risk premium of the factors:

the Mean Group (MG) [24] and the Correlated Common Effects estimator (CCE) [25]. The

MG estimator is defined as an average of OLS estimators, while the CCE estimator is an

extension of the MG estimator that assumes an unobserved common factor structure for

the errors. If there are factors omitted in the Fama French five-factor model, the CCE
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estimator should capture them, and therefore, their coefficients would be different from the

estimated coefficients for the MG estimator. The second way used to study the relevance of

the five factors was to test whether they are sufficient to correctly price the assets, that is,

whether these factors are able to estimate an approximately correct price for the set of assets

in question. For this, we estimate the risk premium using the Giglio and Xiu [15] method,

which theoretically corrects the estimation for possible omission of variables and the presence

of measurement error, and we use this estimate to predict returns. Finally, we compare which

model best fits the observed returns, the Fama-French five-factor model or the predictions

made with the risk premium obtained by the Giglio and Xiu [15] method.

The results indicate that there is a strong indication that the coefficients of the CCE

estimator are statistically different from the coefficients of the MG estimator and, there-

fore, there is the possibility of variable (factor) omission. In the second stage, we observed

that, despite the estimator proposed by Giglio and Xiu supposedly correcting the estimation

for omission of variables, the CCE estimator presents the best results in the asset pricing

procedures.

This work has the following structure: the bibliographic reference is presented in Section

2; the methodology is reviewed in Section 3. In Section 4 we will present the data used.

Section 5 presents the main results obtained. Final conclusions are presented in Section 6.

2 Bibliographic References

Asset pricing has been extensively studied, and in recent years, several factors and factor

models have emerged to better understand how certain characteristics influence the prices

of assets. These factors include size (market value), book equity (book value of equity),

book-to-market equity (the ratio of book value to market value), leverage, earnings/price,

and dividend/price, among others. Many models combine these different factors to more

accurately price assets.

Some of the most significant works in asset pricing, such as those by Sharpe, Lintner,

Black, and others, were based on Markowitz’s [19] groundbreaking portfolio selection problem,

which he studied in 1952. Markowitz divided the process of selecting an optimal portfolio into
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two stages, with the second stage focused on the Mean-Variance rule and the construction

of efficient mean-variance combinations. In 1959, he expanded on this work by developing

an analysis based on the maximization of expected utility, offering a solution to the portfolio

selection problem.

Building on Markowitz’s studies, Sharpe [28] proposed a market equilibrium theory of

asset prices under risky conditions, concluding that there is a linear relationship between

expected returns and the standard deviation of returns for efficient combinations of risky

assets in equilibrium. He also found a consistent relationship between expected returns and

their "systematic risk," which can be measured by market beta, a metric that assesses a

stock’s volatility relative to the market.

Similar to Sharpe’s work, Lintner [18] and Black [5] also studied the relationship between

average return and risk, with the central prediction portfolio being the efficient portfolio

proposed by Markowitz. Like the Sharpe model, the Lintner and Black models conclude that

expected returns are positive linear functions of market beta. They also found that market

betas absorb the effect of leverage on prices and are sufficient to describe the cross-section of

expected returns.

In 1988, Fama and French [9] studied the relationship between dividend yields and ex-

pected returns on stocks, finding that dividend yields explain less than 5% of the variances

of monthly or quarterly returns but generally explain more than 25% of the variance of re-

turns over two to four years. This indicates that dividend yields have a greater influence on

long-term returns.

In 1992, Fama and French [10] published another paper on expected stock returns, evaluat-

ing the relationship between expected returns and market beta, size (market value measured

by the share price times the shares in circulation), leverage, book-to-market equity (BE/ME),

and earning/price (E/P). Contrary to the predictions of Sharpe, Lintner, and Black, they did

not find any reliable relationship between market betas and expected returns. Additionally,

they concluded that leverage is well captured by book-to-market equity, and the combina-

tion of size and book-to-market equity absorbs the relationship between E/P and expected

returns.

In their 1993 article "Common risk factors in the returns on stocks and bonds" [11],
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Fama and French expanded on their previous research by using the time series regression

approach of Black, Jensen, and Scholes (1972) [6] to construct two risk factors related to

size and BE/ME for stocks, and two risk factors related to the term structure for bonds.

The factors related to size and BE/ME are known as SMB and HML, respectively. To build

these factors, they sorted the stocks by size (Big and Small) and BE/ME (Low, Medium,

and High). This classification by BE/ME is based on dividing the stock population into

three groups, with the lower 30% classified as Low, the middle 40% as Medium, and the

upper 30% as High. From this classification, six portfolios are created based on the intersec-

tions between the size and BE/ME classifications: Small/Low (S/L), Small/Medium (S/M),

Small/High (S/H), Big/Low (B/L), Big/Medium (B/M), and Big/High (B/H). These six

portfolios provide returns on the large (B) and small (S) size portfolios.

RB =
1

3
(RB/l +RB/m +RB/h)

RS =
1

3
(RS/l +RS/m +RS/h)

From these two portfolio returns shown above, the returns of zero SMB net investment

factors (small minus big, i.e. long position in low capitalization stocks and short position in

high capitalization stocks) are constructed:

RSMB = RS −RB

Similarly, the returns of the high (H) and low (L) portfolios are:

RH =
1

2
(RS/h +RB/h)

RL =
1

2
(RS/l +RB/l)

From these two portfolios, the zero HML net investment factor is created (high minus
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low, that is, long position in high BE/ME and short position in low BE/ME):

RHML = RH −RL.

They also created two portfolios to measure common risk related to unexpected changes

in interest rates for bonds, called TERM and DEF. These five factors were found to explain

well the common variation in bond and stock returns.

In a subsequent paper from 1995 [12], Fama and French attempted to find economic

foundations for their empirical results and whether pricing is rational. They hypothesized

that there must be common risk factors in returns associated with size and BE/ME, and that

the size and BE/ME patterns in returns must be explained by earnings behavior. However,

they could not find evidence that returns respond to the BE/ME factor in earnings. This

paper left important questions open, such as the underlying economic state variables that

produce variation in earnings and returns related to size and BE/ME.

Despite the popularity of the three-factor model, subsequent studies have shown that

it is insufficient. In 2008, Titman, Wei, and Xie [29] studied the returns of stocks and

capital investment based on the three-factor model, while in 2013, Novy-Marx [23] examined

profitability. Both studies found that the three-factor model misses much of the variation in

average returns related to profitability and investment.

After acknowledging the limitations of the three-factor model, Fama and French intro-

duced the five-factor asset pricing model in 2015 [13]. This model extends the three-factor

model by including the profitability and investment factors. Specifically, the RMW and CMA

portfolios capture the differences in returns between firms with robust and weak profitability,

and between conservative and aggressive companies, respectively. This new model has been

shown to better explain average returns than the previous three-factor model. However, one

challenge with using these models is the potential for omitted variable bias and measurement

errors, which can lead to inconsistent estimates and less accurate asset pricing predictions.

To address these issues, researchers have explored new factors for asset pricing, leading

to the emergence of a large number of potential factors, commonly referred to as the Factor
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Zoo. Cochrane was among the first to highlight this phenomenon in 2011 [7], and since then,

numerous articles have explored the impact of these additional factors on pricing models,

including the work of Harvey, Liu, and Campbell [16], McLean and Pontiff [21], and Hou,

Xue, and Zhang [17].

These works indicate the possible existence of a high number of possible risk factors,

and although many are redundant or not significant for relevant periods of the sample, the

omission of factors is a pervasive problem in estimating the risk premium. To address these

challenges, Giglio and Xiu [15] propose a three-step methodology that utilizes a rotation

invariance result for risk premium estimation in linear factor models, combined with Principal

Component Analysis (PCA), to provide consistent risk premium estimates for any observed

factor in the presence of omitted factors and misspecification in the model.

2.1 The consistent estimator for the risk premium in the presence

of misspecification

We describe the fundamental elements of the three-step estimator proposed by Giglio and

Xiu [15] in this section. The general idea of the method proposed by Giglio and Xiu [15] is to

use a principal component estimation to recover the effects of the systematic factors omitted

from the model, and thus carry out a consistent estimation of the risk premium associated

with the factors included in the model.

To perform the first step, a consistent estimator of the number of factors is needed. The

estimator used by them has the same idea as the factor estimators proposed by Bai and Ng

[3] and Bai [4].

Bai and Ng [3] demonstrate that the penalty for overfitting should be a function of both N,

the cross-section dimension, and T, the time dimension, to consistently estimate the number

of factors. So, the usual AIC and BIC do not work well when both dimensions are large. So,

considering the model

R
(T×N)

= v
(T×p)

β′

(p×N)

+ e
(T×N)
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where R = (R1, . . . , RN), Ri = (Ri1, . . . , RiT ) for i = 1, . . . , N , v = (v1, . . . , vT ), e =

(e1, . . . , eN), ei = (ei1, . . . , eiT ) for i = 1, . . . , N , β = (β1, . . . , βN) and assume four hy-

potheses. The first hypothesis is related to the fourth moment of the factors, which converge

to a definite positive matrix. The second hypothesis is that the norm of the vectors that

constitute hypotheses regarding the properties of the factor loading matrix. third hypothesis

refers to Cross-Section dependency, temporal dependency and heteroscedasticity. and the

fourth and last hypothesis refers to the weak dependence between the factors and idiosyn-

cratic errors.

Bai and Ng [3] also assume that the p factors are estimated by principal components,

they show that the estimator

p̂ = arg min
0≤p≤pmax

(NT )−1
N∑
i=1

T∑
t=1

(
Rit − β̄p′v̂pt + pϕ (N, T )

)

β̄p is constructed as
√
N time the eigenvectors corresponding to the p largest eigenvalues

of the matrix N ×N R′R, v̄p = R ¯βp/N and v̂p = v̄p(v̄p′ ¯vp/T )1/2, has the following property:

lim
N,T→∞

Prob[p̂ = p] = 1

if (i) ϕ(N, T ) → 0 and (ii)
(
min

{√
N,

√
T
})2

· ϕ(N, T ) → ∞ when N, T → ∞.

Based on studies by Bai and Ng [3], Giglio and Xiu [15] assumed the following assump-

tions both for the development of the estimator in three steps and for building a consistent

estimator for p:

I. ft is a vector of asset pricing factors, where Rt denotes a vector of excess returns N × 1

of test assets. The pricing model satisfies:
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Rt = βγ + βvt + ut, (1)

ft = f + vt, (2)

E(vt) = E(ut) = 0, and (3)

Cov(ut, vt) = 0, (4)

where vt is a vector p × 1 of innovations of ft, ut is a vector N × 1 of idiosyncratic

components, β is a matrix N × 1 of factor loadings, and γ is the risk premium p× 1.

II. There is an observable vector d× 1, gt, of factors, which satisfies:

gt = δ + ηvt + zt, (5)

E(zt) = 0, e (6)

Cov(zt, vt) = 0, (7)

where the g load in v, η is a matrix d×p, δ is a constant d×1, and zt is a measurement

error vector d× 1.

III. There is a positive constant K, such that for all N and T ,

(i) T−1

T∑
t=1

T∑
t′=1

∣∣∣∣∣E
(
N−1

N∑
i=1

uituit′

)∣∣∣∣∣ ≤ K, max
1≤t≤T

E

(
N−1

N∑
i=1

u2
it

)
≤ K.

(ii) T−2

T∑
s=1

T∑
t=1

E

(
N∑
j=1

(ujsujt − E(ujsujt))

)2

≤ KN.

IV. The factor innovations V obeys:
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∥V̄ ∥MAX= Op(T
−1/2),

∥T−1V V ′ − Σv∥MAX= Op(T
−1/2),

where Σv is a positive definite matrix p×p and 0 < K1 < λmin(Σ
v) ≤ λmax(Σ

v) < K2 <

∞.

V. The factor loading matrix β satisfies

∥∥N−1β′β − Σβ
∥∥ = op(1), quando N → ∞,

Σβ is a positive definite matrix p× p and 0 < K1 < λmin(Σ
β) ≤ λmax(Σ

β) < K2 < ∞.

VI. The factor loading matrix β and the idiosyncratic errors ut satisfy the following moment

conditions, for all 1 ≤ j ≤ p and for all N and T :

(i) E
T∑
t=1

(
N∑
i=1

βijuit

)2

≤ KNT.

(ii) E

(
T∑
t=1

N∑
i=1

βijuit

)2

≤ KNT.

The estimator proposed by Giglio and Xiu [15] is

p̂ = arg min
1≤j≤pmax

(
N−1T−1λj(R̄

′R̄) + j × ϕ(N, T )
)
− 1 (8)

where pmax is some upper bound of p, ϕ(N, T ) is a penalty function, and λj(R̄
′R̄) is the jth

largest eigenvalue of matrix R̄′R̄. They show that if ϕ(N, T ) → 0 when N, T → ∞, then we

have Prob(p̂ ≥ p) → 1. And if, in addition, ϕ(N, T )/(N−1/2 + T−1/2) → ∞, then p̂
P−→p.
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This estimator is used to build the estimator of factors and factor loadings in the first

stage by conducting the PCA of the matrix N−1T−1R̄′R̄, defining the following estimators

for the factors and for the factor loadings:

V̂ = T 1/2(ξ1 : ξ2 : · · · : ξp̂)′, e (9)

β̂ = T−1R̄V̂ ′ (10)

where ξ1, . . . , ξp̂ are the eigenvectors corresponding to the p̂ largest eigenvalues of the PCA

of the matrix N−1T−1R̄′R̄, and (ξ1 : ξ2 : · · · : ξp̂) is the horizontal concatenation of matrices,

column by column, where the columns are equivalent to vectors ξi, for i ∈ {1, . . . , p̂}.

The second step is to perform a cross-sectional ordinary least squares (OLS) regression

of the mean returns against the estimated factor loadings β̂ to obtain the risk premium for

the estimated latent factors

γ̂ =
(
β̂′β̂
)−1

β̂′R̄. (11)

The last step consists of performing a regression of gt on the factors extracted by the

PCA, V̂ , to obtain the η̂ estimator and the corrected value of the observed factor:

η̂ = ḠV̂ ′
(
V̂ V̂ ′

)−1

, (12)

Ĝ = η̂V̂ (13)

where Ḡ is the mean of the matrix G = (g1, g2, . . . , gT ).

Finally, the gt risk premium estimator is obtained by
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γ̂g = η̂γ̂ (14)

= ḠV̂ ′
(
V̂ V̂ ′

)−1 (
β̂′β̂
)−1

β̂′R̄ (15)

3 Risk Premium Estimation Methodology

In this work we will assume that the evolution in the cross-section of assets and in time can

be summarized through a panel structure, with the general specification:

Rit = β′
idt + eit, i = 1, . . . , N (16)

and specifically we use the structure:

βi =



αi

βiM

βiSMB

βiHML

βiIML

βiWML


, dt =



1

RMt −Rft

SMBt

HMLt

IMLt

WMLt


(17)

• RMt is the market return in period t,

• Rft is the risk free in period t,

• SMBt is the factor related to size in period t.

• HMLt is the factor related to BE/ME in period t.

• IMLt is the factor related to liquidity in period t.

• WMLt is the factor related to past returns in period t.
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This model is based on the Fama-French five-factor model [13]. What differs from the

Fama-French model are the liquidity (IML) and past returns (WML) factors that replace

the profitability (RMW ) and investment (CMA) factors. This substitution of factors was

necessary because our objective was to carry out the study with the factors available through

NEFIN - Brazilian Center for Research in Financial Economics of the University of São Paulo,

and the main source of risk factors used in the Brazilian financial market.

Our work studied this model in two stages. We first study whether these five factors are

significant, and therefore useful to explain portfolio returns. So finally, we made predictions

with the factors in the usual way and the predictions with the method of Giglio and Xiu [15],

and compared which of the predictions gave us a better result.

3.1 Sufficiency of Factors

Our objective is to try to identify the possibility of omitting factors in the model (16), using a

simple diagnosis comparing the estimation of a non-robust panel data model to the presence

of omitted factors (Mean Group estimator - MG) with a robust estimator for panel data in

the presence of latent factors, given by the Common Correlated Effects (CCE) estimator.

Note that the use of a panel in risk premium estimation is a common procedure in factor risk

premium estimation, and can be thought of as an alternative estimation method in relation

to the Fama-Macbeth procedure [8], and the use of panel models for estimating multifactor

models is discussed in Petersen (2009) [27].

The MG estimator is a simple average of the OLS estimators of each group, while the

CCE estimator is an extension of the MG estimator assuming unobserved common correlated

factors in the errors. So, the idea behind the CCE estimator is the same as the one we want

to test. For this reason, we chose to compare the Mean Group with the CCE. In the next

subsections we will detail these estimators in more detail.

3.1.1 Mean Group Estimator

To obtain the Mean Group estimator for the heterogeneous panel data model (16) we consider

the following matrices:
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D =
[
d1 d2 . . . dT

]′
(18)

Ri. =
[
Ri1 Ri2 . . . RiT

]′
(19)

The first step was to calculate the OLS estimators of each βi, according to the equation

below:

β̂i = (D′D)−1D′Ri. (20)

Finally, we obtain the MG estimator according to the equation below:

β̂F =
1

N

N∑
i=1

β̂i (21)

3.1.2 Correlated Common Effects Estimator

To calculate the correlated common effects estimator, we consider the heterogeneous panel

data model (16) and assume that the error eit has the following common factorial structure

eit =
m∑
j=1

γijfjt + εit = γ ′
ift + εit (22)

where ft = (f1t, ..., fmt)
′ is a vector of unobserved common factors and γi = (γi1, ..., γim)

′ is

the factor loading vector. We assume that the number of factors, m, is fixed and m << N ,

where N is the number of assets.

So, substituting (22) into (16), our model has the following form:

Rit = β′
idt + γ ′

ift + εit (23)

The correlated common effects (CCE) estimator consists of approximating the linear

combination of unobserved factors by means of the cross-section of the dependent and ex-

planatory variables, and then calculating the regression for the augmented standard panel
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with the means of the cross-section .

To calculate the averages we consider a non-stochastic vector of weights wt = (w1t, w2t, ..., wNt)
′,

for t ∈ T ⊂ Z, where T is our time horizon. The vector wt was chosen to satisfy the two

hypotheses below:

|wt| = (w′
twt)

1
2 = O

(
N− 1

2

)
, (24)

wjt

|wt|
= O

(
N− 1

2

)
uniformly in j ∈ N. (25)

Thus, the averages were calculated as follows

Rwt = β
′
wdt + γwft + εwt (26)

where

Rwt =
N∑
i=1

wiRit, βw =
N∑
i=1

wiβi, (27)

γw =
N∑
i=1

wiγi, εwt =
N∑
i=1

wiεit (28)

And from the model’s regression (26) we calculate ft and β̂i

P
.

3.1.3 Wald test

The idea of comparing the MG and CCE estimators is to identify the possible presence of

omitted factors in the estimation, since the CCE estimator assumes a structure of unobserved

common factors for the errors. By estimating the MG and the CCE we obtained their coef-

ficients and the covariances of their parameters for the model (16). We chose to perform the

Wald test, since it consists of evaluating the restrictions on the statistical parameters based

on the weighted distance between the unconstrained estimate and its hypothetical value un-
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der the null hypothesis.

The first test performed was a traditional Wald test assuming the model proposed by the

MG estimator and, therefore, without common factors in the errors. We assume as a null

hypothesis that the coefficients are equal to the coefficients estimated by the MG estimator,

and we test whether the CCE estimator is equal.

Similarly, in the second test, we assume that the estimated model is the model proposed

by the CCE estimator and therefore has common factors in the errors. Our null hypothesis

was that the coefficients are equal to the coefficients estimated by the CCE estimator, and

we tested whether the MG estimator is equal.

Finally, the last test boiled down to using the covariance estimates of the parameters of

the two models in the Wald test. This test is similar to the F test that is done in analysis of

variance (ANOVA).

3.2 Giglio and Xiu Method

Our model (16) only has observed factors. We applied the Giglio and Xiu method to calculate

the risk premium for these five factors, controlling for the presence of possible omitted factors

and measurement errors.

To apply this method we define Rt = (R1t, . . . , RNt)
′, and we assume equations 1 to 3.

We define the vector gt = (RMt −Rft, SMBt, HMLt, IMLt,WMLt)
′ (5× 1). Note that

dt = (1, g′t)
′.

Our objective is to estimate the risk premium of gt corrected for the latent factors and use

this risk premium to obtain the model parameters (16). For that we also assume equation 4.

We denote by R, V , G, U and Z the following matrices
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R
(N×T )

=
[
R1 R2 . . . RT

]
, (29)

V
(p×T )

=
[
v1 v2 . . . vT

]
, (30)

G
(5×T )

=



RM1 −Rf1 RM2 −Rf2 . . . RMT −RfT

SMB1 SMB2 . . . SMMBT

HML1 HML2 . . . HMLT

IML1 IML2 . . . IMLT

WML1 WML2 . . . WMLT


, (31)

U
(N×T )

=
[
e1 e2 . . . eT

]
, (32)

Z
(5×T )

=
[
z1 z2 . . . zT

]
. (33)

And with these matrices we rewrite the model used by Giglio and Xiu as follows

R = βγ + βV + U (34)

G = ξ + ηV + Z (35)

We denote by (R, V ,G, U, Z) the matrices of the means of the respective variables. And

therefore, we have that the above equations become

R = βV + U, (36)

G = ηV + Z. (37)

According to Bai and Ng [3], the number of factors estimated by the asymptotic principal

component method is min {N, T}. As we use principal components in future steps, we adopt

pmax = min {N, T}. We analyze two estimators p̂j, j = 1, 2:
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p̂1 = arg min
1≤j≤pmax

(
N−1T−1λj(R̄

′R̄) + j × ϕ(N, T )
)
− 1 (38)

p̂2 = arg min
1≤j≤pmax

(
N−1T−1λj(R̄

′R̄) + j × ϕ(N, T )
)

(39)

.

The p̂1 estimator is the same estimator proposed by Giglio and Xiu, and they show that

the penalty function can be sufficiently small when it is dominated by the large eigenvalues,

so they add −1 to cover this case. While the p̂2 is based on the estimator proposed by Bai

and NG.

For each p̂i, i = 1, 2, we test 4 different functions ϕk(N, T ), k = 1, 2, 3, 4:

ϕ1 =
(
log
((

N−1/4 + T−1/4
)−1
))

×
(
N−1/4 + T−1/4

)
(40)

ϕ2 =

(
log

(
N × T

N + T

))
×
(
N + T

N × T

)
(41)

ϕ3 =
(
log
(
min {N, T}2

))
×
(
N + T

N × T

)
(42)

ϕ4 =
log
(
min {N, T}2

)
min {N, T}2

(43)

and we choose the estimator that obtained the best result. In all, we tested 8 estimators

defined by the following equation:

p̂kj =

 argmin1≤l≤pmax

(
(NT )−1λl(R̄

′R̄) + l × ϕk(N, T )
)
− 1 , se j = 1

argmin1≤l≤pmax

(
(NT )−1λj(R̄

′R̄) + l × ϕk(N, T )
)

, se j = 2
(44)

We have ϕk(N, T ) → 0 when N, T → ∞, for k ∈ {1, 2, 3, 4}. However, only the function

ϕ1 has the following property: ϕ1(N, T )/(N−1/2 + T−1/2) → ∞, when N, T → ∞.

Upon obtaining the estimate p̂ of the number of factors, we perform the first step of the

Giglio and Xiu method, calculating the factor estimator V̂ and the factor loading estimator

β̂ was calculated as equations 9 and 10.
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In the second stage of the method, we calculate, through an OLS on the average of the

returns R̄, the estimator of the risk premium of the latent factors γ̂ according to 11.

Finally, with the last step we obtained the η̂ and Ĝ estimators of the factor loadings of

g in v and the corrected value of the factors observed after removing errors of measurement,

respectively. The η̂ estimator and the Ĝ estimator were obtained as 12 and 13.

Then, using the previous estimators to estimate the risk premium of gt, which are the

five observed factors, as 15.

3.3 Predictions

The last part of our work was the comparison of the usual predictions of the Fama-French

model with the one corrected by the method of Giglio and Xiu.

We use the risk premium vector γ̂g to recover the factor loadings of gt thus obtaining

an estimator β̂G. Then we apply this estimator to the model (16) to make forecasts of the

returns of N assets compared to the forecasts β̂F obtained by the usual regression of the

model of (16).

4 Database

All data from this work were constructed by NEFIN from USP and its period is from January

2001 to December 2020, to data on a daily basis. Below is a description of the construction

carried out by NEFIN of the factors and the 12 portfolios that we selected.

The one-year risk-free factor (Rf - risk free) was calculated from the 360-day DI Swap,

deflated by expected inflation measured by the IPCA index (data available on the website of

the Central Bank of Brazil).

The Market Factor (RM −Rf ) is the difference between the daily value-weighted return of

the market portfolio and the daily risk-free rate, which is calculated from the 30-day DI-Swap.

Figure 1 shows the Market factor returns.

The size factor SMB (Small Minus Big) is the return of a portfolio long on stocks with low

market capitalization ("Small") and short stocks with high market capitalization ("Big").

Every January of the year t the shares are classified as eligible according to the market
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Figure 1: Market Factor Returns

capitalization of December of the year t− 1, and are separated into 3 quantiles (portfolios).

Then, we calculate with equal weight the returns of the first portfolio ("Small") and the

third portfolio ("Big"). The SMB factor is the return of the "Small" portfolio minus the

return of the "Big" portfolio. Figure 2 shows the Size factor returns.

The factor related to BE/ME is the HML factor (High Minus Low). This return is the

return of a portfolio long on stocks with a high book-to-market ratio ("High") and short on

a low book-to-market ratio ("Low"). Every January of the year t, the shares are classified

as eligible (increasingly) and divided into 3 quantiles (portfolios) according to the firm’s

book-to-market ratio in June of the year t − 1. Then we calculate with equal weight the

returns of the "High" portfolio minus the returns of the "Low" portfolio. Figure 2 presents

the Book-to-Market factor returns.

The WML factor (Winners Minus Losers) is the return of a portfolio long on stocks with

high past returns ("Winners") and short on low past returns ("Losers "). Every month t

shares are classified as eligible (increasingly) and divided into 3 quantiles (portfolios) accord-

ing to their cumulative returns between months t − 12 and t − 2. Then we calculate with

equal weight the returns of the first portfolio ("Losers") and the third portfolio ("Winners").

The WML factor is the return of the "Winners" portfolio minus the return of the "Losers"
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Figure 2: Size Factor Returns

portfolio. The returns of WML factor are shown in Figure 4.

The IML factor ("Illiquid Minus Liquid") is the return of a portfolio long on highly

illiquid stocks ("Illiquid") and short on low illiquid ("Liquid "). Every t month, we sort

eligible stocks (in ascending order) into 3 quantiles (portfolios) according to the moving

average of illiquidity over the previous twelve months (stock illiquidity is calculated according

to Acharya and Pedersen [1]) . Then we calculate with equal weight the returns of the first

portfolio ("Liquid") and the third portfolio ("Illiquid"). The factor IML is the return on

the "Illiquid" portfolio minus the return on the "Liquid" portfolio. Figure 5 presents the

Book-to-Market factor returns.

The 12 portfolios are divided into four groups:

(i) 3 portfolios sorted by size.

(ii) 3 portfolios classified by book-to-market.

(iii) 3 portfolios sorted by momentum.

(iv) 3 portfolios classified by illiquidity.

Portfolios sorted by size are obtained as follows: Every January of year t, eligible stocks are

sorted in ascending order into tertiles according to their market capitalization in December
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Figure 3: Book-to-Market Factor Returns

of year t− 1 . Then the portfolios are held for the year t.

Portfolios sorted by book-to-market are obtained as follows: Every January of the year t,

eligible stocks are sorted in ascending order in terciles, according to the ratio between book

value and market value in June of the year t− 1. Then the portfolios are held for the year t.

Momentum sorted portfolios are obtained as follows: Every month t, eligible stocks are

sorted in ascending terciles according to their cumulative returns for month t−12 and month

t− 2 . Then the portfolios are held for the month t.

The portfolios sorted by illiquidity are obtained as follows: every month t, eligible stocks

are sorted in ascending tertiles according to the moving average of illiquidity of the previous

twelve months, as in Amihud (2002) [2]. We then hold the portfolios for the month t.

The stock shares traded on BOVESPA considered eligible meet three criteria: The share

is the company’s most traded share (that is, the one with the highest volume traded during

the last year); The shares were traded in more than 80% of the days of the year t− 1, with a

volume greater than R$500,000.00 per day, and if the share was listed in the year t− 1, the

period considered runs from the day of listing to the last day of the year; The shares were

initially listed before December of the year t− 1.
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Figure 4: Momentum Factor Returns

5 Results

5.1 Wald test for MG and CCE estimators

The first step to perform the Wald tests was to calculate the coefficients of each of the

estimators for the model (16). In Table 1 we present the results obtained for the Mean

Group estimator for the model (16). We observe that for this estimator the t-statistic of the

Market factor and the size factor is greater than two. In addition, the estimated R-square

for the model was approximately 0.91133, which leads us to believe that it explains well the

observed variation in returns and the factors that most influence are market and size.

Table 1: MG Estimator (16)

Rm −Rf SMB HML IML WML
Estimative 0.9548 0.2987 0.0121 0.0653 −0.0511
Std. Dev. 0.0041 0.0644 0.0623 0.0641 0.0617

t Stat 236.5998 4.6361 0.1934 1.0192 −0.8270
Nota: The estimated R− Square for the model was approximately 0.91133. The above results were

obtained by calculating the MG estimator for a panel with nxT , where n = 12 and T = 4950, which results
in a total of 59400 data.

In Table 2 we present the results of the CCE estimator for the model (16). In Table

3 we present the results of the Wald test with the null hypothesis that the coefficients are
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Figure 5: Illiquidity Factor Returns

Figure 6: Portfolio Returns Sorted by Size

equal to the coefficients obtained by the Mean Group estimator β̂F . In Table 4 we present

the results of the Wald test that the coefficients are equal to the coefficients obtained by the

CCE estimator β̂P .

As explained in section 3.1.3, we performed three Wald tests. In Test 1 we performed a

simple Wald test, assuming the model (16) and that its coefficients were equal to β̂F and the

null hypothesis was that β = β̂P . We can see that Test 1 rejects the null hypothesis. For

Test 2, we assumed that the model (16) has the error structure of the CCE estimator and

the coefficients were equal to β̂P and the null hypothesis was that β = β̂F . We note in Table

3 that Test 2 rejects the null hypothesis. Test 3 is the Wald test comparing the covariance
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Figure 7: Portfolio Returns Sorted by Book-to-Market

Figure 8: Portfolio Returns Sorted by Momentum

estimates of the two models. In this test we test our null hypothesis is that the covariances

are equal. It also rejects the null hypothesis. With this, we conclude that there are strong

indications that the model has omitted factors.

5.2 Simulation Results for p̂

The Giglio and Xiu estimator is performed in three steps. To complete the first step, an

estimator of the number of factors is required. In the article on which we base ourselves,

the estimator of equation (45) was proposed. However, it is necessary to find a penalty

function ϕ(n, t) that has the necessary properties for convergence and gives good estimation

results. We chose four penalty functions and based ourselves on Bai and Ng [3]’s paper to

carry out the simulations. Our idea was to carry out a test similar to the simulations of the

homocedastic model that they adopted.

For each estimator p̂kj , where k ∈ {1, . . . , 4} and j ∈ {1, 2}, defined by
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Figure 9: Returns on Portfolios Sorted by Illiquidity

Table 2: CCE Estimator(16)

Rm −Rf SMB HML IML WML
Estimative 0.0918969 1.2449408 0.1621465 0.0074829 −0.1936320
Std. dev. 0.1189371 0.8526953 0.1179169 0.3221000 0.1493925

t Stat 0.7727 1.4600 1.3751 0.0232 −1.2961
Note: The model’s R− Squared was approximately 0.97151. The above results were obtained by

calculating the CCE-MG estimator for a panel with nxT , where n = 12 and T = 4950, which results in a
total of 59400 data.

p̂kj =

 argmin1≤l≤pmax

(
(NT )−1λl(R̄

′R̄) + l × ϕk(N, T )
)
− 1 , if j = 1

argmin1≤l≤pmax

(
(NT )−1λj(R̄

′R̄) + l × ϕk(N, T )
)

, if j = 2
(45)

We chose 19 pairs (N, T ). For each pair (N, T ), we will generate data X that depends on

a f amount of factors, f ∈ {1, 3, 4}. That is, X will be generated from one factor, or from

three factors, or from 5 factors. Below is the equation representing the process:

X
(N×T )

= C
(N×f)

F
(f×T )

+ E
(T×N)

′ (46)

All of our matrices were generated from a normal multivariate process: C is the charge

matrix (N × f) generated by a random variable that follows a N (µf ,Σf ) of size N , F is the

matrix of factors (f × T ) generated by a random variable that follows a N (µT ,ΣT ) of size f

and E is the error matrix (N × T ) generated by a random variable that follows N (µN ,ΣN)

of size T , where
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Table 3: Wald tests

Chisq Pr(>Chisq)
Test 1 434.53 0.00
Test 2 49066.00 0.00
Test 3 601.00 0.00

Note: This test consists of a linear hypothesis test that calculates an F statistic comparing the model and
the results obtained by the CCE-MG estimator with the coefficients obtained by the MG model.

µr
(r×1)

=


0
...

0

 , for r ∈ {f, ti, ni} (47)

Σr
(r×r)

=


1 0 . . . 0

0 1 . . . 0
...

... . . . ...

0 0 . . . 1

 , for r ∈ {f, ti, ni} (48)

1000 simulations were performed and in each simulation the number of factors of X was

estimated using each of the estimators p̂kj . Finally, an estimator p̄kj,(ci,f) was obtained, which

is the average of the estimators obtained in the 1000 simulations.

In tables 4 to 6, we show the results obtained by the estimators pkj for each pair (N, T ).

We also report the mean squared error of each estimator across the 1000 simulations.
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Table 4: Average and MSE of the estimators for the number of factors f = 1.

N T p̄11 p̄21 p̄31 p̄41 p̄12 p̄22 p̄32 p̄42
40 100 1.000 1.000 1.000 1.911 2.000 2.000 2.000 2.919
60 100 1.000 1.000 1.000 3.358 2.000 2.000 2.000 4.307
60 200 1.000 1.000 1.000 1.568 2.000 2.000 2.000 2.590
60 500 1.000 1.000 1.000 1.057 2.000 2.000 2.000 2.041
60 2000 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000

100 40 1.000 1.000 1.000 1.917 2.000 2.000 2.000 2.890
100 60 1.000 1.000 1.000 3.335 2.000 2.000 2.000 4.297
100 100 1.000 1.000 1.000 8.841 2.000 2.000 2.000 9.902
200 60 1.000 1.000 1.000 1.554 2.000 2.000 2.000 2.554
200 100 1.000 1.000 1.000 2.956 2.000 2.000 2.000 4.049
500 60 1.000 1.000 1.000 1.059 2.000 2.000 2.000 2.059
500 100 1.000 1.000 1.000 1.253 2.000 2.000 2.000 2.268

1000 60 1.000 1.000 1.000 1.001 2.000 2.000 2.000 2.000
1000 100 1.000 1.000 1.000 1.037 2.000 2.000 2.000 2.036
2000 60 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000
2000 100 1.000 1.000 1.000 1.001 2.000 2.000 2.000 2.000
4000 60 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000
4000 100 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000

12 4950 0.991 0.998 0.946 1.000 1.989 1.996 1.959 2.000
MSE 0.0000043 0.0000002 0.0002 4.1345 0.9988 0.9996 0.9958 7.0754
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Table 5: Average of estimators for the number of factors f = 3

N T p̄11 p̄21 p̄31 p̄41 p̄12 p̄22 p̄32 p̄42
40 100 2.970 2.999 2.950 14.914 3.971 4.000 3.956 15.886
60 100 2.971 3.000 2.997 24.844 3.981 4.000 4.000 26.062
60 200 2.941 3.000 3.000 13.514 3.943 4.000 4.000 14.497
60 500 2.907 3.000 3.000 5.266 3.891 4.000 4.000 6.286
60 2000 2.742 3.000 3.000 3.162 3.747 4.000 4.000 4.168

100 40 2.959 3.000 2.945 14.801 3.983 4.000 3.965 16.094
100 60 2.956 3.000 2.997 24.933 3.985 4.000 3.998 25.895
100 100 2.971 3.000 3.000 46.294 3.963 4.000 4.000 47.287
200 60 2.944 3.000 3.000 13.548 3.952 4.000 4.000 14.544
200 100 2.879 3.000 3.000 29.873 3.923 4.000 4.000 30.779
500 60 2.880 3.000 3.000 5.240 3.895 4.000 4.000 6.319
500 100 2.782 3.000 3.000 10.012 3.790 4.000 4.000 11.066

1000 60 2.835 3.000 3.000 3.607 3.826 4.000 4.000 4.630
1000 100 2.658 3.000 3.000 4.898 3.644 4.000 4.000 5.955
2000 60 2.776 3.000 3.000 3.156 3.788 4.000 4.000 4.141
2000 100 2.502 3.000 3.000 3.510 3.564 4.000 4.000 4.526
4000 60 2.675 3.000 3.000 3.017 3.720 4.000 4.000 4.018
4000 100 2.436 3.000 3.000 3.113 3.54 4.000 4.000 4.146

12 4950 2.662 2.887 1.836 2.999 3.651 3.877 2.815 4.000
MSE 0.0603 0.0007 0.0716 216.9143 0.7073 0.9878 0.9408 236.7685
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Table 6: Average of estimators for the number of factors f = 5

N T p̄11 p̄21 p̄31 p̄41 p̄12 p̄22 p̄32 p̄42
40 100 3.456 4.993 2.824 40.000 4.461 5.99 3.945 41.000
60 100 2.680 5.000 4.467 41.944 3.587 6.000 5.429 42.8100
60 200 1.513 5.000 4.987 60.000 2.494 6.000 6.000 61.000
60 500 0.709 5.000 5.000 60.000 1.678 6.000 6.000 61.000
60 2000 0.370 5.000 5.000 5.840 1.416 6.000 6.000 6.823

100 40 3.485 4.995 2.883 30.275 4.545 5.991 4.052 31.391
100 60 2.578 5.000 4.448 41.699 3.649 6.000 5.505 42.716
100 100 1.446 5.000 4.981 64.981 2.387 6.000 5.979 66.002
200 60 1.426 5.000 4.996 33.890 2.457 6.000 6.000 34.917
200 100 0.547 5.000 5.000 59.760 1.508 6.000 6.000 60.943
500 60 0.693 5.000 5.000 14.502 1.736 6.000 6.000 15.647
500 100 0.246 5.000 5.000 30.310 1.222 6.000 6.000 31.619

1000 60 0.501 5.000 5.000 7.901 1.461 6.000 6.000 8.913
1000 100 0.146 5.000 5.000 13.515 1.157 6.000 6.000 14.562
2000 60 0.395 5.000 5.000 5.848 1.388 6.000 6.000 6.842
2000 100 0.131 5.000 5.000 7.480 1.114 6.000 6.000 8.474
4000 60 0.365 5.000 5.000 5.236 1.347 6.000 6.000 6.251
4000 100 0.101 5.000 5.000 5.719 1.087 6.000 6.000 6.693

12 4950 3.084 3.952 1.744 12.000 4.016 4.925 2.723 13.000
MSE 15.3767 0.0578 1.1267 996.0771 8.7872 0.8930 1.1365 1046.2293

With the results presented in Tables 4-6, we observe that the estimator

p̂21 = arg min
1≤l≤pmax

[
(NT )−1λj(R̄

′R̄) + l ×
(
log

(
N × T

N + T

))
×
(
N + T

N × T

)]
− 1 (49)

presents the smallest mean squared error for all factors and, therefore, we conclude that it is

the best estimator among the chosen estimators. For this reason it will be used to estimate

the number of factors in the next step.

We also believe that the fact that the function ϕ4 converges more slowly than the previous

ones in the limit, may have caused this erratic behavior of the p̂4, mainly for low N and T

and larger numbers of factors.
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5.3 Applying Giglio and Xiu method for Nefin portfolios

The results of the previous section helped us choose the p̂21 estimator. After this choice, the

first step was to calculate the PCA of the matrix (NT )−1R̄′R̄. With the eigenvalues obtained

by PCA, we calculate the p̂21 estimator. For our portfolios p̂21 = 2, defined using the criteria

discussed in the previous section, that is, two omitted latent factors influence our estimation.

Figure 10: Twelve first eigenvalues obtained by PCA

With p̂21, we estimate β̂ and V̂ . Both are used to obtain the γ̂ risk premium. The risk

premium γ̂ was obtained for each of the twelve portfolios and compared with the original

values.

We can observe in Figure 11 that for portfolios classified by book-to-market, the estimated

histograms have a more concentrated distribution than the original ones. When we look at

the accumulated risk premium, we observe that, despite having the same movement, the

estimated accumulated risk premium is far from the original series.

For portfolios 1 and 2 classified by illiquidity, the results shown in Figure 12 are similar

to those we obtained with portfolios classified by book-to-market. However, for portfolio

3, the estimated risk premiums were very concentrated at zero, causing a very large differ-

ence between the histogram distribution of the original risk premiums and the histogram

distribution of the estimated risk premiums.
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Figure 11: Comparison of risk premiums for portfolio classified by book-to-market

(a) BM1 (b) BM2 (c) BM3

(d) Cummulated BM1 (e) Cummulated BM2 (f) Cummulated BM3

Both for portfolios classified by momentum and for portfolios classified by size, we observe

in Figures 13 and 14 that the estimated histograms have a more concentrated distribution

than the original ones. When we look at the cumulative risk premium, we can see that,

despite having the same movement, the estimated cumulative risk premium is far from the

original series.

5.4 Comparison of the three models

The comparison of the pricing of the models was performed using the residuals. Our idea

was for each of the three models to calculate the residual series defined by

êit = Rit − R̂it (50)
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Figure 12: Comparison of risk premiums for portfolio classified by illiquidity

(a) ILLIQ1 (b) ILLIQ2 (c) ILLIQ3

(d) Cummulated ILLIQ1 (e) Cummulated ILLIQ2 (f) Cummulated ILLIQ3

where Rit is the return on portfolio i for period t and R̂it is the estimated return on portfolio

i for period t.

The residual series were used to calculate the following metrics:

• Mean:

ēi =
1

N

T∑
t=1

êit (51)

• Standard Deviation:

σi =

(
T∑
t=1

(ê− ēit)
2

N

)1/2

(52)
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Figure 13: Comparison of risk premiums for portfolio classified by Momentum

(a) MOM1 (b) MOM2 (c) MOM3

(d) Cummulated MOM1 (e) Cummulated MOM2 (f) Cummulated MOM3

• Mean Squared Error (MSE):

MSEi =
1

N

T∑
t=1

ê2it (53)

where, N = 12, that is, the number of portfolios and T = 4950, which is the number of

periods.

In Table 7 we present the results obtained for the portfolios classified by the book-to-

market method. We note that in all cases the MG and CCE estimators have a mean of zero

residuals, as expected. Therefore, we can conclude that the best one is the one with the

lowest mean squared error, which is the CCE. The GX estimator has a mean different from

zero, which contradicts hypothesis (3) of the Giglio and Xiu model. Either way, it features

the highest MSE values for at least two of the three portfolios ranked by book-to-market.
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Figure 14: Comparison of risk premiums for portfolio classified by Size

(a) SIZE1 (b) SIZE2 (c) SIZE3

(d) Cummulated SIZE1 (e) Cummulated SIZE2 (f) Cummulated SIZE3

Table 7: Residuals for NEFIN BM portfolios

Portfolio Model Min Max Mean Std. Dev. MSE
BM1 GX -0.0778 0.0472 0.0002 0.0068 0.000047
BM1 MG -0.0346 0.0448 0.0000 0.0044 0.000019
BM1 CCE -0.0145 0.0116 0.0000 0.0019 0.000004
BM2 GX -0.0392 0.0381 0.0001 0.0051 0.000026
BM2 MG -0.0385 0.0294 0.0000 0.0053 0.000028
BM2 CCE -0.0232 0.0286 0.0000 0.0037 0.000014
BM3 GX -0.0410 0.0396 0.0002 0.0055 0.000030
BM3 MG -0.0346 0.0448 0.0000 0.0044 0.000019
BM3 CCE -0.0145 0.0116 0.0000 0.0019 0.000004

In Table 8 we present the results obtained for the portfolios classified by illiquidity. We

note that in all cases the MG and CCE estimators have a mean of zero residuals, as expected.

Therefore, we can conclude that the best one is the one with the lowest mean squared error,

which is the CCE. The GX estimator has a mean different from zero, which contradicts

35



Figure 15: Portfolio Residuals for Book-to-Market portfolios

(a) BM1 (b) BM2 (c) BM3

hypothesis (3) of the Giglio and Xiu model. In any case, it has the highest MSE values for

at least two of the three portfolios ranked by illiquidity.

Figure 16: Portfolio Residuals for Illiquidity portfolios

(a) ILLIQ1 (b) ILLIQ2 (c) ILLIQ3

Table 8: Residuals for NEFIN ILLIQ portfolios

Portfolio Model Min Max Mean Std. Dev. MSE
ILLIQ1 GX -0.0305 0.0496 -0.0003 0.0051 0.000026
ILLIQ1 MG -0.0322 0.0261 0.0000 0.0042 0.000018
ILLIQ1 CCE -0.0168 0.0122 0.0000 0.0022 0.000005
ILLIQ2 GX -0.0457 0.0533 -0.0001 0.0064 0.000041
ILLIQ2 MG -0.0420 0.0609 0.0000 0.0064 0.000042
ILLIQ2 CCE -0.0248 0.0346 0.0000 0.0041 0.000017
ILLIQ3 GX -0.1681 0.1139 0.0007 0.0156 0.000244
ILLIQ3 MG -0.0322 0.0261 0.0000 0.0042 0.000018
ILLIQ3 CCE -0.0168 0.0122 0.0000 0.0022 0.000005
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We observe the results presented in Table 9 for portfolio 1 classified by momentum,

we observe that the GX estimator has a mean different from zero, which contradicts the

hypothesis of the models. The MG and CCE estimators, on the other hand, have zero mean,

however the CCE estimator is the one with the lowest standard deviation and MSE and,

therefore, the one that presents better results for this portfolio. For portfolio 2 classified

by momentum, we observed that the MG estimator has a mean different from zero, which

contradicts the model’s assumptions. The CCE and GX estimators have zero mean, however

the CCE estimator continues to show better results with lower standard deviation and MSE.

The results of portfolio 3 sorted by momentum are analogous to the results of portfolio 1

sorted by momentum.

Figure 17: Portfolio Residuals for Momentum portfolios

(a) MOM1 (b) MOM2 (c) MOM3

Table 9: Residuals for NEFIN MOM portfolios

Portfolio Model Min Max Mean Std. Dev. MSE
MOM1 GX -0.0597 0.0491 -0.0002 0.0073 0.000053
MOM1 MG -0.0332 0.0412 0.0000 0.0045 0.000021
MOM1 CCE -0.0123 0.0117 0.0000 0.0020 0.000004
MOM2 GX -0.0330 0.0427 0.0000 0.0053 0.000028
MOM2 MG -0.0400 0.0308 0.0001 0.0040 0.000016
MOM2 CCE -0.0186 0.0355 0.0000 0.0037 0.000014
MOM3 GX -0.0471 0.0287 0.0001 0.0053 0.000028
MOM3 MG -0.0332 0.0412 0.0000 0.0045 0.000021
MOM3 CCE -0.0123 0.0117 0.0000 0.0020 0.000004

In Table 10 we present the results obtained for the portfolios classified by size. We note
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that in all cases the MG and CCE estimators have a mean of zero residuals, as expected.

Therefore, we can conclude that the best one is the one with the lowest mean squared error,

which is the CCE. The GX estimator has a mean different from zero, which contradicts

hypothesis (3) of the Giglio and Xiu model. In any case, it has the highest MSE values for

at least two of the three portfolios sorted by size.

Table 10: Residuals for NEFIN SIZE portfolios

Portfolio Model Min Max Mean Std. Dev. MSE
SIZE1 GX -0.0416 0.0325 0.0000 0.0047 0.000023
SIZE1 MG -0.0327 0.0342 0.0000 0.0038 0.000015
SIZE1 CCE -0.0122 0.0135 0.0000 0.0019 0.000004
SIZE2 GX -0.0726 0.0429 0.0002 0.0065 0.000042
SIZE2 MG -0.0501 0.0388 0.0000 0.0062 0.000039
SIZE2 CCE -0.0212 0.0247 0.0000 0.0037 0.000014
SIZE3 GX -0.0225 0.0387 -0.0001 0.0036 0.000013
SIZE3 MG -0.0327 0.0342 0.0000 0.0038 0.000015
SIZE3 CCE -0.0122 0.0135 0.0000 0.0019 0.000004

Figure 18: Residuals for NEFIN SIZE portfolios

(a) SIZE1 (b) SIZE2 (c) SIZE3

6 Conclusion

In this study, we explored the applicability of the Fama-French five-factor model to Brazilian

data, utilizing two different estimation methods: the Mean Group (MG) estimator and the

Correlated Common Effects (CCE) estimator. The primary objective was to compare these
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two estimators and identify any potential omitted factors. Additionally, we compared the

predictions of the three models - MG, CCE, and the model proposed by Giglio and Xiu [15]

- by calculating estimated returns and analyzing the residuals generated by each model.

In addition to our analysis of the Fama-French model, we also evaluated two new esti-

mators proposed by Giglio and Xiu [15] - the number of factors estimator and the three-step

estimator. Our findings suggest that these new estimators may offer improved accuracy over

traditional methods.

In the first part of our study, we observed notable differences in the estimated coefficients

for the model (16) between the MG and CCE estimators, suggesting the potential omission

of factors in the model.

We also evaluated the number of factors estimator proposed by Giglio and Xiu using four

penalty functions. Although all penalty functions approach zero as N and T increase, we

were unable to identify a penalty function that satisfies the second condition and accurately

estimates the factors in our simulations. Despite this limitation, we found that the Giglio and

Xiu estimator performed well with three of the penalty functions, particularly in simulations

with one or three factors.

Regarding the three-step estimator proposed by Giglio and Xiu [15], we estimated the risk

premium of the NEFIN portfolios in the second step and obtained the risk premium of the

observed factors corrected for possible omission of factors and measurement error in the third

step. While the estimated series generally exhibited similar movements to the original series,

we noted significant divergence in the last year of the sample for most portfolios. However, we

observed an inverse characteristic in the estimated series for portfolio 3, which was classified

by illiquidity, as well as for the factor constructed based on illiquidity, in comparison to the

other portfolios and factors.

We compared the residuals generated by the Fama-French model estimated by the MG

estimator, the CCE estimator, and the model proposed by Giglio and Xiu [15]. While we

expected the three-step estimator to yield better results, we found that it did not perform as

well as we had hoped. We believe that this may be due to the limited number of portfolios

and our inability to identify a penalty function that guarantees convergence in probability.

Therefore, we conclude that the CCE estimator is the most effective approach for estimating
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the returns of NEFIN portfolios.
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