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Abstract: A key component of predictive maintenance for vital electrical substation equipment is 

thermographic inspection, which makes it possible to identify thermal abnormalities early on before they 

cause failures. Maintenance workflows suffer by the subjective, time-consuming, and human error-prone 

manual interpretation of the resulting thermal images. Although deep learning offers an efficient automation 

solution, a significant real-world obstacle to its widespread use is the extreme scarcity and class imbalance of 

available fault data. In order to close this gap, a comprehensive methodological framework for creating a 

reliable baseline diagnostic model is proposed and described in this paper. The strategy is based on transfer 

learning, which involves optimizing strong, pre-trained Convolutional Neural Network (CNN) architectures 

to take advantage of their acquired features and lessen the impact of sparse data. From data preparation and 

aggressive minority fault class augmentation to the use of a weighted loss function during training, the 

framework describes the complete pipeline. The experimental pipeline was validated after this methodology 

was put into practice. The model's anticipated initial bias towards the prevalent "Normal" class—a direct 

result of the data imbalance—was validated by preliminary observations. The main result of this work is this 

procedural validation, which provides a strong, repeatable basis for further investigation. While conclusive 

performance analysis and the investigation of explainability techniques remain open for future work, this 

study offers a practical route for creating trustworthy diagnostic tools under practical data constraints. 
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1. Introduction 

 

Reliability of power systems is something 

modern society takes for granted but is reliant on 

flawless working of vital infrastructure, most 

notably electrical substations. These units are 

head of the grid, and collapse of one component 

of it (a transformer, a circuit breaker, or simply a 

connection) can result in mass power cuts with 

dire economic as well as social consequences. 

To prevent this, utilities rely heavily on 

predictive patterns of maintenance, and of 

available tools, infrared-based thermography has 

been useful. It offers a non-intrusive, in-real-

time means of "seeing" heat, being thus 

extremely good at detecting the tell-tale signs of 

a potential failure, such as an overheated joint, 

method well-tested in industry standards [1]. 

 

Despite thermography, power is ultimately 

limited by the human eye and brain. Each of 

these thermal images must be manually 

inspected by a skilled technician, which can be a 

slow and subjective process. What in one 

expert's eyes is an essential fault, in another's is 

nothing but solar reflection or normal variability 

in operations. An acute risk and a challenge of 

scalability are present. A central consideration 

guiding this effort is the need to automate the 

inspection process to ensure it is quick, objective, 

and scalable. 
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The easy solution lies in Artificial Intelligence 

(AI), with deep learning structures like 

Convolutional Neural Networks (CNNs), which 

have significantly impacted the field of image 

processing [2]. It is not news to train a model to 

recognize thermal fault patterns. Most research 

works, however, overlooks the most crucial in-

the-field limitation: data. Faults in a well-

maintenance substation happen rarely. This 

creates a familiar machine learning problem: a 

small, highly imbalanced set, making it 

extremely difficult to train a trustworthy model 

from scratch. This work targets just such 

problem at first principles. It provides an 

elaborate methodological framework towards 

the first stage of an automated diagnosis 

program. The contribution of this work is 

designing, in fine detail, a baseline experiment 

using transfer learning to leverage ideas learned 

under large datasets as well as data 

augmentation to virtually supplement a sparse 

set of fault images. This work clearly defines 

architecture, data processing strategies, as well 

as evaluation measures, of a model, once in 

working, will serve as a baseline reference point 

to justify as well as guide subsequent research in 

next-level-data generation as well as 

explainability strategies. 

 

2. Related work 

This project is founded on two pillars of 

research: applying thermography in predictive 

maintenance as well as using deep learning in 

image classification. 

 

The infrared thermography theory and 

application to electrical equipment are well-

documented. [3] defines in detail heat transfer 

physics, emissivity, as well as reading thermal 

patterns of likely failure, as defined in standards 

by [1, 4]. These patterns, most of them being 

hotspots or unknown thermal gradients, are 

precisely those on which was trained the AI 

model herein proposed. 

 

Early efforts at automating this activity used 

traditional machine learning strategies. For 

instance, [5] built a predictive maintenance 

framework with a Multilayer Perceptron (MLP), 

a classical neural network structure. It relied on 

feature extraction of eleven hand-designed 

statistical features (e.g., mean, variance, 

skewness) in thermal images to differentiate 

equipment as “defect" or "non-defect" with 84% 

accuracy, with subsequent graph-cut-based 

refinement. This work demonstrated possible 

automation of diagnostics but identified manual 

feature engineering as an essential condition. 

 

Subsequent research involved using CNNs to 

automatically learn image features through deep 

learning. [6] provided a novel method of using a 

special CNN with a Support Vector Machine 

(SVM) classification method. A key part of their 

research involved complex preprocessing to 

locate and extract temperature values from the 
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scale bar of the thermal image, using extracted 

characters to build a training set. 

 

More recently, focus has moved on to current 

state-of-the-art object detection architectures. [7] 

used a YOLOv4-based approach to fault 

diagnosis of some substation equipment, 

including insulators, cables, and transformers. It 

locates equipment along with any abnormal 

heating areas, calculates spatial overlap between 

them to determine a fault status. Performance 

reported average precision of 92.2% and 

confirmed the potential of current object 

detection architectures for this task. 

 

But the weakness of most of this presented 

research is the assumption of a large, balanced 

dataset. In most cases, this most severe of 

challenges, the scarcity of data, is handled 

superficially. Transfer learning has been an 

extremely useful means of making up for this. 

As illustrated by [8] and [9], learned features 

such as edges, textures, and shapes of a model 

pre-trained with a large dataset such as 

ImageNet [10], can be transferred in a new 

domain, such as images of electrical equipment 

under thermal imaging, with much less data as a 

fine-tuning set. This approach has been 

successful in some medical and industrial 

imaging applications with limited data. This 

research is placed firmly within the context of 

pragmatic studies, with a focus on an exacting 

use of transfer learning as being the most 

realistic first step towards this specific problem, 

as it opens towards further advanced solutions 

such as Generative Adversarial Networks 

(GANs) towards synthetic data generation in due 

course [11, 12]. 

 

3. Proposed methodology 

 

This section details the proposed framework for 

developing and evaluating the baseline fault 

diagnosis model. 

 

3.1. Dataset and preprocessing 

 

This work's first dataset is composed of thermal 

images acquired using active substation 

equipment. It is composed of diverse equipment, 

including bushings, connections, transformers, 

circuit breakers, relay and surge arresters, with 

varied operational as well as environmental 

conditions. In this first task, images will be 

grouped into two main groups: “Normal” and 

“Anomaly” as the base of a binary classification 

problem. 

 

Before being presented to the model, they go 

through a standardized preprocessing pipeline: 

1. Resizing: All images were resized with a 

fixed size of (224×224 pixels) to meet 

the input condition of our adopted pre-

trained CNN architecture. 

2. Normalization: The values of pixel 

intensity were normalized such that they 

remain in the interval [0, 1], inviting 
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stability and acceleration of training in 

models. 

 

3.2. Data augmentation 

 

Given the anticipated class imbalance, where 

“Anomaly” images are expected to be 

significantly fewer than “Normal” ones, data 

augmentation plays a critical role. To enhance 

the representation and variability of the minority 

class, a series of geometric and photometric 

transformations will be selectively applied to the 

“Anomaly” images. This strategy helps reduce 

model bias toward the majority class and 

improves generalization. 

 

The augmentation techniques applied were: 

• Horizontal flips. 

• Random rotations (within a range of -15 

to +15 degrees). 

• Random adjustments to brightness and 

contrast. 

• Random scaling or zoom (90-110% of 

the original size). 

 

Figure 1 illustrates the effect of these 

transformations. 

 

 

 

 

 

Figure 1. An example of original thermal image 

of a fault, and 4 augmented versions. 

 

a) Original. b) Flipped. c) Rotated. d) Brightness adjusted. 

e) Scaled. 

 

3.3. Transfer learning model architecture 

 

This framework utilizes a transfer learning 

approach with the architecture of ResNet50 [13], 

a highly regarded and potent CNN pre-trained 

with the ImageNet dataset. The reasoning is to 

build upon the rich low-level features learned in 

ResNet50, rather than attempting to learn them 

from a limited dataset. 

 

The execution of the training was as follows: 

1. Load Pre-trained Base: The ResNet50 

was initialized with its ImageNet weights, 

while ignoring its final classification 

layer. 

2. Freeze the Base Layers: The weights of 

the base convolutional layers were 

"frozen," meaning they were not updated 

during the initial training phase. This 

helped preserve the valuable features 

already learned. 
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3. Add a Custom Classifier Head: A fresh 

stack of layers was added atop the 

"frozen" base model. This head included 

a Global Average Pooling (GAP) layer, 

followed by a Dropout layer for 

regularization purposes. Ultimately, 

there was a dense layer featuring a 

Sigmoid activation function to generate a 

probability score for binary classification. 

4. Train and Fine-Tune: The model 

underwent two training stages. Initially, 

only the new classifier head was trained. 

After it converged, some upper layers of 

ResNet50 were unfrozen for fine-tuning 

with a low learning rate, allowing the 

pre-trained features to better adapt to the 

thermal imagery. 

 

3.4. Validation of the Framework and 
Behavioral Analysis 

 

The evaluation in this early phase of research is 

not concerned with optimizing performance 

metrics, but rather with two main goals: (1) 

verifying the overall experimental framework's 

functional integrity, and (2) conducting a 

preliminary behavioral analysis of the model 

when it is exposed to the highly imbalanced 

dataset. 

 

To make sure that the evaluation is objective, 

the dataset will be split into standard training, 

validation, and testing sets. The main sign that 

the basic model is learning will be that the 

training loss function is going down over the 

first few epochs. This shows that the model can 

extract features from the data. 

 

The preliminary analysis will be based on a 

qualitative assessment of the predictive 

effectiveness of the model. The main goal is to 

explain why the model initially favors the 

"Normal" class, which is a common and 

expected result from the data distribution. The 

goal of this analysis is not to determine precise 

performance scores. Rather, it examines how the 

model's predictions evolve over time by testing 

them on the validation set. Making qualitative 

observations and verifying procedures are 

among the objectives of this study's first section. 

The behavioral analysis will yield preliminary 

findings that will be used to empirically support 

the next steps in the research process, which will 

center on systematic hyperparameter tuning and 

the application of more sophisticated techniques 

to address the observed class imbalance. 

 

4. Experimental setup and preliminary 
process validation 

 

This section presents the implementation of the 

framework outlined in Section 3. The primary 

aim of this initial stage was not to produce a 

fully optimized model, but rather to construct 

and validate the entire experimental pipeline, 

ensuring the robustness of the data processing, 

model training, and evaluation process. 
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4.1. Execution of the proposed methodology 

 

The workflow was carried out exactly as the 

methodology specified. A typical 70-15-15 split 

was used to divide the small dataset into 

training, validation, and testing sets. Using a 

custom data loader, the data augmentation 

techniques, such as random rotations, flips, and 

brightness adjustments, were successfully 

applied in real-time to the training batch. The 

experiment's main component involved loading 

a pre-trained ResNet50 model, freezing its 

convolutional base layers, and swapping out the 

final classification layer for a new head designed 

specifically for the binary classification task 

("Normal" vs. "Anomaly"). 

 

The training script was developed to execute the 

two-stage training process: initial training of 

only the new classifier head, followed by a fine-

tuning phase with a low learning rate. The 

process was monitored using standard metrics, 

such as training and validation loss and 

accuracy, which were logged after each epoch. 

 

4.2. Preliminary observations 

 

The initial training epochs were primarily used 

to confirm that the experimental pipeline was 

functioning as planned. A distinct and 

illuminating performance trend emerged from 

these early runs: the model performed 

significantly better at correctly classifying 

images in the "Normal" class while struggling to 

identify images in the "Anomaly" class. 

The inherent structure of the training dataset is 

the direct cause of this behavior. The "Normal" 

class gives the model a rich and varied 

collection of examples by supplying a large 

number of thermal images from a wide range of 

equipment types. Because of the data's richness, 

the network can learn a reliable and broadly 

applicable feature representation of what 

constitutes typical equipment operation in 

various settings. As a result, the model gains the 

ability to recognize new, undetectable examples 

of equipment that is healthy. 

The "Anomaly" class, on the other hand, is 

incredibly sparse, covering only a few types of 

equipment and making up a very small portion 

of the entire dataset. This gives the model a very 

small feature space to learn from. Insufficient 

variation significantly impairs the model's 

capacity to generalize the appearance of an 

"anomaly," which results in a high rate of 

misclassification for this crucial class. The 

model rapidly discovers that creating a strong 

bias towards the majority "Normal" class is the 

best way to reduce the overall error. 

This observation, while predictable, is a crucial 

preliminary finding. It verifies empirically that 

the main obstacles to overcoming are the stark 

class disparity and the lack of diversity in the 

fault data. The pipeline's successful deployment, 

together with this diagnostic of the model's 
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initial behavior, confirms the research direction 

and emphasizes the need for the suggested 

methodological focus on new strategies to 

generate synthetic data and weighted loss 

functions that are intended to address this 

imbalance. 

 

5. Conclusion and future work 

 

A thorough and practical methodological 

framework for creating a fundamental AI model 

for substation fault diagnosis using thermal 

images was provided in this paper. The 

suggested method makes use of transfer learning 

and data augmentation to establish a strong 

baseline while acknowledging the practical 

limitation of data scarcity. The creation and 

procedural validation of this framework, which 

verifies that every step is operational and 

appropriately configured, constitutes the main 

contribution of this study. 

 

The first crucial step in a larger research agenda 

is the effective application of this framework. To 

fully develop the diagnostic capabilities of the 

model, future work will involve the thorough 

execution of the training and hyperparameter 

tuning process. The final performance outcomes 

from that thorough process will be saved for a 

later publication that will include a detailed 

evaluation of the model's efficacy as well as 

research into explainability strategies to increase 

confidence and real-world adoption. 

The future research will proceed along three 

general paths: 

1. Improvement of the transfer learning 

technique: Evaluating the use of thermal 

image datasets from similar equipment to 

augment the current dataset, as well as 

testing other pre-trained networks. 

2. Generation of Advanced Data: Based on 

the baseline output, studies and 

implementation of advanced artificial 

data generation schemes will be under 

consideration, using likely Generative 

Adversarial Networks (GANs), aimed at 

narrowing down and refining the dataset 

with rare fault examples as well as 

severe ones. 

3. Explainable AI (XAI): Explainability 

models, such as Grad-CAM, will be 

integrated to have graphical evidence of 

the model's predictions. That is necessary 

to build confidence and change the 

model from being a “black box” to an 

explainable and reliable maintenance 

engineer tool. 
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