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Abstract: This study investigates intraday patterns in the comovements of financial

stock returns, focusing on the importance of flexible dependence structures on density

forecasting accuracy. We propose a dynamic canonical vine copula method, which models

complex dependence patterns, including both time-varying and asymmetric dependencies

in the upper and lower tails among financial assets. Utilizing a pair copula decomposition

approach, this research analyzes 1-minute frequency returns of 10 U.S. financial stocks

in March 2020, a period marked by Covid-19 market turmoil. Our findings highlight the

critical role of tail dependencies and time-varying parameters in accurately modeling and

forecasting intraday returns.
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1 Introduction

The main goal of this work is to explore commonalities between financial stock returns

within the day. Interactions among financial assets are crucial, serving diverse roles

in finance. Such comovements have implications for risk management, asset allocation,

and policy-making. Consequently, investors, risk managers, and regulators must closely

monitor and respond to evolving dynamics. Specifically, understanding the dependence

structures between stocks becomes critical for assessing the risk of a portfolio throughout

the day, rather than focusing on the risks of individual stocks. Intraday dependencies in

financial asset returns pose significant challenges, and several open questions persist in

the current literature.

In high-frequency settings, previous empirical research has suggested that the vari-

ability of information arrival throughout the day is one potential reason for expecting

time-varying dependencies in intraday financial asset movements. Several studies focus

on volatility modeling, they have indicated that the volatility of high-frequency returns

tend to be greater at market opening compared to other times of the day (Andersen

and Bollerslev (1997) and Andersen, Thyrsgaard and Todorov (2021)). Research on the

patterns of intraday dependence of stock price changes remains limited. The work by

Koopman, Lit, Lucas and Opschoor (2018) advances our understanding in this field. They

have developed a dynamic model for the intraday dependence between discrete stock price

changes using an equidependence structure.

In this paper I explore the patterns in intraday dependencies in financial stock re-

turns, and evaluate whether accounting for flexible dependencies increase the forecasting

accuracy of comovements. This research specifically focuses on high-frequency movements

during the Covid-19 market turmoil in March 2020. Utilizing a dynamic canonical vine

copula approach, I construct a hierarchical framework that accommodates time-varying

tail dependencies and asymmetric effects. Previous studies have highlighted the impor-
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tance of accounting for key features such as asymmetric dependence and heavy tails in

modeling financial asset comovements. In this study, I tackle these aspects and further

explore the pair copula decomposition proposed by Bedford and Cooke (2002) to model

complex dependencies using simple elements known as pair-copulas. I consider time vari-

ation in the dependence structure of pair-copulas endowing copula parameters with an

autoregressive dynamic and a forcing variable, which is used as the innovation. This

time-varying structures are introduced in Tse and Tsui (2002) and Patton (2006).

This research employs 1-minute frequency returns data for 10 U.S. financial stocks

throughout March 2020. Following an initial exploratory analysis, I conducted an in-

sample investigation to evaluate the goodness of fit for various bivariate copulas, including

Elliptical, Archimedean, and Mixture copulas. The findings indicate that the Student-t

distribution offers the best fit for most bivariate copulas within the in-sample assess-

ment. Consequently, the in-sample performance of the model that does not impose any

restriction on the distribution family, which is called the benchmark model, and the one

using exclusively Student-t pairs is nearly the same. Furthermore, this research presents

evidence of intraday time variations in the dependence structure.

In addition, I also include an out-of-sample forecasting application, which entails 1-

minute density forecasts of the dependence structure, employing a C-vine copula structure

with varied bivariate links. The performance of the benchmark model, the one that

select bivariate family out of several distributions, is statistically superior over all other

specification, except for the C-vine model with Student-t distribution, which performs

equally well. Notably, the incorporation of asymmetrical tail dependencies in the Mixture

copula does not enhance the out-of-sample forecasting accuracy using log-likelihood based

measures.

Extensive research has addressed modeling conditional dependence in multivariate

financial time series, notably through multivariate GARCH models such as CCC-GARCH

(Bollerslev, 1990) and DCC-GARCH (Engle, 2002). These approaches primarily utilize
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correlation or covariance matrices to estimate conditional dependence. However, the

assumptions on the distributions for each return series are often limited to distribution

that need to be explicitly defined. The introduction of the copula function by Sklar (1959),

and its detailed examination by Joe (1997) and Nelson (2006), paved the way for copula-

based GARCH models. These models, further developed by Aas and Berg (2009), Ausin

and Lopes (2010), and Patton (2006), isolate the modeling of the joint density function for

marginal time series and the multidimensional copula density, allowing for more flexible

dependence structures that better capture the empirical features of the financial data.

Time-varying copulas have emerged as a key tool for describing dependence dynamics

in economics and finance (Manner and Reznikova, 2012). Several methods exist for inves-

tigating dependencies in limited cross-sectional dimensions, as detailed in Patton (2013).

However, techniques for large asset collections are scarce, primarily due to the curse of

dimensionality. Recently, there have been efforts to address this issue by utilizing factor

copulas (Oh and Patton (2017), Oh and Patton (2023), and Opschoor, Lucas, Barra and

van Dijk (2021)). Specifically, Opschoor et al. (2021) presents a multi-factor copula with

dynamic loadings for daily data. Their study offers a computationally simple way to work

with copulas when the cross-sectional number of variables is large. However, the proposed

model is not flexible in the tails and it relies on pre-specified cluster assignments. The

approach that I follow in this work has similarities with Koopman et al. (2018), their

framework uses GAS copulas with time-varying parameters and Skellam marginals to

analyse intraday dependence among stock price changes. They show that in the US stock

market, the dependence starts low but gradually increases throughout the day. However,

their approach does not incorporate tail dependence, aspect I address in this research.

Furthermore, their analysis employs a simple equidependence structure.

Vine copula GARCH models addresses some limitations of traditional copula-GARCH

models. Introduced by Joe (1997) and further developed by Bedford and Cooke (2001)

as a type of graphical model, vines allow for the detailed analysis of conditional depen-
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dence between pairs of random variables. This approach is key to understanding how

each pair of return series depends on each other through bivariate conditional copulas.

Kurowicka and Cooke (2006) introduced the concept of Gaussian vines, and Aas, Czado,

Frigessi and Bakken (2009) expanded on this by outlining how to construct a vine copula

GARCH model, including simulation algorithms, model selection, and the study of tail

dependence. Further developments and interesting empirical application of vine-copulas,

including dynamic vines, were explored in Nikoloulopoulos, Joe and Li (2012) and Tófoli,

Ziegelmann, Silva Filho and Pereira (2019).

The remainder of this paper proceeds as follows. Section 2 presents the canonical

vine copula garch model proposed in this study and Section 3 presents the empirical

application, describing the data and discussing the main results. Section 4 offers some

concluding remarks.

2 Vine copula GARCH model

In this section, I present the dynamic C-vine copula model and offer a primer on canon-

ical vine copula theory. Then, I describe how to introduce dynamics in the dependence

structure. According to Sklar (1959), a multivariate cumulative distribution function F

with marginals F1, ..., Fn may be written as

F (x1, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)), (1)

for a n-dimensional copula C. The joint probability density function, for an absolutely

continuous distribution function with strictly increasing, continuous marginals densities

F1, ..., Fn is given by

f(x1, . . . , xn) = c1...n(F1(x1), . . . , Fn(xn)) · f1(x1) . . . fn(xn). (2)

for a uniquely identified n-variate copula density c1...n(·).

Copulas offer a methodology for isolating the marginal structure from the dependency

structure. The primary objective of this research is to thoroughly investigate this de-
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pendency structure. I explore the pair-copula decomposition presented by Bedford and

Cooke (2002), which allows the construction of complex multivariate dependency models

through a series of simple, interconnected blocks, using trees.

2.1 Pair-copula construction of c-vine copula

Vine copulas in d-dimensions are constructed through a process of progressively combining

bivariate linking copulas in a hierarchical structure. Diverse types of vine copulas can be

constructed, Bedford and Cooke (2002) presented a graphical model called regular vine.

Two boundary cases are the canonical vine (C-vine) and the drawable vine (D-vines), as

discussed by Aas et al. (2009). In this paper we focus on C-vine copulas.

In a d-dimensional C-vine, the pairs at level 1 are 1, i, for i = 2, ..., d, and for level

ℓ (2 ≤ ℓ < d) , the conditional pairs are ℓ, i|1, . . . , ℓ − 1 for i = ℓ + 1, . . . , d. In this

structure, conditional copulas are specified for variables ℓ and i given those indexed as 1

to ℓ − 1. The decomposition of a multivariate density in pair-copulas requires marginal

conditional distribution, which can be computed using Joe (1996) equation, given by

F (x|v) =
∂Cx,υj |v−j

(F (x|v−j), F (vj|v−j))

∂F (vj|v−j)
. (3)

Following Aas et al. (2009), the density of C-vines is

f(x) =

d∏
k=1

fk(xk)

d−1∏
j=1

d−j∏
i=1

ci,i+j|i+1,...,i+j−1

(
Fi|i+1...i+j−1(xi|xi+1;i+j−1), Fi+j|i+1,...,i+j−1(xi+j |xi+1:i+j−1)

)
(4)

where index j represents the trees and index i the edges in each tree. The decomposition

is given by pair-copulas and marginals.

Following the approach outlined in Aas et al. (2009), this study will utilize the maxi-

mum pseudo-likelihood method for estimating the parameters of the pair-copula decom-

position. The computational feasibility of multivariate vine copulas arises from their

densities being expressible in terms of bivariate linking copulas. The structure of the log-

likehood of equation 4 allows to adopt an efficient sequential estimation procedure. First,
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I estimate the parameters of the marginal distributions, then I compute the parameters

of the bivariate copulas associated with different levels of the vine. Estimation is carried

conditionally on the parameters of previous steps. Initially, the marginal distribution

parameters are determined using maximum likelihood estimation, and the log-returns are

converted into uniform values. These uniform values are then used as inputs for the

pair-copulas at the first level of the C-vine. Then, the procedure involves sequentially

transforming data and estimating pair-copula parameters, based on prior levels. This

iterative process continues for all trees.

2.2 Building blocks

This research considers copula families with flexible tail behaviors in the estimation pro-

cess of C-vine copula. This families present different degrees of asymmetries and up-

per/lower tail dependence.

• Elliptical copulas: Gaussian and Student-t

• Archimedean copulas: Gumbel, Survival Gumbel and Clayton

• Mixture copulas: BB1, BB7, BB8

The Gaussian and the Student-t copulas are reflection symmetric, but only the Student-

t copula has upper and lower tail dependence. In the familly of Archimedean copulas,

the Gumbel copulas has upper tail dependence, while the Survival Gumbel and Clayton

have only lower tail dependence. Finally, the Mixture copulas have different upper and

lower tail dependence. For every pair of transformed data I use the Akaike Information

Criterion (AIC) to identify the superior model.

2.3 Dynamic c-vine copulas

The last subsection demonstrated that the C-vine copula models effectively breaks down

a high-dimensional density into products of pair-copulas. Building on this concept, a
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dynamic C-vine copula model can be developed by integrating dynamic pair-copulas into

this structure.

While most of the existing studies on vine copulas in finance consider static param-

eters, previous research indicates that the correlation among returns varies (Ang and

Chen, 2002). Consequently, as in Tófoli et al. (2019), the approach of this study enhance

the C-vine copula model with dynamic features, allowing the pair-copulas’ dependence

parameters to adjust over time.

The dynamics of the dependence parameter is based on Tse and Tsui (2002) and

Patton (2006). The time variation of the dependence parameter θi,i+j|vij of the pair-

copula ci,i+j|vij , is defined as

θi,i+j|vij ,t = Λ((1− a− b)ω + aθi,i+j|vij ,t−1 + bψt−1) (5)

where Λ is a logistic transformation used to keep the parameter in its correct interval in

the estimation procedure. Equation 5 contains an autoregressive term with coefficient a

and a forcing variable, ψt, with coefficient b. The identification of the forcing variable

can be complicated in certain cases, for the Elliptical copulas the forcing variable is the

sample conditional correlation given past m-period data. Copulas from the Archimedean

family and other similar copulas, which lack correlation parameters, face challenges in

being adapted for time-varying scenarios. In this work, I utilize the sample conditional

Kendall’s tau given past m-period data for Archimedian copulas, and the mean absolute

difference between the transformed data over the past m-observations for Mixture cop-

ulas. This transformed data is defined as ui|vij ,t = Fi|vij(xi,t|xvij ,t) and ui+j|vij ,t =

Fi+j|vij(xi+j,t|xvij ,t).

2.4 Marginal model

This paper works with high-frequency financial returns of stocks traded at the New York

Stock Exchange (NYSE). A key issue when modelling intraday data is to account for

temporal dependence and intraday seasonality. In this work, I employ the parsimonious
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multiplicative componenet GARCH model from Engle and Sokalska (2012) to first filter

the data and then work with standardized residuals to analyse time-varying dependence

across assets.

Define the continuously compounded return as rt,i, where t denotes the day and i the

regularly spaced time interval at which the return was calculated. Under this model, the

conditional variance is a multiplicative product of daily, diurnal and stochastic (intraday)

components, so that the return process may be represented as

rt,i = µt,i + εt,iεt,i = (qt,iσtsi) zt,i (6)

where qt,i is the stochastic intraday volatility, σt a daily endogenously determined forecast

volatility, si the diurnal volatility in each regularly spaced interval i, zt,i the i.i.d (0, 1)

standardized innovation. The seasonal (diurnal) part of the process is defined as

si =
1

T

T∑
t=1

(
ε2t,i/σ

2
t

)
. (7)

Dividing the residuals by the diurnal and daily volatility gives the normalized residuals,

defined as

ε̄t,i = εt,i/ (σtsi)

and the the stochastic component of volatility is

q2t,i =

(
ω +

m∑
j=1

ζjvjt

)
+

p∑
j=1

αj ε̄
2
t−j +

q∑
j=1

βjq
2
t−j (8)

In the dependence analysis, for each stock, the standardized residuals are transformed to

uniform scores ui,t using the empirical distribution of the data. If the marginal distribu-

tion is accurately defined, transforming the standardized residuals using the probability

integral transform (PIT) will result in a uniform distribution in [0, 1]. This outcome is

essential to identify the copulas during the dependence analysis.
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3 Empirical study

3.1 Data

The dataset consist of intraday returns of stocks traded on the NYSE. This research

works with intraday returns for 10 U.S. financial stocks with 1-minute frequency obtained

from TAQ database for 22 trading days from March 1, 2020 to March 31, 2020. The

stocks are JPMorgan (JPM), Capital One Financial Corporation (COF), Citigroup (C),

American International Group (AIG), Morgan Stanley (MS), American Express (AXP),

Wells Fargo (WFC), Bank of America (BAC), U.S. Bancorp (USB), Goldman Sachs (GS).

The group of financial stocks of this research is the same as in Koopman et al. (2018).

Figure 1 presents the intraday 1-minute returns for four stocks of the dataset in March 2,

2020. The figure shows that the volatility of returns varies considerably within the day,

especially for Morgan Stanley (MS), which exhibit a decreasing volatility behavior. Table

1 presents descriptive statistics for the 10 selected financial companies for all trading days

in this analysis. The table reports ticker symbol (Code), mean return (Mean), standard

deviation (SD), maximum return (Max), and minimum return (Min). In a typical trading,

there are 390 1-minute returns each day.

3.2 Marginal analysis

In order to handle intraday seasonality and temporal dependence, I employ the multiplica-

tive component GARCH(1, 1) model, as outlined in Subsection 2.4. The model assumes

that innovations follow a standard Student-t distribution and the mean process for each

marginal is described using ARMA(1,1) model. The daily volatility in equation 6 follows

an GJR-GARCH(1, 1) model, estimated with a rolling window of 756 days re-fitted every

10 days. Figure 2 panel (a) shows the estimated daily volatility for one selected stock

(Citigroup) in 2020. Daily volatility spikes in March and then abruptly decreases in May.

The figure shows another spike in July, volatility returns to its initial level only at the

end of the year.
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The multiplicative component GARCH model is designed to capture intraday volatil-

ity patterns, Figure 2 displays key illustrations regarding this intraday dynamics for Cit-

igroup. Panels (b), (c) and (d) consider data from March 1, 2020 until March 31, 2020.

This period is notably as one of the most turbulent in US stock market history, affected

by the Covid-19 pandemic. On March 16, 2020 the S&P 500 index experiencec a drop of

approximately 12% from its lowest point of the day to the previous day’s closing price.

Figure 2 panel (b) illustrates the estimated intraday volatility seasonality, as in equation

7. Volatility peaks shortly after the market opens, then it gradually decreases. The esti-

mated intraday stochastic component, denoted as qt,i in Equation 8, is depicted in panel

(c). Finally, panel (d) displays the total volatility, the plot shows that volatility peaks in

the middle of the month.

3.3 Dependence modeling

After the marginal estimations, it’s necessary to select the structure of the C-Vine copula

model for the 10-dimensional dataset. Trees are selected using maximum spanning trees

method with respect to the absolute value of the empirical Kendall’s tau, based of the

probability integral transformations of the marginal standardized residuals. The tree

structure is in table 2. For easy of presentation, I enumerate the financial stocks from 1

to 10 in the following order: JPM (1), COP (2), C (3), AIG (4), MS (5), AXP (6), WFC

(7), BAC (8), GS (9), USB (10).

Table 3 presents in-sample model comparison for the entire period of analysis based

on model complexity, as denoted by the number of parameters, the goodness of fit (log-

likelihood), and two criteria for model selection: the Akaike Information Criterion (AIC)

and the Bayesian Information Criterion (BIC). Additionally, an aggregated model labeled

”All” and also called the benchmark model, is considered. This model does not adhere

to any specific bivariate copula family restrictions, selecting the copula family with the

AIC criteria. This inclusion aims to leverage one of the vine copula methods’ primary
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advantages: the flexibility to choose the most suitable copula family for each pair copula

independently.

The Student-t and the benchmark model demonstrate the highest log-likelihood values

table 3, indicating a superior fit to the data over the other models. Correspondingly, these

models also exhibit the lowest AIC and BIC scores. Despite having a high number of

parameters, the Mixture copulas BB1, BB7, and BB8 do not show the best performance

based on the log-likelihood, and the information criteria, AIC and BIC, which penalize

for increased complexity. Additionally, the Clayton and Gumbel models, with the least

parameters, present a relatively lower fit to the data.

The inclusion of a model without family restrictions underscores the flexible nature

of vine copula methods in model specification, demonstrating the possibility to choose

the best fitting copula family for each pair copula. This analysis highlights the critical

balance between model complexity and data fit in the selection of statistical models, with

the Student-t and the flexible specification ”All” emerging as superior across the metrics

under evaluation.

Tables 4 and 5 present the in-sample parameter estimates for the most flexible C-vine

copula model. In addition to choosing the bivariate copula distribution, I also estimate

both a static and a dynamic version of such copulas and we use the AIC information

criteria to choose the best of all specifications. The tables show a nuanced dependence

structure across different asset pairs. The analysis primarily selects the Student-t dis-

tribution, family 2, for both static and dynamic copulas, indicating its superior fit in

capturing the tails and asymmetries present in this financial dataset. In the Student-t

distribution, parameters θ1 and θ2 denote correlation and degrees of freedom, respectively.

For dynamic models, additional parameters (ω, a, and b) are provided, reflecting the tem-

poral evolution in dependencies. Notably, only a few pairs are modeled using the BB8

(Family 10) and Survival BB8 (Family 20) families, suggesting only specific cases where

these families offer a better fit according to the AIC. For BB8 copulas, parameters θ1 and
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θ2 denote the estimated parameters of the BB8 copula (Joe, 1997).

Tables 4 shows the that static Student-t bivariate copulas dominate in the first tree,

where nearly all selections are static with only one dynamic exception. This indicates

that static relationships are initially considered adequate for capturing the interactions

between assets. As we progress in the tree structure, it exhibits a notable shift towards

incorporating more dynamic copulas, reflecting an adjustment to better capture the evolv-

ing dependencies among assets. Despite this shift, in the later trees, depicted in table 5,

static versions present a better fit, highlighting the complexity of asset relationships and

the necessity to tailor the copula choice to specific asset pairs.

3.4 Out-of-sample forecasting

In this subsection I conduct an out-of-sample forecasting analysis, predicting the copula

density of returns over the next 1-minute. This analysis considers all models presented in

this study, the Elliptical, Archimedian and Mixture copulas, including the rotated speci-

fications for Archimedian and Mixture copulas. All models in this comparison utilize the

same marginal distributions and, consequently, the same probability integral transforms.

Therefore, any observed differences in performance are directly attributable to how each

model approaches and captures the dynamics of dependence.

For the estimation strategy I adopt a dynamic approach by estimating the static

parameters over a fixed period of 10 trading days. These parameters are then utilized to

predict the return density for each subsequent 1-minute interval over the following five

days. After this period, we update the parameter estimates to reflect the most recent

data, and predict the following five days.

As in Koopman et al. (2018), I evaluate the copula probability density function fore-

casts of the different models through the sum of the log score of the whole day,

St(Mj) =
390∑
i=1

log ct(ui;Ri | Fi−1), (9)
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where i is the 1-minute interval and Ri is the one-step-ahead forecast of each model j.

The evaluation of the forecasting performance through the sum of log scores reveals

considerable variability in the effectiveness of different copula models in predicting the

1-minute ahead returns density. The analysis of Diebold-Mariano (DM) test statistics

further corroborate these findings, offering a statistical comparison of forecast accuracy

between each copula model and a benchmark.

In table 6, the ”Mean” row represents the average sum of log scores over the forecast-

ing period for each model, indicating the overall performance in capturing the returns

density. The ∆LL row shows the difference in performance relative to the most flexible

model that combines several families, denoted ”All”. A positive ∆LL indicates a model

underperformance compared to the benchmark model, whereas a negative ∆LL suggests

superior performance. The ”DM” row reports the Diebold-Mariano test statistic for each

model against the benchmark, where a statistically significant positive value would indi-

cate that the model in question performs significantly worse than the ”All” model, and a

negative value suggests significantly better performance.

The Normal copula does not perform as well as the most flexible model, as evidenced

by its higher mean score and a positive DM statistic, indicating its inferior forecasting

ability in this forecasting period. The average score value for the C-vine copula with

normal bivariate links is 1213.0, while the value for the benchmark model is 1296.1. In

contrast, the Student-t copula demonstrates a near-equivalent performance to the bench-

mark model, with a low ∆LL and DM statistic, illustrating that the difference in their

forecasting accuracy is statistically insignificant. This suggests the Student-t copula’s

robustness in capturing the dynamics of financial returns within the 1-minute forecasting

horizon.

Contrarily, the Clayton copula significantly underperforms, highlighted by its substan-

tially lower mean score and the highest positive DM value. Meanwhile, the Gumbel copula

and the Mixture copulas (BB1, BB7, BB8) exhibit intermediate performance. Specifically,
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the BB8 specification is the model with the best between the three mixture copulas. How-

ever, the performance still statistically inferior when compared to the benchmark model.

4 Conclusion

This paper investigates intraday patterns in the dependencies of financial stock returns. It

evaluates whether accounting for flexible dependencies improves the forecasting accuracy

of comovements. By employing a dynamic canonical vine copula method, this work has

developed a model to capture flexible dependence patterns, including time-varying up-

per/lower tail dependence and asymmetric dependence among financial assets. Building

on previous research that underscores the importance of modeling key features of finan-

cial data, this study applies a pair copula decomposition approach to analyze complex

dependencies with simple pair-copulas, incorporating time-varying dependence structures

through autoregressive dynamics into copula parameters.

This study has analyzed 1-minute frequency returns of 10 U.S. financial stocks through-

out March 2020. After an initial exploratory analysis, it evaluates the fit of various bi-

variate copulas, Elliptical, Archimedean, and Mixture copulas, finding that the Student-t

distribution provides the best fit in-sample. I have documented intraday variations in

dependence measures. In particular, time-varying pair-copulas are selected most of the

time in the second level and third level of the C-vine copula, while static copulas provided

a better fit in deeper trees. The performance of models without distributional restrictions

is comparable to those using exclusively Student-t pairs. As noted by Nikoloulopoulos et

al. (2012), pair-copulas with Student-t distribution tend to be best based on a likelihood

or AIC comparison. However, for inferences involving tails, the strategy to choose the

pair-copula family should not just be likelihood-based but also depend on tail depen-

dence measure and extreme quantiles. In future research, I aim to address this point in a

backtesting Value at Risk analysis.

In this work, I have also explored out-of-sample forecasting with the C-vine cop-
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ula model employing diverse bivariate links. The most flexible model, selecting bivariate

families from multiple distributions, shows statistically superior performance according to

Diebold-Mariano test, except when compared to the C-vine model with Student-t distri-

butions, which performs equally well. Finally, incorporating asymmetric tail dependencies

with the Mixture copula have not improved forecasting accuracy based on log-likelihood

measures.
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Code Mean SD Max Min

JPM 1.59 0.0028 0.0319 -0.0350

COF -2.78 0.0033 0.0377 -0.0440

C -0.34 0.0035 0.0400 -0.0410

AIG -1.88 0.0037 0.0479 -0.0342

MS 1.57 0.0030 0.0284 -0.0272

AXP 0.65 0.0029 0.0285 -0.0290

WFC -0.93 0.0029 0.0389 -0.0385

BAC 1.53 0.0029 0.0330 -0.0314

USB 1.59 0.0030 0.0323 -0.0290

GS 1.16 0.0026 0.02361 -0.0274

Table 1: Descriptive statistics of 10 ten selected stocks for all trading days in March,
2020. The table reports ticker symbol (Code), mean return (Mean), standard deviation
(SD), maximum return (Max), and minimum return (Min).

Tree Edge Tree Edge Tree Edge Tree Edge

1 10,1 3 10,9;5,1 5 9,8;2,10,5,1 7 7,4;9,8,2,10,5,1

1 1,5 3 10,2;5,1 5 8,7;2,10,5,1 7 4,6;9,8,2,10,5,1

1 1,9 3 10,8;5,1 5 8,4;2,10,5,1 7 4,3;9,8,2,10,5,1

1 1,2 3 10,7;5,1 5 8,6;2,10,5,1 8 7,6;4,9,8,2,10,5,1

1 1,8 3 10,4;5,1 5 8,3;2,10,5,1 8 7,3;4,9,8,2,10,5,1

1 1,7 3 10,6;5,1 6 9,7;8,2,10,5,1 9 6,3;7,4,9,8,2,10,5,1

1 1,4 3 10,3;5,1 6 9,4;8,2,10,5,1

1 1,6 4 9,2;10,5,1 6 9,6;8,2,10,5,1

1 1,3 4 2,8;10,5,1 6 9,3;8,2,10,5,1

2 10,5;1 4 2,7;10,5,1

2 5,9;1 4 2,4;10,5,1

2 5,2;1 4 2,6;10,5,1

2 5,8;1 4 2,3;10,5,1

2 5,7;1

2 5,4;1

2 5,6;1

2 5,3;1

Table 2: Tree structure of C-vine copula
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Number of parameters Log-likelihood AIC BIC

Normal 57 716.88 -1431.78 -1424.72

Student-t 58 762.71 -1520.85 -1504.69

Clayton 45 530.50 -1059.02 -1051.96

Gumbel 45 684.20 -1366.42 -1359.36

BB1 90 734.95 -1465.92 -1451.8

BB7 90 700.20 -1396.4 -1382.29

BB8 90 742.36 -1480.73 -1466.62

All 58 762.77 -1520.98 -1504.82

Table 3: This table presents a comparison of various statistical models based on their
number of parameters, log-likelihood, Akaike Information Criterion (AIC), and Bayesian
Information Criterion (BIC) scores. Models include Normal, Student-t, Clayton, Gumbel,
BB1, BB7, BB8, and a combined model labeled ”All”. Each row details the model’s
performance metrics.

Figure 1: Intraday 1-minute returns for four stocks of the dataset in March 2, 2020. The
stocks are JPM, MS, C, and AIG.
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Pair Type Family θ1 θ2 ω a b

1 5 static 2 0.715 7.541

1 10 static 2 0.726 6.566

1 2 static 2 0.62 9.981

1 8 static 2 0.776 8

1 9 static 2 0.716 8.735

1 4 dynamic 2 11.951 0.539 0.961 0.029

1 7 static 2 0.709 8.641

1 6 static 2 0.622 9.135

1 3 static 2 0.743 7.181

5 10 dynamic 2 9.571 0.351 0.683 0.039

5 2 static 10 3.874 0.498

5 8 dynamic 2 11.026 0.379 0.976 0.012

5 9 static 2 0.464 10.326

5 4 static 2 0.271 13.878

5 7 dynamic 2 10.71 0.318 0.986 0.01

5 6 dynamic 2 11.88 0.287 0.995 0.005

5 3 dynamic 2 10.728 0.407 0.977 0.015

10 2 static 20 4.243 0.322

10 8 dynamic 2 12.521 0.262 0.985 0.005

10 9 dynamic 2 17.284 0.187 0.902 0.009

10 4 static 20 3.978 0.357

10 7 dynamic 2 9.855 0.334 0.999 0.001

10 6 dynamic 2 24.986 0.186 0.998 0.001

10 3 dynamic 2 12.115 0.239 0.991 0.004

Table 4: In-sample parameter estimates for the most flexible C-vine copula model for all
trading days in March, 2020.
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Pair Type Family θ1 θ2 ω a b

2 8 static 2 0.128 18.439

2 9 dynamic 2 18.954 0.15 0.998 0.001

2 4 dynamic 2 28.555 0.161 0.995 0.004

2 7 static 2 0.094 23.731

2 6 static 2 0.253 17.658

2 3 static 2 0.149 18.298

8 9 static 2 0.133 14.367

8 4 static 10 1.178 0.823

8 7 static 20 6 0.246

8 6 static 2 0.06 21.576

8 3 static 2 0.224 12.261

9 4 static 2 0.096 20.914

9 7 static 2 0.099 14.343

9 6 static 2 0.137 18.27

9 3 static 2 0.111 22.229

4 7 static 2 0.064 30

4 6 static 20 1.727 0.496

4 3 static 2 0.082 30

7 6 static 2 0.034 30

7 3 static 2 0.085 18.943

6 3 static 2 0.039 25.611

Table 5: In-sample parameter estimates for the most flexible C-vine copula model for all
trading days in March, 2020.

All Normal Student-t Clayton Gumbel BB1 BB7 BB8

Mean 1296.1 1213.0 1298.6 903.7 1130.7 1240.0 1206.8 1265.4

∆LL 82 -2.69 392 165 56 90 31

DM 1.67 -0.31 8.34 0.4 0.8 3.25 1.65

Table 6: Out-of-sample comparison of various statistical model based on different copula
families. The ”Mean” row represents the average sum of log scores. The benchmark
model is the one denoted as ”All”. ∆LL represent the deviations from the benchmark
in term of average sum of log scores. The ”DM” row reports the Diebold-Mariano test
statistic for each model against the benchmark model.
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Figure 2: Panel (a) shows the estimated daily volatility for Citygroup in 2020. Panels (b),
(c) and (d) present the seasonal component, stochastic component, and total volatility,
respectively. The financial stock is Citigroup, data ranges from March 1, 2020 until March
31, 2020.
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