

Análise dos compostos voláteis presentes em marcas olfativas da abelha *Xylocopa frontalis* por cromatografia a gás acoplada a espectrometria de massas

Laísa C. Pinto (G)¹; Gáveni B. Valério (PG)¹; Marcos Pivatto (PQ)¹; Marilia Valli (PQ)²; Pedro Henrique Souto (PG)³; Camila N. Junqueira (PQ)⁴; Solange C. Augusto (PQ)⁵; Amanda Danuello (PQ)^{1*}.

*danuello@ufu.br

¹NPCBio - Núcleo de Pesquisa em Compostos Bioativos, Instituto de Química, UFU, Uberlândia.

²Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Ribeirão Preto.

³ Pós-Graduação em Entomologia, Faculdade de Filosofia, Ciências e Letras, USP, Ribeirão Preto.

⁴ Escola Técnica de Saúde, UFU, Uberlândia.

⁵Instituto de Biologia, UFU, Uberlândia.

RESUMO

O Brasil é um dos principais produtores de maracujá-amarelo, cuja polinização depende da ação de abelhas solitárias ou facultativamente sociais, especialmente *Xylocopa frontalis* (mamangava), um dos principais agentes polinizadores desse cultivo. O objetivo do trabalho foi a identificação de compostos voláteis produzidos por fêmeas nidificantes de *X. frontalis*. Para isto, três métodos não letais de extração foram aplicados: papel filtro (I), *swab* com hexano (II) e remoção de um dos tarsos (III). As amostras foram analisadas por CG-EM, o que possibilitou a identificação de dezoito hidrocarbonetos. Dentre esses, oito compostos foram comuns coletas realizadas pelos métodos II e III, dois pelos três métodos , um pelos métodos I e III, e sete foram obtidos exclusivamente por meio do método II. Os dados obtidos servirão de base para o futuro desenvolvimento de uma solução atrativa de *X. frontalis* que pode permitir o manejo sustentável, além do aumento da produtividade e qualidade dos frutos, contribuindo para práticas agrícolas sustentáveis e conservação da biodiversidade, alinhando-se aos Objetivos de Desenvolvimento Sustentável (ODS) 2 e 15.

Palavras-chave: manejo de abelhas; polinização; maracujá-amarelo; hidrocarbonetos.

Introdução

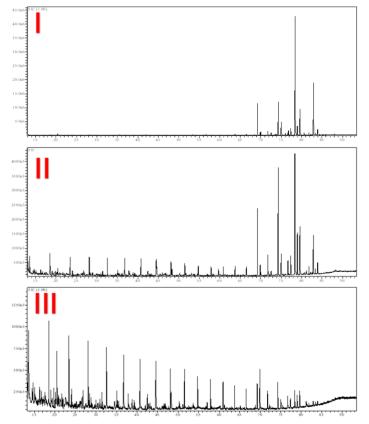
O Brasil é um dos principais produtores mundiais de maracujáamarelo (1), cultura que depende de polinizadores para a formação de frutos. Nesse contexto, as abelhas solitárias ou facultativamente sociais do gênero Xylocopa, também conhecidas como mamangava, destacam-se como as principais polinizadoras desse cultivo (2). Essas abelhas são de grande porte, apresentam ampla distribuição no país e comportamento de nidificação bem conhecido. A presença de ninhos-aramdilhas mantidos em áreas de cultivo, permite a atração de outras fêmeas nidificantes, o que leva a um aumento populacional de abelhas nessas áreas (3). Assim, o trabalho tem como objetivo o uso da identificação química de marcas olfativas de Xylocopa frontalis com o intuito de aprimorar técnicas de manejo, visando a produção de frutos maiores e de melhor qualidade, o que desperta o interesse de produtores rurais. Por fim, a proposta contribui com as metas de agricultura sustentável, produção responsável e conservação da biodiversidade da agenda de 2030 para os Objetivos de Desenvolvimento Sustentável (ODS) das Nações Unidas (4)..

Experimental

No presente estudo, foram comparados três diferentes métodos não letais de extração de compostos voláteis de *X. frontalis*, visando futuramente a produção de uma solução spray atrativa para fêmeas nidificantes. Foram els: (I) extração em papel filtro para coleta de substâncias glandulares - nesse caso, colocou-se o indivíduo em pote estéril com papel filtro até a liberação de tais substâncias; (II) uso de

um Swab estéril, embebido com hexano, que foi esfregado por um minuto no corpo das abelhas; e (III) remoção do tarso do indivíduo, com auxílio de tesoura previamente esterilizada – para a realização desse procedimento, o indivíduo foi mantido em uma caixa térmica contendo gelo, até diminuição dos seus movimentos. Nos três casos, o material proveniente foi colocado em num vial de 20 mL, com 2mL de hexano, para extração dos compostos e, posteriormente, analisado por Cromatografia a Gás acoplada à Espectrometria de Massas (CG-EM), modelo QP2010 Shimadzu, com coluna ZP-5MS (30 m x 0,25 mm x 0,25 mm x 0,25 mm). A temperatura do forno começou com uma retenção inicial a 50 °C, mantida por 5 minutos, seguida de uma rampa a 3°C min⁻¹ até uma temperatura final de 300 °C, a qual foi mantida por 5 minutos, a temperatura de injeção foi 240°C, modo de injeção splitless, Além disso, os espectros de massas foram analisados numa faixa de 35 a 500 u.

Resultados e Discussão


O índice de retenção aritmético foi calculado com base na comparação dos tempos de retenção dos compostos com os de uma série padrão de alcanos lineares (C₈-C₄₀) (6), que foi analisada nas mesmas condições que as amostras. As análises por cromatografía gasosa acoplada à espectrometria de massas (CG-EM), processadas pelo software LabSolutions GCMS, permitiram a identificação de dezoito compostos, todos classificados como hidrocarbonetos.

Oito compostos foram comuns às amostras obtidas pelos métodos II e III), sete foram exclusivos da coleta pelo método II, dois pelos três métodos, um pelos três métodos e sete ocorreram exclusivamente nas amostras coletadas de acordo com o método II (Figura 1 e Tabela 1). Cabe destacar que dez dos dezoito compostos identificados já foram previamente descritos na literatura como componentes de marcas olfativas da abelha solitária *Osmia cornuta* (6), o que reforça a relevância dos hidrocarbonetos cuticulares como mediadores químicos no comportamento de nidificação. Em espécies como *X. frontalis*, tais compostos podem atuar como sinais olfativos específicos, favorecendo tanto a localização do ninho quanto a atração de novas fêmeas nidificantes, contribuindo para o aumento da densidade populacional em áreas de cultivo e, consequentemente, para a eficiência da polinização.

Figura 1. Cromatogramas das amostras coletadas de *Xylocopa*. *frontalis*

Nota: I- coleta das substâncias glândulares com papel filtro, II- coleta com auxílio de *swab*; III- do tarso da abelha.

Tabela 1- Compostos anotados

at _R (min)	Composto	Método	^b Similaridade (%)	^c AI	^d AIr
13,58	Decano	II e III	97	1000	1000
18,52	Undecano	II e III	96	1100	1100
23,41	Dodecano	II e III	97	1200	1200
28,10	Tridecano	II e III	97	1300	1300
32,55	Tetradecano	II e III	96	1400	1400
36,76	Pentadecano	II e III	96	1500	1500
44,51	Heptadecano	II	96	1700	1700
48,10	Octadecano	II	96	1800	1800
51,52	Nonadecano	II e III	95	1900	1900
54,79	Eicosano	II	95	2000	2000
57,92	Heneicosano	II e III	94	2100	2100
60,93	Docosano	II	94	2200	2200
63,80	Tricosano	II	92	2300	2300
66,56	Tetracosano	II	92	2400	2400
69,23	Pentacosano	I, II e III	92	2500	2500
71,79	Hexacosano	II	91	2600	2600
74,27	Heptacosano	I, II e III	97	2700	2700
78,41	Nonacosano	I e III	97	2875	2900

Nota: ^a Tempo de retenção, ^bPorcentagem de similaridade dos compostos com a biblioteca NIST, ^cÍndice aritmético calculado, ^dÍndice aritmético em DB-5 em referência ao padrão de alcanos (ADAMS, 2007).

Conclusões

Este estudo buscou, de forma exploratória, identificar compostos voláteis produzidos por fêmeas nidificantes de *Xylocopa frontalis*, com o objetivo de desenvolver futuramente estratégias de manejo que favoreçam a polinização do maracujá-amarelo. As análises revelaram que os três métodos de extração testados geraram perfis químicos distintos, o que contribuiu para uma caracterização mais ampla e detalhada dos compostos voláteis produzidos por *X. frontalis*. No total, foram identificados dezoito hidrocarbonetos, alguns exclusivos de determinados métodos de coleta, sugerindo possíveis marcadores químicos de interesse.

Agradecimentos

À FAPEMIG, CAPES, CNPq e INCT-BioNat e o MPT pelo auxílio à pesquisa e bolsas concedidas.

Referências

- 1. J.L. Silva, W.F. Silva; L.E.M. Lopes; M.J.S. Silva; J.R.A. Silva-Cabral; J.F.O. Costa; G.S.A. Lima; I.P.Assunção. *Plant Disease*. **2021**, 105:11, 3761.
- 2. A.D.M. Bezerra; A.J.S. Pacheco Filho; I.G.A. Bomfim; G. Smagghe. *Data in brief.* **2019**, Vol. 23.
- 3. H.L. Pedroso; C. Lomônaco; L.C. Rocha-Filho; S.C. Augusto. Jornal de História Natural. 2021. 55 (29–30), 1815–1823.
- 4. ONU. Sobre o nosso trabalho para alcançar os Objetivos de Desenvolvimento Sustentável no Brasil. Disponível em: brasil.un.org. Acesso em: 15 maio 2025.
- 5. R.P. Adams, cation of essential oil components bt gas chromatography/mass spectrometry, Illinois, 2007.
- 6. K.S. Frahnert; K. Seidelmann. Insects. 2021, Seo 18;12(9):843.