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Abstract

Oil price forecasting is an important and challenging task due to its influence on
the world political-economic scenario. In this paper, three models are proposed, the
ARIMA model which is a widely used statistical method to forecast time series,
while the LSTM model is a recurrent neural network that can capture long-term
dependencies in sequential data. The third, on the other hand, is an approach that
combines the forecasting models to provide a forecast of the WTT oil price. The WTI
oil series is decomposed into its trend and cycle components using the Christiano-
Fitzgerald filter and each is predicted separately. With this combination of models
and techniques we provide a more accurate and reliable forecast of the WTT oil
price to assist in strategic decision making. The data used for the forecast was ob-
tained from the Energy Information Administration and represents a time series
with monthly records of the WTT oil price.
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1 Introduction

Given the importance of oil in the global scenario, there is a growing investigation
in the literature about the impact on the world economy in relation to its price. The
forecast of oil price series is investigated using different methodologies, however, there is
no consensus on which model has the best predictive accuracy. From the development
of time series models, we try to explain and predict the price series of this commodity.
Crude oil has a high representation in the global economy.

According He et al. (2021) oil price changes have significant impacts on the global
financial markets and the real economy (see, e.g., Kilian (2009); Wang, Wu and Yang
(2013); Zhang (2013); Yu, Wang and Tang (2015); Hou, Mountain and Wu (2016); Kilian
and Vigfusson (2017)). Therefore, the accurate forecasts of oil prices not only are helpful
to build reliable investment strategies for market investors and portfolio managers but also
contribute to accurately assess macroeconomic risks for central banks and governments.
Given this, numerous studies aim to improve oil price predictability by using various fore-
casting models, which include the vector autoregressive model (see, e.g., Baumeister and
Kilian (2014)), predictive regressions with statistical and economic restrictions (Wang
et al. (2015)), forecast combinations (see, e.g., Baumeister and Kilian (2015); Zhang et
al. (2018)), dynamic model averaging (see, e.g., Naser (2016)), vector trend forecasting
method (Zhao et al. (2018)), DFN-AI model (Wang et al. (2018)), hybrid-refined method
(Chai et al. (2018)), hybrid model using variational mode decomposition and Al tech-
niques (Li, Zhu and Wu (2019)). In turn, Albuquerquemello et al. (2018) proposed a
SETAR model for oil price prediction, Hajiabotorabi et al. (2021) presented a recurrent
neural network model based on multifactor wavelet (Multi-WRNN) in the decomposition
time series for pricing crude oil in the futures market. Huang and Deng (2021) built a
hybrid predictive model, involving variational mode decomposition (VMD) and the long-
term memory model (LSTM).

Many forecasting models are proposed to forecast the price of commodities, in-
cluding oil. Unsurprisingly, predicting the price of these products is still a difficult task,
as it involves factors intrinsic to the product itself, in addition to the influence of exter-
nal factors, such as political uncertainties. However, predictive models are an important
alternative in identifying variables that may or may not be added to understand oil price
fluctuations.

Given this context, the guiding question of this work is based on: Which among
the ARIMA, LSTM and ARIMA-LSTM models presents the best oil price prediction?
From the question presented, the objective of this work is to compare a classic model
with a deep learning model or their hybrid form of the oil price and verify which one has
the least error in the short and long term forecasts. Thus, the hypothesis that guides this
research is that the ARIMA model is a better price predictor to the linear series, LSTM
predicts better in the non-linear series and the hybrid model predicts better the original
series.

Considering that the price of oil is also influenced by external factors, additionally,
its price variation is capable of resulting in important changes in the world economic
scenario (VO, 2011). Given the importance of the price of this commodity and for being
a product that offers high macroeconomic risk to the situation of any country, impacting
various sectors of economic activity, this work is highly relevant. It is worth mentioning
that this study has a differential in relation to other works done, besides the hyperpa-
rameters that are being simulated, a combination of several hybrid models to predict the



price of oil is also performed.

Besides this introductory section, this paper is divided as follows: section 2 presents
the empirical literature, section 3 explains the concepts of the models that were used and
the data, section 4 presents the results obtained, section 5 the comparisons between the
models and finally the conclusion section with our final considerations.

2 Empiric literature

2.1 Importance of oil and its derivatives

Oil represents the most important source worldwide in the energy matrix, however,
despite leading the energy matrix, it has been showing a reduction in its use. Oil, like other
energy sources, has time and space as variants in determining its use (D’ALMEIDA | 2015).
The explanations for the variation in oil prices in the international market are numerous,
ranging from the quality of the product to those resulting from the criteria established
by the producing countries (ROTSTEIN, 2016).

In addition, like any commodity, oil has its prices defined by supply and demand,
however, its derivatives end up having higher market value and add this value to the
refining process. Derivatives are products obtained in the refinement process, from the
distillation of crude oil. Some examples are gasoline, kerosene, fuel oil, naphtha, lubricants,
solvents, among others. Some have energy application, while others have their use directed
to other types of industry, such as petrochemical and steel (D’ALMEIDA, 2015). Gasoline
is one of the most important petroleum refining products, corresponding to approximately
40% of the yield of a barrel of crude oil (CHANTZIARA; SKIADOPOULOS, 2008).

Among the external factors that influence the price of oil, Aiube (2013) highlights
high volatility, futures contracts, seasonality and demand shocks. The costs of production,
storage, transport and hedging are also added. In 2020, the 10 largest oil producers in the
world, in descending order, were: United States, Saudi Arabia, Russia, Canada, China,
Iraq, United Arab Emirates, Brazil, Iran and Kuwait. As they present greater production,
these countries end up having a great influence on the price of this commodity. Consumer
countries also have a notable share in oil prices, with the top five countries being the United
States, China, India, Russia and Japan. Furthermore, the Organization of Petroleum
Exporting Countries (OPEC) also generates important power over the price of oil (EIA,
2021).

The rise in the price of oil is capable of affecting the cash flow of companies,
interest rates and inflation (VO, 2011). A basic example of how the increase in the price
of oil directly impacts the economy is the influence it generates on the price of gasoline
and diesel oil, which in turn increase transport costs and consequently of all goods. In
refineries, the dollar and oil prices are the main variables influencing fuel prices. In Brazil,
until 2017, international fluctuations were passed on in a delayed manner to the domestic
market, that is, consumers did not suffer so much from the readjustments adopted, which
was one of the main reasons for Petrobras indebtedness. Since then, oil has shown large
increases, which are significantly reflected in gasoline prices.

2.2 Time series modeling

This section was based on Lazzeri (2020). A time series can be defined as a sequence
of observations over a given period of time. In everyday life, we have a simple example



of a time series that we all encounter, the change in temperature over a period of a day,
week, month or year. Univariate time series consist of the values of a single variable in
successive situations over a period of time, while multivariate time series consist of the
values of several variables in the same successive situations over the same period.

Time series analysis can provide useful insight into how a variable changes over
time, or how it depends on the changing values of other variable(s). From time series
prediction, it is possible to analyze the relationship of a variable to its previous values
and/or the set of other variables, moreover, it has numerous uses in artificial intelligence.
A time series has 4 components: trend defined as the increasing or decreasing behavior of
a variable over time; cycle: which consists of an undulating movement that usually lasts
several years and is usually periodic; seasonality, the cyclical behavior of time series, is
a short component that usually lasts up to 1 year; and noise which is the error in the
aggregate observations due to environmental factors, moreover, it is the part of the data
that we cannot explain. Time series modeling methodologies make it possible to capture
these components and predict them.

2.3 Difficulties in forecast analysis

The concepts presented in this section are based on ROSSI and NEVES (2014)
and Granger (1969). There are numerous difficulties in evaluating predictions, so it is
important to highlight them so as not to jump to premature conclusions. Some of them
are briefly discussed in the following paragraphs.

Influence of the test period - it is agreed that the evaluation of the predictions
of a model must be made based on new information. Due to the influence of the evalu-
ation period on the results of forecast analyses, the forecast evaluation process must be
an ongoing activity if one intends to use a particular model frequently, and when new
observations are available, the analysis must be repeated.

Choice of forecast type - conditional or unconditional, this choice is linked to the
modeling objective. When it comes to analyzing the potential predictive performance of
an econometric model, ex-post conditional predictions may be more suitable, due to the
ability to isolate the effect of forecast errors due to extrapolations of exogenous variables.
If the purpose is to analyze the global effective predictive performance of the model, un-
conditional ex-ante predictions, in which the value of exogenous variables are not known,
are more recommended.

Influence of errors in observations - measurement errors in data can distort the
performance of predictions, making a good prediction seem unreliable, or else, approaching
a bad prediction to the realized value. Thus, it is clear the need for a good analysis
regarding the quality of the data used for any type of use of a model, whether predictive
or explanatory.

Very wide confidence intervals - the first idea to test the predictive performance
of a model is to define an a% confidence interval of these predictions using the statistical
properties obtained in the estimation and observe if the number of realizations outside the
interval does not exceed (100—«)%. However, in practice this approach is very limited and
can only be applied to extreme cases, when, in fact, there is a clear divergence between
predicted and actual values. In addition, the sample size is usually small, causing loose
limits.

The evaluation of forecasts can be performed in two ways: mean square error and
forecast-fulfillment diagram.



When the prediction error cost function is quadratic, this statistic is appropri-
ate for measuring predictive performance. The Forecast x Realization Diagram is a very
suggestive type of chart, it is a simple way to visualize the forecast results of a model.
The graphic visualization has the advantage of identifying anomalous points, very distant
from the graphic. From the analysis of these points, important issues can be clarified,
since data contamination may occur, or the achievements may be affected by variables
of an occasional nature; which can in turn impair the analysis of the model’s predictive
power.

The cost of forecast error is a relevant aspect to evaluate. When evaluating a
forecasting methodology or model, two types of cost must be considered for decision
making. The model elaboration cost refers to the costs involved in the modeling; while
the costs associated with the use of forecasts are related to losses arising from forecast
errors. Clearly, the choice of methodology or model should be made with the lowest total
cost.

The function that associates a loss with a given forecast error is called the forecast
error cost function, also known as the loss function. This function is closely related to the
decision-making process associated with forecasting. From a practical point of view, there
are serious difficulties in defining this type of function and the usual thing is to make use
of conventional functional forms. The loss function is designated by g(e), and must satisfy
the following conditions:

1. g(0) = 0;
2. gle;) > glej);e; > ej > 0;
3. gle;) > glej);ei <e;j <O0.

where the e’s are the forecast errors.

3 Data and methodology

3.1 Database and models

The database is composed of monthly variables. The database period corresponding
to January 1986 to January 2022. The size of the sample is justified by the availability
of data. The data used refer to WTI crude oil prices. Appendix 77 presents descriptive
statistics for different specifications of the variable of interest.

3.2 ARIMA

Autoregressive Integrated Moving Average (ARIMA) models provide the general
framework for time series forecasting techniques. They are based on the transformation of
a time series into a stationary series by a process of differentiation. The ARIMA equation
is a linear equation in which the predictors comprise the lags of the dependent variable
and the error term, combining an autoregressive process (AR), the moving average (MA)
and an order of integration (I) (CHOU; TRAN, 2018).

According to Hyndman and Athanasopoulos (2018), in a general way, this model
can be written by:
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An autoregressive model indicates that the variable y; is a linear function of its
past values, where ¢, is white noise. It is defined as an AR(p) model, autoregressive of

order p. Whereas the moving average process uses the terms of past residual errors, and
is defined as MA(q).

For a practical approach to the ARIMA model, the interactive methodology pro-
posed by Box et al. (2015) is used. The first step consists of identifying the model, and
the authors propose the use of autocorrelation (ACF) and partial autocorrelation (PACF)
functions, from which it is possible to identify the autoregressive order (p) and the mov-
ing average (q). To find an optimal model, it is necessary to ensure that the series are
stationary, so, if necessary, the series can be transformed and taken in their differences.
To build a stationary series, the order of differentiation (d) of the ARIMA model can be
used.

Then, the parameters are estimated and the models can be chosen from the in-
formation criteria: Akaike Information Criterion (AIC), corrected Akaike Information
Criterion (AICc) and Bayesian Information Criterion (BIC). In this study, the AIC and
BIC criteria were used. The last step is to carry out the diagnosis of the residuals of the
adjusted model through statistical tests. In this way, when the residuals are similar to
white noise, the predictions can be calculated, otherwise, it goes back to the identification
step.

3.3 LSTM

The long-term memory model (LSTM) is a recurrent neural network that is used
for time series to account for long-term dependencies. It can be trained with large amounts
of data to capture trends in multivariate time series. Said modeling techniques are used
for time series regression.

To better understand the LSTM model, it is essential to understand neural net-
works and recurrent neural networks. An artificial neural network is a layered structure
of connected neurons, inspired by biological neural networks. It is not an algorithm, but
combinations of several algorithms that allow us to perform complex operations on the
data.

Recurrent Neural Networks (RNN) are a class of neural networks adapted to deal
with temporal data. RNN neurons have a cellular state/memory, and input is processed
according to this internal state. There are recurring modules of 'tanh’ layers in RNNs
that allow them to retain information. However, it doesn’t hold for long, so we use the
LSTM models. Long-term LSTM learning is derived from the model’s recurrent module,
which has a combination of four layers interacting with each other.

LSTMs have an architecture organized around gates, that is, internal mechanisms
that use additions, multiplications and an activation function to regulate the flow of
information in the LSTM cell, a flow similar to an electrical circuit.

Figure 1, taken from Fan et al. (2021), illustrates the internal structure of an
LSTM cell, with the four neural network layers represented by four rectangles and point
operators represented by white circles. The LSTM module has one cell state and three
gates that provide memory capabilities, the orange gate allows for forgetting, the purple
gate for storing information and the blue gate for learning. The input gate is responsible



for controlling the flow of information to the current state of the cell using dot-to-dot
multiplication operations of "sigmoid" and "tanh" respectively. The forgetting gate uses
the sigmoid function to decide which information from the cell’s previous state should be
forgotten. Finally, the output port decides which information will pass to the next hidden
state.

Figure 1

Forget gate Input gate Output gate
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Since x; is an input and h; is an output, follow that:
iy = o(x U+ hy W)

fi = o(x, U + hy W)

O; = o(z,U° + hy_1WO)

C; = tanh(z,UC + by, WO)

then C; = o(fi @ Ci_1 ® 4 @ C’t)

and therefore hy, = tanh(Cy) @ O.

3.4 ARIMA-LSTM (hybrid model)

Due to the development of artificial intelligence, the neural network has been gain-
ing ground in predictions, resulting from its excellent quality, namely strong non-linear
mapping, self-learning, self-adaptation and fault tolerance (SHUI-LING; LI, 2017).

Hybrid models combine machine learning techniques with optimization algorithms.
Compared to individual models, hybrid models compensate for weaknesses in individual
techniques and thus improve the accuracy of predictions. According to the goals defined
for problem solving, hybrid models can contain one or more phases (CHOU; TRAN, 2018).

The functioning of a hybrid model that we will use can be briefly explained as
follows: first a filter of the series is made by applying the Christiano-Fitzgerald filter,
then trend, cycle and noise predictions are made using the ARIMA and LSTM models.
At the end, we sum the forecasts to obtain the final forecast value. The ARIMA model
is ideal for the trend, while the LSTM model is effective for the cyclical component and
both models are eficients to noise component.

The model applied in this work was based on the model created by Fan et al.
(2021). Oil price data are in the form of time series data, so they can be assumed to



consist of a linear portion and a non-linear portion, expressed as follows:
.%t:ﬂ—i‘ct—i‘gt (2)

where C; denotes the time cycle of the data, T; the trend and ¢; the noise com-
ponent of Christiano-Fitzgerald filter. While the ARIMA model can successfully model
linear relationships in the time series, the LSTM can successfully model nonlinear compo-
nents. Thus, the ARIMA-LSTM hybrid model can achieve better results for the forecast,
considering the advantages that each one of the models presents.

The hybrid model can be divided into the following steps:

1. recording of raw data with the Christiano-Fitzgerald filter

2. linear prediction of the trend component T} of the series and the noise component
&t

3. nonlinear prediction from modeling the cyclical component
4. take the best results for both metodologies to the final model

5. coupling and evaluation of the final result of the ARIMA-LSTM hybrid model.

This result can be obtained by adding the prediction results of the ARIMA model to the
predicted results in the LSTM network, taking the best results for each component for
the model. Finally, the performance evaluation of the model is carried out.

Considering that the crude oil market is one of the most volatile in the world, there
is a certain tendency to consider that the ARIMA model is not capable of describing the
nonlinearity components of oil price time series; since it is a linear model that captures
linear characteristics of time series.

3.5 Forecast performance evaluation

There is no doubt that the more observations you have, the better your prediction
will be. However, the choice of methodology does not depend only on this factor, it is
also necessary to consider, based on the past, whether the methodology used was able to
explain the path of the series, or even if it will be able to make good predictions about
the future, a since good future forecasts are the objective of time series. Furthermore, it
is essential to choose the methodology that has the least error in your past estimates or
paths already taken. For us it is important to quantify the performance of a model to
use it as a feedback and comparison. Error measurements are commented below Sooares
(2020).

The Mean Squared Error (MSE) is the mean squared of the difference between the
predicted and true values, has the same units as the squared true and predicted values,
and is always positive. From the equation below, we can see that the mean squared error
is more penalizing for larger errors or outliers.

. Ethl (et)2
MSE = =552 (3)

Since the MSE is a quadratic measure, we will use the square root of the error,
which has the same unit of measure as the sample data. Therefore, it is more interpretable
compared to MSE.



The Root Mean Square Error (RMSE) is the square root of the mean square error.
It is also always positive and is in the range of the data. It also penalizes more for bigger
€ITors.

T 2
RMSE = M (4)

T
We will use this measure to compare the performance of models when analyzing

medium and long-term forecast periods.

Meanwhile, the Mean Absolute Error (MAE) is the mean of the absolute difference
between predicted values and actual values. The Mean Absolute Error has the same units
as the predicted and true value and is always positive.

Y led]
T ©)

We will use this measure to analyze the performance of the models when we look
at short-term forecast periods.

MAFE =

The Mean absolute percentage error (MAPE) is the percentage of the mean of the
absolute difference between the predicted values and the true values, divided by the true
value.

Y |
MAPE = % (6)

In the latter case, we look at sensitivity, since the absolute average percentage of
error makes the magnitude of errors smaller.

4 Results and discussion

4.1 Time-series analysis

The dataset consists of 433 observations for the period from January 1986 to
January 2022. Figure 2 illustrates the trajectory of the variable over time. Apparently,
the series lacks stationarity and seasonality. Until 2004 it is possible to observe that it is
almost constant, where from that moment on it presents high volatility.

Figure 2 — W'TT price trajectory
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The Christiano-Fitzgerald filter is similar to the Band-Pass filter, and is applied
most effectively if the T is infinite. This filter seeks to find an optimal way, considering
both the accuracy and the maintenance of information. It uses all the series information
to calculate the filter at each point. Another advantage of this filter is that it does not lead
to a large loss of information. Figure 3 presents the application of the filter decomposing
the series into trend and cycle.

Figure 3 — Christiano-Fitzgerald filter
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Our initial hypothesis is that the ARIMA model better predicts the trend and the
LSTM better predicts the cycles of a time series. To verify this hypothesis, the decom-
position of the series into trend and cycle was performed using the Christiano-Fitzgerald
filter, as we can see in Figure 3.

4.2 Treatment of the series

To apply ARIMA modeling, it is necessary to ensure that the series are stationary.
In this way, unit root tests were used to check this condition. Table 1 shows the results
for the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) and Dickey-Fuller GLS (ADF-GLS) tests. These results suggest
that the WTT (Cycle) series is stationary in level while the WTT and WTTI (Trend) series
have a unit root, but become stationary at first difference.

Table 1 — Unit Root Tests

Variable ADF PP ADF-GLS KPSS Result

WTI -2.31 -2.63 -2.44 -2.20 unit root
WTTI (Diff) -14.06 -13.06 -2.96 0.03 stationary
WTT (Trend) -1.10 -2.04 -0.99 0.54 unit root
WTT (Trend Diff) -4.30 -16.41 -2.51 0.05 stationary
WTTI Cycle -1.46 -3.86 -1.08 0.019 stationary

* Diff (series in first difference). Source: Authors’ elaboration.
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4.3 Evaluation of predictions

As seen in 3.3, the next step consists of identifying the model from the autocorre-
lation functions and choosing the optimal values of p and q. The selection of these values
was based on the minimum criteria of AIC, and the orders chosen can be seen in Table
2. The ARIMA models presented will be used to forecast the parts of the series and the
original series.

Table 2 — Optimal values of P,D,Q

Series p d ¢q
WTI 3 1 1
WTI (Trend) |1 1 0
WTI (Cycle) |1 0 0
WTI (Noise) [0 1 1

Source: Authors’ elaboration

For the chosen models, the residual diagnoses were performed through the Ljung-
Box autocorrelation test, the results showed that the residuals are not autocorrelated,
therefore, the models were enabled for prediction. After the estimation, the accuracy
of the forecasts generated out of the sample was evaluated, and the metrics applied to
evaluate the errors and performance of the ARIMA model are presented in Table 3.

Figure 4 — ARIMA Modeling (WTI): (a) ARIMA Forecast
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Figure 5 — ARIMA Modeling (WTI - Trend)
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Figure 6 — ARIMA Modeling (WTI - Cycle)
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Figure 7 — ARIMA Modeling (WTTI - Noise)
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The predicted models were shown in Figures (4, 5, 6 and 7). We used 2/3 of the
data for training and fitting using ARIMA modeling, 1/3 for forecasting the test data, and
the forecast performed for 12 months out of sample. In the previous figures, the orange
line at the end of the series are the forecast values for the ARIMA model.

The ARIMA(3,1,1) model for the original WTI series presented the best perfor-
mance among the tested models. While for the trend and cycle serie were estimateds an
ARIMA(1,1,0) and ARIMA(1,0,0) respectively which are AR(1) models, while for the
noise was chose ARIMA (0,1,1) model which is a MA(1) model.
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Figure 8 — LSTM Modeling (WTT - Trend):(a) WTTI in-sample (b) WTTI out-of-sample
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Figure 9 — LSTM Modeling (WTTI - Trend):(a) Trend in-sample (b) Trend out-of-sample
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Figure 10 — LSTM Modeling (WTT - Cycle): (a) Cycle in-sample (b) Cycle out-of-sample
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Figure 11 — LSTM Modeling (WTT - Noise): (a) Noise in-sample (b) Noise out-of-sample
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Let A be a machine learning algorithm with A hyperparameters. We denote the
domain of the h-th hyperparameter by Dj, and the general configuration space of the
hyperparameter as D = Dy x Dy X ... X Dp. A vector of hyperparameters is denoted by
v € D, and A with its hyperparameters instantiated to v is denoted by A,. The domain
of a hyperparameter can be an integer value (e.g., epochs), binary (e.g., whether or not
to use early stopping), or categorical (e.g., optimizer choice). (77).

For the numerical hyperparameters we use RandomSearch and GridSearch opti-
mization methods , where initially a RandomSearch method is used to find the non-
numerical hyperparameters, together with them we get a set of numerical hyperparame-
ters. The set of hyperparameters is again optimized with GridSearch, where each numer-
ical hyperparameter is tested with the following grid [%,n, n?], where n is the numerical
hyperparameter found with RandomSearch. Binary choice is already tested for both cases
in the predictions. In this study, we numerical hyperparameters are epochs, batch size,
cell units, dropout rate and number of layers, while the non-numerical parameters are
Dense and LSTM layer activation function, loss function and optimizer choice.

Table 3 — Error measures for prediction, by selected model

Model MAPE MAE RMSE
WTI

ARIMA-LSTM-LSTM 8.89% 6.74 8.64
ARIMA-LSTM-ARIMA 10.99%  8.29 10.28
LSTM-LSTM-LSTM 11.81%  8.83 10.56

LSTM-LSTM-ARIMA 14.00%  10.43 12.25
ARIMA-ARIMA-LSTM 20.62%  15.05 16.33
ARIMA-ARIMA-ARIMA 2281%  16.65 18.06
LSTM-ARIMA-LSTM 23.63%  17.19 18.46
LSTM-ARIMA-ARIMA 25.81% 18.79  20.19

ARIMA 25.01%  18.40 20.47
LSTM 23.70%  17.39 19.17
WTTI (Trend)

ARIMA 55.54%  3.45 3.98
LSTM 50.63%  4.36 5.17
WTTI (Cycle)

ARIMA 28.27%  14.26 15.43
LSTM 122.78%  6.32 7.49
WTTI (Noise)

ARIMA 1.42% 0.85 0.98
LSTM 1.26% 0.75 0.80

Source: Authors’ elaboration.

4.4 Forecasts

The forecast of the original oil series was performed using 4 ARIMA models and
4 LSTM models, their results can be seen in table 4. The ARIMA models shown in table
2 were chosen, based on the criteria listed above, in addition to the RMSE analysis of
training and testing.

Regarding the LSTM models, the choice was made based on the RMSE of the
training and testing. We decided to select the 2 best LSTM hyperparameter sets, for 64
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choices of the set, for each of the four LSTM model architectures (each of the architectures
has 16 choices of hyperparameter combination), for out-of-sample prediction and finally
we chose the best model for hybrid model by analyzing the RMSE again of the two best
models.

Table 4 — Predicted values outside the sample (12 months) - Original Series - Hybrid

Models
Date WTI AAA AAL ALA LAA ALL LLA LAL LLL
feb/21 59.04 52.85 53.29 56.99 51.83 57.43 55.96 52.26 56.4
mar /21 62.33 53.19 53.82 59.64 51.68 60.27 58.13 52.3 5876
apr/21 61.72 53.4 54.22 61.21 51.6 62.03 59.41 5242 60.23
may /21 65.17 53.57 b4.6 62.17 51.57 63.19 60.17 52.59 61.19
jun/21 71.38 53.73 5496 62.76 51.58 63.99 60.61 52.8 61.84
jul/21 72.49 53.89 55.33 63.14 51.62 64.58 60.87 53.06 62.31
aug/21 67.7 54.04 55.7 63.38 51.68 65.04 61.02 53.35 62.68
sep/21 71.65 54.2  56.09 63.53 51.77 6542 61.1 53.67 62.99
oct/21 81.48 54.35 56.48 63.62 51.87 65.75 61.14 54  63.27
nov /21 79.15 54.5  56.87 63.68 51.98 66.05 61.16 54.35 63.53
dec/21 71.71 54.64 57.27 63.72 52.09 66.35 61.17 54.72 63.79
jan/22 83.22 54.85 57.76 63.74 52.27 66.65 61.16 55.18 64.07

Source: Authors’ elaboration.

We made forecasts for each component and for the original series with different
ARIMA and LSTM models for each series. Analyzing table 3 based on the MAPE, we
observe that the LSTM model is better than the ARIMA model for WTI, the trend and
the random component. When we consider the MAE, the LSTM model is better than the
ARIMA model for WTI, the cycle and the random component. Finally, when we stop to
analyze the RMSE the LSTM model is better than the ARIMA model on the WTI, the
cycle and the random component. We see that the LSTM model performs better than
the ARIMA model for WTI and the random component regardless of the error metric.
Note also that the cycle error values show a significant difference between the models in
any of the error metrics by more than doubling from one to the other. The results of the
predictions can be seen in tables 6, 7, 8, 9 in the appendix.

Finally generating combinations, we have 8 hybrid models, since there are 3 com-
ponents and two modeling methodologies. This combination is made through the sum of
the components that were separated by the Christiano-Fitzgerald filter. Table 3 shows
that of the 8 hybrid models for the WTI, the first 4 show a significant improvement over
the pure models, and the first 3 reduce the errors by half, and the third best model is
composed only of combinations of LSTM’s. It is worth noting that although it is not
in the top 4 hybrid models, combining forecasts only from ARIMA models presents an
improvement over the pure ARIMA model.

Still on table 3, the 4 best models have the LSTM model as cycle model, which
corroborates our initial hypothesis that the LSTM better predicts cycles, and two best
models have the ARIMA as model that better predicts the trend, which also validates our
other initial hypothesis. We also see that for the random component the ARIMA model
always ranks immediately behind the LSTM model, for all combinations of trend and
cycle.
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5 Comparisons

The focus of the study was to compare traditional models, deep learning, and a
hybrid model of these two models to predict the WTI oil spot price time series, which
is important due to oil shocks. We employed a Christiano-Fitzgerald filter to split the
sequence into linear and non-linear parts, and used eight hybrid models, of combinations
of ARIMA’s with LSTM’s and with each other.

Our forecasts showed better performance of the ARIMA to model the linear part,
the LSTM model is more effective modeling the non-linear part, and the random com-
ponent fits both models well. The out-of-sample forecasting results showed that the best
models for the spot price of oil are: ALL, ALA and LLL. The ALL model was superior
to these two models with a difference of 1.55, 1.64 and 2.1% in MAE, RMSE and MAPE
errors respectively when compared to the ALA model.

We observe that the performance of the ALA is very similar to that of the LLL
model. With the ALA and LLL models having a difference of less than one unit. In
general, we draw conclusions based on simulation time and errors, which indicates the
ALA model as the best and we would have the ALL and LLA models as second and
third best respectively due to the computational cost of the LLL model for gains in the
magnitude of at most 2 in errors, a fact that is repeated when comparing ALL and ALA.

When we do not consider the computation time, the most significant and reliable model
is the ALL model, followed by the ALA model.

6 Conclusions

In view of the great importance of oil in the world economy, we searched several
models from ARIMAS and LSTM to obtain the best performing model to predict the oil
price and the three components: cycle, trend and noise. Thus, this work proves to be a
potential tool for financial agents in the commodities market, especially to forecast the
WTI and its impacts on the economy and the energy sector.

From the models proposed in this study, we saw that all the hybrid models for
WTT oil price, they were better compared to the pure models. For predicting the trend
series and the cyclical series generated by the Christiano-Fitzgerald filter, the best models
are the ARIMA and LSTM models respectively, corroborating our initial hypotheses, and
more applying ARIMA to predict the parts of the series, is better than using the pure
ARIMA model for the original series.

In isolation, the LSTM provides good forecasts for the random component, while
the ARIMA model generates forecasts with errors close to those of the LSTM, which
in itself does not generate a large differential between the models that differ only in the
random component, with the errors for the out-of-sample forecast being very close. There-
fore, our suggestion for future work is to find a better model for the random component
generated by the Christian-Fitzgerald filter and continue improving the LSTM models for
the cycle and the ARIMA model for the trend.
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APPENDIX A - Descriptive statistics and Predictions for the

WTI oil

Table 5 — Statistics descriptive

Variable Count Mean Std Min Max
WTI 433 44.790508 28.718752 11.350000 133.880000
WTT (Trend) 433 14.871740 17.764958 -24.607009 71.050785
WTT (Cycle) 433 -0.226232 10.204900 -31.493481 37.489334
WTTI (Noise) 433 30.145000 17.464644  0.000000  60.290000
WTI Sample 421 44.055226 28.760517 11.350000 133.880000
WTT Sample (Trend) 421 15.052750 17.973425 -24.607009 71.050785
WTT Sample (Cycle) 421 15.052750 17.973425 -24.607009 71.050785
WTT Sample (Noise) 421 29.307639 16.981193  0.000000  58.615278
WTTI Out-of-sample 12 70.586667  7.839469  59.040000  83.220000
WTT Out-of-sample (Trend) 12 8.521303  3.817064  2.494576  13.975625
WTT Out-of-sample (Cycle) 12 2.542945  6.681468  -9.962324  9.025381
WTT Out-of-sample (Noise) 12 59.522419 0.503191  58.754838  60.290000

Source: Authors’ elaboration.

Table 6 — Predicted values outside the sample (12 months) - Original Series - Pure Models

Data WTI ARIMA LSTM
feb/21 59.04 54.06 53.14
mar/21 62.33 54.64  54.09
apr/21 61.72 54.40 54.12
may /21 65.17 53.76 54.10
jun/21 71.38 53.00 53.85
jul/21 72.49 52.27 53.60
aug/21 67.7 51.63 53.30
sep/21 71.65 51.11 53.01
oct/21 81.48 50.71 52.71
nov/21 79.15 50.42 52.43
dec/21 71.71 50.21 52.15
jan/22 83.22 50.07 51.89

Source: Authors’ elaboration.
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Table 7 — Predicted values outside the sample (12 months) - Trend

Data WTI (Trend) ARIMA LSTM
feb /21 10.24 678 5.6
mar/21 10.44 6.95 5.44
apr/21 6.72 6.99 5.19
may /21 7.19 7 5
jun/21 10.65 7 4.85
jul/21 9.33 7 4.73
aug/21 2.49 7 4.64
sep/21 4.82 7 457
oct/21 13.46 7 4.52
nov/21 10.36 7 4.48
dec/21 2.53 7 4.45
jan/22 13.97 7 4.42

Source: Authors’ elaboration.

Table 8 — Predicted values outside the sample (12 months) - Cycle

Data WTTI (Cycle) ARIMA LSTM
feb/21 -9.96 -12.61 -8.47
mar/21 -7 -12.44  -5.99
apr/21 -4.04 -12.27 -4.46
may /21 -1.19 -12.11 -3.51
jun/21 1.41 -11.95 -2.92
jul/21 3.7 -11.79 -2.54
aug/21 5.61 -11.64 -2.3

sep/21 7.09 -11.48 -2.15
oct/21 8.14 -11.33 -2.06
nov/21 8.77 -11.18 -2

dec/21 9.02 -11.04 -1.96
jan/22 8.95 -10.83 -1.94

Source: Authors’ elaboration.

Table 9 — Predicted values outside the sample (12 months) - Noise

Data WTI (Noise) ARIMA LSTM
feb/21 58.76 58.68 59.12
mar/21 58.89 58.68  59.31
apr/21 59.04 58.68 59.5

may /21 59.17 58.68 59.71
jun/21 99.32 58.68 59.91
jul/21 59.46 58.68 60.12
aug/21 29.6 58.68 60.34
sep/21 59.74 58.68  60.57
oct/21 09.88 58.68 60.81
nov/21 60.02 58.68 61.05
dec/21 60.16 58.68 61.31
jan/22 60.3 58.68 61.59

Source: Authors’ elaboration.
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