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Abstract
In this paper we implement dynamic extensions to the Nelson-Siegel term structure model
and investigate hedging performance using the time-varying parameters of these extensions.
Using data from brazilian interest rate futures market contracts, we estimate different
specifications of the Nelson-Siegel model with special attention to the econometric treatment
of decay parameter and common stochastic volatility. Since the model is non-linear, we
propose the use of the Kalman Filter combined with GAS-type dynamics (Generalized
Autoregressive Score) to estimate the parameters of interest. The great advantage of this
methodology is that the likelihood function of the state space model with time-varying
parameters is available in closed form, which facilitates the estimation of parameters by
maximum likelihood. An innovative feature of this work is the empirical application of
Nelson-Siegel models to hedge long-term exposures. We demonstrate how the different
estimated specifications perform in the context of immunizing a fixed-income portfolio of
long-term credit assets using short-term derivative instruments. Our estimates indicate
that considering dynamics in the decay parameter combined with stochastic volatility
significantly improves hedge performance. These results are of great interest to financial
institutions in the Brazilian market, which do not find sufficient liquidity to hedge long
maturities and need to adopt other strategies that increase transaction costs.
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1 Introduction
Fluctuating interest rates bring with them changes in the prices of assets and liabilities,

generating unexpected losses and gains. Therefore, financial institutions must immunize
their portfolios to protect their portfolio values against interest rate risk. The term
“immunization” describes the steps taken by a manager to construct and manage a
portfolio in such a way that this portfolio achieves a predetermined objective. One of
these steps requires modeling how the prices of contracts with different maturities react to
shocks from different risk factors. There is recognized literature that models both the time
series of the yield curve and the cross-section of the term structure of returns and prices
(Diebold and Rudebusch (2011)). As the practice of hedging requires the minimization of
errors in predicting the returns of a large set of maturities, the imposition of a structure
of risk factors on the yield curve, to reduce the dimensionality of the problem, proves to
be an attractive solution to this type of problem.

One line of action in portfolio immunization involves the use of parametric models
of the term structure of interest rates. In this type of formulation it is assumed that at
each moment the temporal structure of interest rates accepts a particular functional form,
which is expressed as a function of time and a limited number of parameters. In this line
of research, Nelson and Siegel (1987) proposed a seminal statistical model that presents
good empirical performance to the data. The methodology received considerable attention
with the work of Diebold and Li (2006), where the authors proposed a dynamic version, in
which the yield curve is described by a model of just three time-varying factors. The three
factors are level, slope and curvature, in which the decay is governed by a static parameter
λ. An extension of this model is the Svensson (1994) specification, used internationally by
central banks and for measuring reference and mark-to-market curves. In Brazil, several
articles estimated Nelson-Siegel and Svensson models for different interest curves and with
different objectives1. For example, the parameters of the Nelson-Siegel-Svensson model for
Inflation-Linked Bonds (IPCA), Treasury Yields and fixed income private bonds market
are published daily by Anbima.

Since Diebold and Li (2006), the empirical yield curve literature has moved towards
different generalizations of the dynamic factors model and mainly investigated the inclusion
of non-linearities and how they impact the forecasting capacity of these models. Initially,

1See, for example, for Exchange Rate Coupon Curve Pinheiro, Almeida, and Vicente (2007) and
Laurini and Hotta (2009); for Real Interest Curve and Implicit Inflation Almeida and Lund (2014)
and Fernandes and Thiele (2015); for Interest Curve and Macroeconomic Variables Vieira, Fernandes,
and Chague (2017) and Fernandes, Nunes, and Reis (2020); for Central Bank Communication and
Interest Curve Andrade Alves, Joseph Abraham, and Poletti Laurini (2023); for Yield Curve Forecast
Caldeira, Laurini, and Portugal (2010) Caldeira, Moura, and Santos (2016b) and Caldeira et al. (2023);
for Portfolio Optimization Caldeira, Moura, and Santos (2016a).
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Koopman, Mallee, and Wel (2010) proposed the inclusion of dynamics in λ and volatility,
using non-linear techniques such as the Extended Kalman Filter. Another initiative
emerged with Hautsch and Yang (2012) and Caldeira, Laurini, and Portugal (2010), where
the authors also proposed the introduction of temporal variability in λ and volatility using
Bayesian techniques. Another innovation in these works was the inclusion of stochastic
volatility for the covariance matrix of dynamic factors. The third generalization of this
literature was the inclusion of macroeconomic covariates in the model (Diebold, Rudebusch,
and Aruoba (2006)). In summary, a large number of articles have shown that there are
significant gains in predictive power when considering λ or volatility as time-varying
parameters (TVP) or when macroeconomic variables are included in the model (see, for
example, Caldeira et al. (2023)).

This paper contributes to the literature that considers the introduction of time-varying
parameters into Nelson-Siegel yield curve models. However, while most articles eval-
uated the predictive capacity of different generalizations, in this work we investigated
improvements that the inclusion of dynamics in λ and heterocesticity can bring for hedging
purposes. The Nelson-Siegel model is particularly suitable for this problem, since its
formulation offers additional risk parameters beyond the hedging technique via duration,
that is, it allows controlling parallel and non-parallel shocks, and its parsimony allows
identifying the temporal variation of the covariance structure of interest rates.

An innovative feature of this work is the empirical application of hedging to long-term
exposures. We highlight that in other articles in Brazilian literature, such as Almeida and
Lund (2014) and Meirelles and Fernandes (2018), parametric immunization techniques
are applied to durations that have instruments with approximate maturities. In the
present study, we simulate a credit portfolio that grows monthly with an approximate
duration greater than 20 years. Aiming at immunization with interest rate derivatives, we
know that the Brazilian DI Future market does not present liquidity for these maturities.
Thus, we estimate different variations and extensions of the Nelson-Siegel dynamic model
using reference rates from the Brazilian nominal interest market and use the results of
the parameters of interest to replicate the excess returns targets with liquid derivative
instruments with terms between 1 up to 12 years adjusted to minimize portfolio variance,
as Litterman and Scheinkman (1991). This empirical problem of hedging long-term
exposures is of great interest to financial institutions such as Pension Funds, Banks and
other Credit Institutions, which generally face index mismatches in their balance sheets.
Furthermore, a large part of the Brazilian fixed income market immunizes portfolios via
duration, considering in most cases only level fluctuations2

2A popular approach in the Brazilian market, called ’key rate duration ’ assumes that changes
in interest rates can be accurately described by changes in the level of a limited number of segments
(vertices or drivers of the yield curve) into which the term structure is subdivided, thus generalizing the
concepts of duration and convexity for a multivariate context, considering the portfolio’s joint exposure
to these ’key rates’. See, for example, Ho (1992).
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For this proposal, our empirical strategy brings important methodological elements
that differentiate this article from the literature applied to the Brazilian market. In the
Nelson-Siegel model, the factor structure is fully controlled by the λ parameter, as it defines
the decay rate of the exponential polynomial. In other words, different values of the decay
parameter provide different time series for the dynamic factors and therefore different
predictions. This parameter has received little attention, and is often not even estimated,
but rather defined as an ad hoc value. Diebold and Li (2006) set λ at 0.0609, imposing a
maximum point of curvature of the term structure in 30 months. In Brazilian literature,
Almeida et al. (2009) define a fixed λ of 3.58 for the Brazilian curve in a four-factor model
between November 2004 and December 2006. In turn, Caldeira, Laurini, and Portugal
(2010) found a value fixed to λ of 1.255 between January 2006 and February 2009 for a
three-factor model. Meirelles and Fernandes (2018) minimized the mean squared error
with moving regressions and documented an optimal λ ranging between 0.532 and 1.532.
These empirical estimates show that the works differ mainly in the ability to predict short
and long maturities of the interest curve, since small values of λ cause a smooth reduction
in the exponential coefficients and serve to adjust the curve well in long terms, while high
values of λ result in a more pronounced reduction of the exponential coefficients and serve
to adjust the curve in shorter periods.

In this work we focus on estimating dynamic factors and propose an intuitive version
of modeling the temporal variation of the model’s dynamic parameters. The inclusion of
dynamics in λt makes the model non-linear, so the Kalman Filter cannot be applied in
the conventional way. Koopman, Mallee, and Wel (2010) proposed the Extended Kalman
Filter formulation to deal with this situation. Here, we use the econometric methodology
GAS (Generalized Autoregressive Score)3 combined with Kalman Filter, so that we impose
a rule of movement for the parameters from the conditional likelihood score function,
following Creal, Koopman, and Lucas (2013) and Harvey (2013). We present the analytical
derivations of the Nelson-Siegel model with the GAS methodology in state space form,
which can be called Score-Driven Nelson-Siegel. The great advantage of this methodology
is that the likelihood function of the state space model with time-varying parameters
is available in closed form, which facilitates the estimation of parameters by maximum
likelihood and substantially reduces the computational cost in relation to other econometric
techniques.

We know of only three articles applied to the Brazilian market that modeled the temporal
variation in λ. Considering Svensson’s formulation, Laurini and Hotta (2010) estimated
decay values between 2004 and 2006. Caldeira, Laurini, and Portugal (2010) estimated
it for the period 2007 to 2009 and also found considerable variability. Franciscangelo
(2015) applied the Extended Kalman Filter for the period 2012-2015. According to these
references, the decay factor λt reached levels above 2.00 in 2006 and 2008 and was situated

3See https://www.gasmodel.com/.
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in the range 0.30-0.90 between 2012 and 2015.

Regarding international literature, Koopman, Mallee, and Wel (2010) considered
temporal variation in λ through the Extended Kalman Filter, while Creal, Koopman, and
Lucas (2008) considered the GAS approach. Recently, Quaedvlieg and Schotman (2022)
also considered variability in λ using a dynamic conditional score (DCS) specification and
investigated the hedging capacity of different Nelson-Siegel specifications for immunizing
long-term liabilities, a similar problem to the treaty in this work. Other articles that
documented relevant variability in λ were Cordeiro et al. (2019) and Caldeira et al. (2023).

Additionally, we allow for a stochastic volatility framework with GAS dynamics to con-
trol for the presence of conditional heteroskedasticity observed in interest rates. Koopman,
Mallee, and Wel (2010) considered in the form of state space a specification where the
main component of the error terms of the Nelson-Siegel equation follow a GARCH process.
This same strategy was used by Quaedvlieg and Schotman (2022) and Caldeira et al.
(2023). Laurini and Hotta (2010), Hautsch and Ou (2012), Hautsch and Yang (2012) and
Caldeira, Laurini, and Portugal (2010) proposed estimation of stochastic volatility with
Bayesian techniques in Nelson-Siegel specifications. Using the GAS approach, Koopman,
Lucas, and Zamojski (2017) showed that the inclusion of multivariate stochastic volatility
combined with the t−Student distribution considerably improves model fit. We follow
the GAS approach for modeling the common volatility of yields, while the latent factor
structure is assumed homoscedastic. Like the yield curve parameters, the log-volatility
factors also have an analytical scoring structure and the likelihood functions are available
in closed form.

In our model, the temporal variation in λ and the variance of the error terms are
interconnected, as the covariance matrix directly influences the updates of λ. If we
consider homoscedasticity of the error terms, that is, if volatility is not modeled, there is a
considerable loss of predictive quality, which is quite relevant when we deal with a hedging
problem. The empirical hedging exercise shows, step by step, how to build a portfolio for
immunization, where mark-to-market (MtM) errors are considerably reduced when we
compare models with constant λ and with homocesticity of the error terms (such as in
Diebold and Li (2006)).

The article is organized as follows. In the next section we introduce the Nelson-Siegel
model with GAS dynamics. We then present the data treatment and the model results,
such as the estimation of the time-varying parameters λt and the dynamic factors. Finally,
we present the results of the immunization exercise.

2 Score-Driven Nelson-Siegel
In this section we present the Nelson-Siegel model for estimating the term structure of

interest rates and formulate the time-varying parameters with GAS-type dynamics, giving
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rise to the name Score-Driven Nelson-Siegel.

2.1 Nelson-Siegel Dynamic Model for the Term Structure of Interest
Rates

Nelson and Siegel (1987) originally derived the following specification to describe the
dynamics of forward curves:

f(τ) = α1 + α2 exp (−λτ) + α3(λτ) exp (−λτ) (1.1)

so that, if we use the following relationship between forward rates and spot rates (spot), it
is possible to calculate the spot curve using the NS model:

y(τ) = 1
τ

∫ τ

0
f(τ)dτ (1.2)

At a given period in time, t, the interest rate curve, denoted by yt(τ), represents the
interest rate as a function of maturities τ . The exponential model proposed by Nelson and
Siegel (1987) and reinterpreted by Diebold and Li (2006) considers a parametric structure
for the evolution of the term structure of interest rates over time, in which the coefficients
can be interpreted as level, slope and curvature:

yt(τ) = β1,t + β2,t

(1 − e−λtτ

λtτ

)
+ β3,t

(1 − e−λtτ

λtτ
− e−λtτ

)
+ ϵt (1.3)

In the equation above, the shape of the yield curve is determined by the three parameters
(β1,t, β2,t and β3,t) and by the factor loadings associated with they. The parameter λt,
treated as a constant in Diebold and Li (2006), determines the decay rate of the exponential
polynomial, so that small (large) values of λt are associated with a decay smooth (fast),
and provides better grip for longer maturities (short). The weight of the first component is
equal to 1 (constant) for all maturities, so β1,t is interpreted as the interest curve level factor,
which equally influences short-term and long-term rates , an important characteristic for
hedging purposes. The charge of the second component,

(
1−e−λtτ

λtτ

)
, starts equal to 1 and

converges to zero monotonically and quickly, so that β2,t is interpreted as the interest
curve slope factor, or short-term factor, given that this factor has a strong influence on
shorter-term interest rates . The charge of the third component,

(
1−e−λtτ

λtτ
− e−λtτ

)
, is a

concave function, in which it takes on a value equal to zero for zero maturity, increases
with maturity, and then monotonically converges to zero at longer maturities. Thus, β3,t

is interpreted as the curvature factor, or medium-term factor, as it has a strong influence
on the rates at the core of the curve.

In each period t, there are interest rates yt(τ) for different maturities τ . Thus, the
above equation can be estimated for each period in time t, obtaining time series for the
parameter vector βt. As an example, Diebold and Li (2006) and Almeida and Lund (2014)
used a two-step procedure to estimate the model. In the first step, the time series are
obtained by moving OLS/NLS regressions at every t, and then the three series of β1,t, β2,t
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and β3,t are modeled in a second step as a VAR model (1).

An alternative approach is to represent the model in state-space form and estimate
all parameters simultaneously through the Kalman Filter. The system, composed of a
measurement equation and a transition equation, is given by:

yt(τ) = Λ(λt)βt + ϵt, N ∼ (0, Σϵ

βt = (I − Φ)µ + Φβt−1 + ηt

(1.4)

where the measurement equation defines the vector yt(τ) of interest rates with dimension
(T × N) as the sum of the dynamic factors βt multiplied by the factor loadings Λ(λt) is a
vector ϵt of Gaussian errors that are independent between maturities. The vector βt (3 × 1)
represents the dynamic factors, and Φ is the VAR coefficient matrix that determines the
dynamics of the states over time. Regarding Λ(λt), it is a non-linear (N × 3) matrix of
weights/loadings, in which it varies in time only if the decay parameter λt is variable.

To estimate the model in linear form with the Kalman Filter, for example, we need to
consider that the weight matrix is constant over time for each maturity, implying λt = λ.
However, λ is a crucial parameter for building a hedge portfolio, as it governs exposure
to different factors across maturities. Therefore, considering λt as a variable over time
can bring gains in hedge performance and predictive accuracy. The difficulty, however, is
that the inclusion of variability in λ makes the model non-linear and other approaches
need to be applied, such as Bayesian techniques (Hautsch and Yang (2012) and Caldeira,
Laurini, and Portugal (2010)) or Kalman Filter Extended (Koopman, Mallee, and Wel
(2010); Caldeira et al. (2023)).

Recently, some works that considered GAS-type dynamics on the parameters of the
Nelson-Siegel model emerged as an alternative (Creal, Koopman, and Lucas (2008); Mesters,
Schwaab, and Koopman (2014); Koopman, Lucas, and Zamojski (2017); Quaedvlieg and
Schotman (2022); Vleuten, Lange, and Wel (2023)). Despite this, this methodology has
not yet been tested with data from the Brazilian market4.

Therefore, we will follow the GAS approach to estimate the time-varying factors βt

and the decay parameter λt. Additionally, we consider stochastic volatility to control for
conditional heteroskedasticity. In the next section we will introduce some state space
concepts under the GAS optimum, in line with Creal, Koopman, and Lucas (2013) and
Harvey (2013). The following two sections derive the Nelson-Siegel formulation considering
GAS-type dynamics with only the three factors βt varying in time (λ fixed), which we call
NS3F, and with the four time-varying parameters (βt, λt), which we call NS4F. Finally,
in a third section, we present the inclusion of common stochastic volatility in the error
matrix Σϵ also following GAS dynamics. This last case will result in generalizations called

4Santos, Ribeiro, and Sanfins (2019) applied the GAS model to estimate the level factors of the
interest curve. However, the authors adopted a more simplified empirical strategy than that exposed in
the present work.
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NS3F-V and NS4F-V.

2.2 GAS models in State Space Form

In this subsection we introduce the technical aspects of GAS models from the perspective
of state space. We follow the Harvey (1990) notation.

Consider a time series model that has the following measurement and transition
equations under state space representation:

yt = Ztαt + ϵt, ϵt ∼ N (0, Ht),
αt = Ttαt−1 + ηt ηt ∼ N (0, Qt), t = 1, ..., n,

(1.5)

where yt is a vector of dimension N × 1 of observable variables, such as interest rates for
different maturities, ϵt is a vector of dimension N × 1 of measurement errors, αt is a m × 1
vector of state variables and ηt is a m × 1 vector of transition errors. The two error terms
ϵt and ηt are assumed to be Gaussian distributed and uncorrelated for all time periods,
that is, E(ϵt eta′

s) = 0 ∀ t, s and present covariance matrices Ht and Qt, respectively. The
initial value of the state vector is also assumed to be Gaussian distributed, α0 ∼ N (α0, P0)
and uncorrelated ∀t with ϵt and ηt.

Following Harvey (1990), it is generally assumed that the matrices Zt, Ht, Tt and Qt

are non-stochastic. As a result, the system (1.5) is linear with respect to the state vector.
Conditioned on the informational set Yt−1 = {yt−1, ..., y1} and a vector of parameters θ,
the state vector and the vector of observations are Gaussian; i.e., yt|Yt−1; θ ∼ N (Ztat, Ft)
and αt|Yt−1; θ ∼ N (at, Pt), and the log-likelihood function on t is:

lt = log p(yt|Yt−1; θ) ∝ −1
2
(

log |Ft| + v
′

tF
−1
t vt

)
(1.6)

so that prediction error vt, its covariance matrix Ft, the conditional mean of the state
vector at, and the quadratic error matrix Pt (MSE), are recursively estimated by the
Kalman Filter. The update steps are given by:

vt = yt − Ztat

at|t = at + PtZ
′

tF
−1
t vt

Ft = ZtPtZ
′

t + Ht

Pt|t = Pt − PtZ
′

tF
−1
t ZtPt

(1.7)

and the prediction steps are:

at+1 = Tt+1at|t

Pt+1 = Tt+1Pt|tT
′

t+1 + Qt+1
(1.8)

for t = 1, ..., n. Specifically, we have that at = E(αt|Yt−1, θ) is called a predictive filter with
MSE matrix Pt = E[(at − αt)(at − αt)

′ |Yt−1, θ] while at|t = E(αt|Yt, θ) is called real-time
filter with MSE matrix Pt|t = E[(at|t − αt)(at|t − αt)

′ |Yt−1, θ]. The state space model in
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(1.5) is defined in contemporary form as in Harvey (1990). We chose the Harvey (1990)
notation so that the system matrices present the same temporal structure as the vector of
time-varying parameters.

In GAS family models, it is assumed that variations in the matrix system over time are
endogenous and depend on past observations. Therefore, although stochastic, the matrix
system is predetermined, which means that, conditional on past observations, the system
matrices can be considered fixed. As a result, the model is still considered conditionally
Gaussian as in Harvey (1990).

This configuration has three attractive features. First, both the state vector and the
observation vector are conditionally Gaussian. Second, the likelihood function can be
written in the form of the decomposition of prediction errors (Equation 1.6) and calculated
using the Kalman Filter in (1.7). Third, although the model is not linear in observations,
the Kalman Filter results in optimal state vector estimates as in Harvey (1990). The main
analytical challenge here is represented by the joint updating of the system matrices and
the state vector. To solve this problem, we derive a different set of recursions that work in
parallel with the Kalman Filter.

In the GAS model, the time-varying elements of the matrix system in (1.5) are collected
in a vector ft, called the TVP vector. As in Creal, Koopman, and Lucas (2008), Creal,
Koopman, and Lucas (2013) and Harvey (2013), the following motion rule is defined for
the TVP vector:

ft+1 = c + Aft + Bst, st = St∇t, t = 1, ..., n, (1.9)

with

∇t = ∂lt
∂ft

, St = I−k
t|t−1 = −Et

(
∂l2

t

∂ftf ′
t

)−1

where ∇t is the score (gradient) function of the log-likelihood function lt with respect to
the TVP vector ft, the scale matrix, St, is defined as the inverse of the Fischer information
matrix Ik

t|t−1,, k = {0, 1/2, 1}. In this case, st has a conditional mean equal to zero and a
conditional variance equal to the inverse of the information matrix. The parameters in B

determine the sensitivity of the TVP parameters in relation to the conditional likelihood
score, and thus in relation to the information contained in the prediction error. The matrix
system can contain both time-varying and constant elements. The constant parameters
are collected in the vector θm. Therefore, in each period t, the matrix system depends on
ft and θm, denoting Zt = Z(ft, θm), Tt = T (ft, θm), Ht = H(ft, θm), and Qt = Q(ft, θm).
The scores vector st is calculated conditionally on the information up to the period t,
so the vector ft is entirely determined by past observations and the static parameters
vector θf = {c, A, B}. Since the matrix system is purely observation-driven, i.e., entirely
determined by past observations and the vector θ = (θ′

f , θ′
m)′, the model is defined as

conditionally Gaussian and the log-likelihood function (1.6) can be evaluated recursively
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through the Kalman Filter.

The gradient ∇t and the Fisher information matrix It can be calculated analytically.
Given the expressions (1.5)-(1.9), we have:

∇t = 1
2
[
F̌t(Ft ⊗ Ft)−1vec(vtv

′

t − Ft) − 2V̌
′

t F −1
t vt

]
It = 1

2
[
F̌

′

t (Ft ⊗ Ft)−1F̌t + 2V̌
′

t F −1
t V̌t

] (1.10)

where V̌t = ∂vt/∂f ′
t and F̌t = ∂vec(Ft)/∂f ′

t measures the sensitivity of the prediction error
vt and its variance Ft with respect to ft.

Note that all elements in the Fischer information matrix in It are calculated using
information up to t − 1. On the other hand, the gradient ∇t contains information
contemporaneous with the observation vector yt via the error vector vt. The terms V̌t and
F̌t are fundamental to the gradient ∇t. They measure the sensitivity of the first and second
moments of the state vector in relation to ft, respectively. Together with the variance
of the prediction error (Ft) and the curvature of the conditional likelihood (proportional
to It), they determine the impact that new information, summarized in vt, has over the
TVP vector. Note that vt and Ft are calculated recursively via the Kalman Filter in (1.7),
while the Jacobian counterparts V̌t and F̌t, are obtained recursively through the following
filtering.

The Jacobian counterparts of the Kalman Filter result in the following set of expressions:

V̌t = −
[
(a′

t ⊗ IN)Žt + (at−1|t−1 ⊗ Zt)Ťt

]
F̌t = 2NN(ZtPt ⊗ IN)Žt + 2(Zt ⊗ Zt)Nm(TtPt−1|t−1 ⊗ Im)Ťt + Ȟt + (Zt ⊗ Zt)Q̌t

(1.11)

where Žt = ∂vec(Zt)/∂f
′
t , Ȟt = ∂vec(Ht)/∂f

′
t , Ťt = ∂vec(Tt)/∂f

′
t and Q̌t = ∂vec(Qt)/∂f

′
t

are the Jacobians of the matrix system with respect to ft, and Nm is a symmetrizing
matrix (i.e., for any matrix S of dimension n×n, we have that Nnvec(S) = vec[1

2(S +S
′)]).

Establishing the formulation for ∇t, It, V̌t and F̌t together, we can calculate the score
st = St∇t and estimate the vector ft recursively using the filter (1.9 ).

The Kalman Filter combined with GAS filtering (Kalman-GAS) can be described
according to the algorithm described below:

1. Initialize a0|0, a1, P0|0, P1, f1, e Z1, T1, H1, Q1.

2. Para t = 1, ..., n:

(a) Calculate Žt, Ťt, Ȟt, Q̌t

(b) Calculate vt, Ft, V̌t, F̌t, lt

(c) Calculate at|t, Pt|t, ∇t, It, st

(d) Calculate ft+1

(e) Calculate Zt+1, Tt+1, Ht+1, Qt+1
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(f) Calculate at+1, Pt+1

Finally, the parameter vector θ can be estimated by maximum likelihood (ML), that is,
θ̂ = arg max∑n

t=1 lt(θ). Given the above algorithm, the evaluation of the log-likelihood
function is straightforward and the maximization can be obtained numerically.

2.3 GAS-Kalman Filter - Nelson-Siegel Model with 3 Factors (NS3F)

The Nelson-Siegel 3-Factor Model (NS3F) in state space form with the factors following
GAS dynamics can be described as follows. Initially, we consider the TVP factor ft = βt,
βt = (β1,t, β2,t, β3,t)′ and we consider Gaussian density for yt − Λ(λt)ft−1 ∼ N(0, Σϵ), where
ft follows an equation of motion of the GAS(1,1) type:

ft = ω + Aft−1 + Bst with st = ∇tSt (1.12)

where ω is a vector of conditional means and A and B elasticity matrices. As defined in
(1.6) and (1.9), the vector of scores st and the Fischer information matrix It|t−1 can be
derived as follows. In the NS3F model of equation (1.5), the log-likelihood function is
given by:

log p(yt|βt) = −N

2 log(2π) − 1
2 log |Ft| − 1

2(yt − Λ(λ)βt)
′
F −1

t (yt − Λ(λ)βt), (1.13)

and has a vector of scores denoted by

∇(yt|βt) = ∂

βt

log p(yt|βt) = Z ′F −1vt

= Λ(λ)′
F −1(yt − Λ(λ)βt)

(1.14)

The matrix St, which is equal to the Fisher information inverse matrix, is defined as

St = I−k
t|t−1 = −E[H(yt|θt)|θt|t−1)]−1 = [Z ′F −1Z]−1

= [Λ′
F −1Λ]−1,

(1.15)

where H(yt|θt)|θt|t−1) denotes the Hessian matrix defined by

H(yt|θt)|θt|t−1) = ∂2

∂βt∂β
′
t

log p(yt|βt) = −Λ′
F −1Λ (1.16)

Now we will redefine the matrix St as a predictor function of the Fischer information
matrix. This penalty matrix is defined as

St = [ρβIt|t−1]−1 = [ρβ[Λ′
F −1Λ]]−1 (1.17)

where ρb denotes a penalty coefficient. We considered the inclusion of this coefficient for
invertibility and computational treatment purposes. This matrix has a full rank as λ does
not approach zero (resulting in convergence of the second factorial load of Λ to the first
load) or assumes a high value (resulting in convergence of the third factorial load of Λ for
the second load).
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In the NS3F model, the Kalman-GAS Filter update steps are identical to the conven-
tional Kalman Filter. Based on (1.5-1.7), these steps are given by:

βt|t = βt|t−1 + Pt|t−1Z
′(ZPt|t−1Z

′ + Ht)−1vt

= βt|t−1 + Pt|t−1Λ
′(ΛPt|t−1Λ

′ + Σϵ)−1(yt − Λβt|t−1)
Pt|t = Pt|t−1 − Pt|t−1Z

′(ZPt|t−1Z
′ + Ht)−1ZPt|t−1

= Pt|t−1 − Pt|t−1Λ
′(ΛPt|t−1Λ

′ + Σϵ)−1ΛPt|t−1

(1.18)

The main changes are made to the prediction steps, so that now the state vector and its
variance matrix are given as:

βt+1|t =E[βt+1|Ft]
=E[ω + Φβt + St∇(yt|βt)|Ft]
=ω + Φβt|t + St∇(yt|βt|t)

(1.19)

V[βt+1|Ft] =V[ω + Φβt + St∇(yt|βt)|Ft]
=ΦPt|tΦ

′ + StV[Λ′
F −1(yt − Λβt)|Ft]S

′

t

=ΦPt|tΦ
′ + StV[Λ′

F −1Λβt|Ft]S
′

t

=ΦPt|tΦ
′ + StΛ

′
F −1ΛPt|tΛ

′
F −1ΛS

′

t

(1.20)

where E[·] and V[·] denote the expectation and variance operators respectively, and Ft is
the informational set in the period t. Therefore, the score evaluated under the updated
state at t contributes to the prediction at t + 1.

2.4 GAS-Kalman Filter - Nelson-Siegel Model with 4 Factors (NS4F)

In this subsection we expand the application of the Extended Kalman Filter from
Koopman, Mallee, and Wel (2010) in the formulation of the Dynamic Nelson-Siegel
model with 4 Factors (NS4F), which allows variability in λ. However, here we adopt
a GAS dynamic over the four time-varying parameters. We define the TVP vector as
f+

t = (β′
t, log λt) of dimension 4 × 1. Now the motion rule GAS(1, 1) is given as

f+
t = ω + Af+

t−1 + Bst (1.21)

When we include a fourth factor, log λt, as a time variable in the Nelson-Siegel model,
the model becomes non-linear in the state vector. Thus, the new observation equation is
non-linear in βt as:

yt = Z(θt) + ϵt = Λ(λt)βt + ϵt (1.22)

Note that the Kalman Filter only applies to models that are linear in the state vector.
This way, as in Koopman, Mallee, and Wel (2010) and Caldeira et al. (2023), we locally
linearize the function Z(θt) = Λ(λt)βt in f = θ = θt|t−1. The resulting update equations
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are identical as in the Extended Kalman Filter. The linearized model becomes:

yt = Zt(θt|t−1) + Žt · (θt − θt|t−1) + ϵt, ϵt ∼ N (0, Σϵ), Žt = ∂Zt(θ)
∂θ

∣∣∣∣
θ=θt|t−1

(1.23)

where

Žt = ∂Zt(θ)
∂θ

∣∣∣∣
θ=θt|t−1

=
[

∂Zt

∂β1,t

∣∣∣
β1,t=β1,t|t−1

∂Zt

∂β2,t

∣∣∣
β2,t=β2,t|t−1

∂Zt

∂β3,t

∣∣∣
β3,t=β3,t|t−1

∂Zt

∂λt

∣∣∣
λt=λt|t−1

]
(1.24)

where for the fourth column we made use of the chain rule such that ∂Z(xt)
∂ log λt

= ∂Z(xt)
∂λt

· λt

and we find
∂Z(xt)

∂λt

=β2,t · exp(−τ · λt)(τλt − exp(τλt) + 1)
τλ2

t

+ β3,t · exp(−τλt)(τ 2λ2
t + τλ − exp(τλ) + 1)

τλ2
t

(1.25)

resulting in the Jacobian matrix Žt

Žt =
[
ιN×1 Λ2(λt) Λ3(λt) ∂Zt

∂λt
· λt

]
(1.26)

with ιN×1 being a vector of 1s with dimension N × 1.

Now we derive the equations for St and ∇t. In the NS4F model, the log-likelihood
function of yt is given by

log p(yt|θt) = −N

2 log(2π) − 1
2 log |Ft| − 1

2(yt − Λ(λt)βt)
′
F −1

t (yt − Λ(λt)βt), (1.27)

with vector of scores defined as

∇(yt|θt) =
 ∂

∂βt
log p(yt|θt)

∂
∂ log λt

log p(yt|θt)

 =
Λ(λt)βt)

′
F −1

t (yt − Λ(λt)βt)
(yt − Λ(λt)βt)

′Λ̌(λt)βt

 (1.28)

where Λ̌(λ) = ∂Λ(λ)
∂ log λ

.

The Hessian matrix H(yt|θt) of log p(yt|θt) is given by

H(yt|θt) = ∂2

∂θt∂θ
′
t

log p(yt|θt) =

 ∂2

∂βt∂β
′
t

log p(yt|θt) ∂2

∂βt∂ log λ
′
t

log p(yt|θt)
∂2

∂ log λt∂β
′
t

log p(yt|θt) ∂2

∂(log λt)2 log p(yt|θt)

 (1.29)

where
∂2

∂βt∂β
′
t

log p(yt|θt) = −Λ(λt)′F −1
t Λ(λt),

∂2

∂βt∂ log λ
′
t

log p(yt|θt) = (yt − (Λ(λt)βt)
′
F −1

t Λ̌(λt) − (Λ̌(λt)βt)′F −1
t Λ(λt)

∂2

∂(log λt)2 log p(yt|θt) = (yt − (Λ(λt)βt)
′
F −1

t Λ̃(λt)βt − (Λ̌(λt)βt)
′
F −1

t Λ̌(λt)βt

(1.30)

and Λ̌(λ) = ∂Λ(λ)
∂ log λ

e Λ̃(λ) = ∂2Λ(λ)
∂(log λ)2 .
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Again, we denote the matrix St as a function of the Fischer information matrix. The
Fischer information matrix in the NS4F model is derived as:

I−1
t|t−1 = −E[H(yt|θt)|θt|t−1)]−1

=
 Λ(λt|t−1)′F −1

t Λ(λt|t−1) Λ(λt|t−1)F −1
t (Λ̌(λt|t−1)βt|t−1)′

β′
t(Λ̌(λt|t−1))′F −1

t Λ(λt|t−1) β′
t|t−1(Λ̌(λt|t−1))′F −1

t Λ̌(λt|t−1)βt|t−1

−1 (1.31)

where H(yt|θt)|θt|t−1] denotes the Hessian matrix and Λ̌ is the derivative of Lambda(λt)
relative to log λt. The resulting matrix St is given by

St =
ρβΛ(λt|t−1)′F −1

t Λ(λt|t−1) 0
0 ρλβ′

t|t−1(Λ̌(λt|t−1))′F −1
t Λ̌(λt|t−1)βt|t−1

−1

(1.32)

where ρλ represents a scalar coefficient that only penalizes the factor log λt.

As an Extended Kalman filter, the update steps are defined as:

θt|t = θt|t−1 + Pt|t−1Ž
′

t(ŽtPt|t−1Ž
′

t + Σ+
ϵ )−1(yt − Z(θt|t−1))

Pt|t = Pt|t−1 − Pt|t−1Ž
′

t(ŽtPt|t−1Ž
′

t + Σ+
ϵ )−1ŽtPt|t−1

(1.33)

While the prediction steps are changed as the equation of states changes. The prediction
equations for θ and its estimated variance are now defined as:

θt+1|t =E[θt+1|Ft]
=E[ω + Φθt + St∇(yt|θt)|Ft]
=ω + Φθt|t + St∇(yt|θt|t)Pt+1|t

V[θt+1|Ft] =V[ω + Φθt + St∇(yt|θt)|Ft]
=ΦPt|tΦ

′ + StV[∇(yt|θt)|Ft]S
′

t

(1.34)

Note that for the expressions E[∇(yt|θt)|Ft] and V[∇(yt|θt)|Ft] it is not trivial to find an
analytical solution due to the fact that the elements in ∇(yt|θt) are non-linear in θt. Thus,
we locally linearize the function ∇(yt|θt) in θt = θt|t. This results

∇(yt|θt) = ∇(yt|θt|t) + ∇2(yt|θt|t)(θt − θt|t) (1.35)

where ∇2(yt|θt|t) = ∂∇(yt|θt)
∂θ

′
t

∣∣∣∣
θt=θt|t

and consequently

E[∇(yt|θt)|Ft] = E[∇(yt|θt|t) + ∇2(yt|θt|t)(θt − θt|t)|Ft] = ∇(yt|θt|t)
V[∇(yt|θt)|Ft] = V[∇(yt|θt|t) + ∇2(yt|θt|t)(θt − θt|t)|Ft] = ∇2(yt|θt|t)(∇2(yt|θt|t))

′ (1.36)

resulting in the following prediction equations

θt+1|t = ω + Φθt|t + St∇(yt|θt|t)
Pt+1|t = ΦPt|tΦ

′ + St∇2(yt|θt|t)Pt|t∇2(yt|θt|t)
′
S

′

t

(1.37)
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2.5 Time-Varying Common Volatility

Many extensions of the Diebold and Li (2006) model are considered and treated in the
literature. Each amplification or generalization typically relaxes one or two assumptions
of the seminal model. One of them concerns the variance of the error terms of the
measurement equation. For example, Koopman, Mallee, and Wel (2010) introduce a
GARCH(1,1) specification of conditional heterocesticity for dynamic measurement of error
variance. Mesters, Schwaab, and Koopman (2014) allow errors to follow a heavy-tailed
distribution with stochastic volatility. Caldeira, Laurini, and Portugal (2010), on the other
hand, consider specific stochastic volatility for the error terms of the factor transition
equation.

At this stage we consider that volatility follows dynamics determined by a single
common factor. However, unlike the aforementioned works, we model log-volatility as
a time-varying process using GAS-type dynamics. We define the general formulation
according to the equations with common time-varying volatility as

yt = Λ(λ)ft + ϵt ϵt ∼ N(0, Σt) (1.38)

Λ =
(
1 1−eλτ

λτ
1−e−λτ

λτ
− e−λτ

)
Σt = diag(σ2

1eht , ..., σ2
Neht)

To identify ht, it is necessary to set one of the σ2
i equal to 1. We chose to normalize for

the 1-year maturity, σ2
12m = 1. Thus, the factor ht adjusts up or down for the remaining

maturities. The choice does not affect the results of the work.

Considering the formulation with three dynamic factors and common stochastic volatil-
ity, in which we call this version NSF3-V, the equation of states can be defined as

ft+1

ht+1

 =


β1,t+1

β2,t+1

β3,t+1

ht+1

 = ω + A

ft+1

ht+1

+ Bst (1.39)

The same can be applied to the NS4F specification, called NSF4-V:


ft+1

λt+1

ht+1

 =



β1,t+1

β2,t+1

β3,t+1

λt+1

ht+1


= ω + A


ft+1

λt+1

ht+1

+ Bst (1.40)

For the estimation process, we consider matrices A and B of static parameters of the
transition equation as block-diagonals. Consequently, we do not capture spillover effects
from volatility factors to the level equation, or vice versa.
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The score vector and the Fischer information matrix are derived in this case as follows.
The equations for ∇t in the NS3F-V and NS4F-V models are given, respectively, by

∇(yt|θt) =
 ∂

∂βt
log p(yt|θt)

∂
∂ht

log p(yt|θt)

 e ∇(yt|θt) =


∂

∂βt
log p(yt|θt)

∂
∂ log λt

log p(yt|θt)
∂

∂ht
log p(yt|θt)

 (1.41)

where ∇h = ∂
∂ht

log p(yt|θt) = 1
2(ϵ′

tF
−1
t ϵt − N).

The Hessian matrix H(yt|θt) of log p(yt|θt) in the NS3F-V model is given by

H(yt|θt) = ∂2

∂θt∂θ
′
t

log p(yt|θt) =

 ∂2

∂βt∂β
′
t

log p(yt|θt) ∂2

∂βt∂h
′
t

log p(yt|θt)
∂2

∂ht∂β
′
t

log p(yt|θt) ∂2

∂(ht)2 log p(yt|θt)

 (1.42)

while in the NS4F-V model:

H(yt|θt) = ∂2

∂θt∂θ
′
t

log p(yt|θt)

=


∂2

∂βt∂β
′
t

log p(yt|θt) ∂2

∂βt∂ log λ
′
t

log p(yt|θt) ∂2

∂βt∂h
′
t

log p(yt|θt)
∂2

∂ log λt∂β
′
t

log p(yt|θt) ∂2

∂(log λt)2 log p(yt|θt) ∂2

∂ log λt∂h′ log p(yt|θt)
∂2

∂ht∂β
′
t

log p(yt|θt) ∂2

∂ht log λ′
t
log p(yt|θt) ∂2

∂hth′
t
log p(yt|θt)


(1.43)

Again, we denote the matrix St as a function of the Fischer information matrix, as in
the previous specifications. Now, we just enlarge the dimension of the Fischer matrix with
the inclusion of the second derivative of ht, Ihh = − ∂2

∂hth′
t
log p(yt|θt) = N

2 and we include a
penalty parameter ρh.

3 Data
In this section, we describe the information used to estimate the models. For the

empirical assessment of the yield curve and measurement of the mark-to-market of contracts
negotiated for hedging, we used the daily adjustment prices of futures contracts in the DI1
interest rate derivatives market traded on B3 between 02/01/2015 and 31/ 12/2023 (T =
2,227 observations).

The database used consists of a panel of daily time series of the settlement prices of
DI futures contracts. The interbank deposit futures contract (DI futures) with maturity τ

is a futures contract whose basic asset is the interest rate DI5 accrued daily, capitalized
between the trading period t and τ . The information provided by the rates negotiated
daily in the market reflects the expectation of the average CDI from period 0 to maturity.
The value of the contract is defined by its value at maturity, R$ 100,000.00, discounted
according to the accumulated interest rate, negotiated between the seller and the buyer.

5The DI rate is the average daily rate of Brazilian interbank deposits (loans/loans), calculated by
the Custody and Settlements Chamber (CETIP) for all business days. The DI rate, published daily, is
expressed in terms compounded annually, based on 252 business days.
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When buying a DI futures contract at the DI price at time t and holding it until
expiration τ , the gain or loss is given by:

100.000
Πξ(t,τ)

i=1 (1 + yi)
1

252

(1 + DI∗)
ξ(t,τ)

252
− 1

 (1.44)

where yi denotes the DI rate, (i − 1) days after the trading day. The function ξ(t, τ)
represents the number of business days between t and τ .

The DI contract is quite similar to the zero-coupon bond, except for the daily payment
of marginal adjustments. Every day cash flow is the difference between the current day’s
settlement price and the previous day’s settlement price, indexed by the previous day’s DI
rate.

DI futures contracts are traded on B3, which determines the number of maturities for
authorized contracts. In general, there are about 20 maturities with authorized contracts
every day, but not all of them are liquid. Approximately 10 maturities have contracts
with greater liquidity. There are contracts with monthly maturities for the months at
the beginning of each quarter (January, April, July and October). In addition, there
are contracts with expiry dates for the four months following the current month. The
expiration date is the first business day of the month in which the contract expires.

We separated the information used into two sets of data. In the case of the information
used in estimating the Nelson-Siegel model, we will use the rates interpolated via flat-
forward by B3, used as reference rates for SWAP DI x Pre contracts, and then interpolated
via cubic splines for 24 fixed maturities. This panel of 24 maturities will compose the
vector of observations yt(τ). In the case of mark-to-market of the credit portfolio, we will
use the curves interpolated in the previous step for maturities from 1 business day to
11,000 business days.

The Table (1.1) presents the descriptive statistics of the Brazilian interest rate curve.
For each of the 24 time series we report mean, standard deviation, minimum, maximum
and the last three columns contain sample autocorrelations at offsets of 21, 252 and 504
working days. The summary statistics confirm some stylized facts about the Brazilian
yield curve: the sample average curve is upward-sloping and concave, volatility decreases
with maturity, autocorrelations are very high.

In Figure 2 we present a three-dimensional graph of the data set and illustrate how
forward interest levels vary substantially throughout the sample. Although the series vary
strongly over time for each of the timeframes, a strong common pattern across the 24
series over time is apparent. It is clear from Figure 2 that not only does the level of the
term structure fluctuate over time, but also its slope and curvature.
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Table 1.1: Descriptive statistics of SWAP DI x Pre contracts for selected maturities (In
%)

252 · τ Mean Variance Minimum Maximum ρ̂(21) ρ̂(252) ρ̂(504)
63 9,236 4,251 1,879 14,677 0,992 0,483 -0,164
126 9,280 4,216 1,870 15,075 0,991 0,477 -0,169
189 9,318 4,162 1,871 15,472 0,990 0,470 -0,173
252 9,341 4,087 1,967 15,801 0,989 0,463 -0,177
378 9,386 3,882 2,230 16,279 0,986 0,452 -0.179
504 9,447 3,657 2,545 16,547 0,983 0,445 -0,176
756 9,634 3,254 3,312 16,810 0,977 0,434 -0,160

1.080 9,856 2,982 3,965 16,888 0,972 0,426 -0,146
1.260 10,730 2,801 4,566 16,921 0,968 0,418 -0,138
1.512 10,241 2,659 5,037 16,878 0,965 0,410 -0,134
1.764 10,364 2,556 5,345 16,826 0,962 0,401 -0,132
2.016 10,479 2,480 5,687 16,800 0,959 0,392 -0.131
2.520 10,665 2,369 6,213 16,799 0,956 0,374 -0,125
2.772 10,737 2,326 6,393 16,807 0,955 0,366 -0.124
3.024 10,795 2,296 6,486 16,826 0,953 0,358 -0,122
3.780 10,921 2,224 6,691 16,935 0,951 0,343 -0.112
5.040 11,027 2,156 6,781 17,001 0,948 0,330 -0,105
6.300 11,092 2,118 6,835 17,000 0,946 0,319 -0,110
7.560 11.135 2,094 6,869 17,000 0,944 0,311 -0,113
8.820 11,166 2,077 6,897 17,000 0,943 0,305 -0,116
10.080 11,190 2,065 6,914 17,000 0,942 0,301 -0,118

Notes: The table presents descriptive statistics for daily data from SWAP DI
x Pre contracts between January 2015 and December 2023.

Figure 1.1: This chart details the evolution of the term structure of interest rates (based on DI
futures) for the time horizon 2014:03-2023:12. The sample was composed of daily returns for maturities
of 21, 42, 63, 84, 105, 126, 147, 168, 189, 210, 231, 252, 273, 294, 504, 756, 1080, 1260, 1512, 1764 ,
2016, 2520, 2772 and 3024 business days.

4 Results
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4.1 Dynamic Nelson-Siegel Models Estimates

We present the main results of the Nelson-Siegel models in Table (1.1). To compare
the estimates of the Nelson-Siegel models with the NS3F, NS4F, NS3F-V and NS4F-
V specifications, we also estimate a benchmark version of the model considering fixed
λ, with the factors βt variables in time and without taking into account conditional
heteroscedasticity, as originally proposed by Diebold and Li (2006). To compare model
fit, the table presents statistics on RMSE measurement errors, defined as the differences
between observed interest rates and their estimates

From the RMSE statistics, it can be seen that the NS4F-V model fits better in relation
to the other specifications. Thus, it seems clear that treating the parameter λ and the
covariance matrix Σϵ as fixed, despite facilitating the model estimation procedures, implies
a loss in the quality of the fit. This conclusion is also valid if we only consider the inclusion
of λt in the NS4F model compared to the specification benchmark.

Table 1.2: Parameter Estimates: Dynamic Nelson-Siegel Extensions
Param NS3F cons NS3F NS4F NS3F-V NS4F-V

λ 0.587 - - - -
ω1 0.390 0.185 0.1895 0.191 0.184
ω2 0.108 0.081 0.085 0.974 0.958
ω3 -0.018 -0.025 0.038 -0.025 -0.028
ω4 - - -0.407 - -0.579
A11 0.973 0.985 0.987 0.9783 0.989
A12 0.097 0.147 0.088 0.117 0.107
A13 0.019 0.031 0.025 0.032 0.028
A14 - - -0.670 - -0.242
A21 0.381 0.487 0.675 0.556 0.654
A22 -0.091 -0.121 -0.105 -0.112 -0.081
A23 0.947 0.931 0.944 0.952 0.931
A24 - - -0.055 - -0.744
A31 0.094 0.087 0.093 0.084 0.080
A32 -0.041 -0.053 -0.045 -0.055 -0.048
A33 -0.057 -0.067 -0.051 -0.052 -0.049
A34 - - 0.087 - 0.073
A41 - - 0.015 - 0.018
A42 - - -0.055 - -0.072
A43 - - 0.074 - 0.058
A44 - - 0.587 - 0.583
ρβ - 0.638 0.555 0.341 0.741
ρλ - - 30.583 - 32.444

RMSE 0.175 0.126 0.084 0.086 0.073

Note: RMSE expressed in basis points.

Figure (1.3) presents the estimates of the factors, (β1,t, β2,t, β3,t) and λt, which is treated
as a fourth latent factor. The evolution of β1,t faithfully reflects the level interpretation
of this parameter, presenting the dynamics of the average yield curve over time. The
evolution of the other factors also adequately captures the evolution of the slope and
curvature components of the term structure observed in interest rates. In particular, λt

takes on values between 0.5 and 0.9 at different times.
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The stochastic volatility component, presented in Figure (1.4), shows the model’s ability
to capture the conditional heteroscedasticity existing in interest rates, identifying moments
of changes and stress cycles, for example, occurring in 2017 (Joesley-Day), in 2018 (truck
drivers’ strike), in the first quarter of 2020 (pandemic), and the inflationary surprise in
2021, periods characterized by changes in the direction of the country’s monetary and fiscal
policy. It is also noted that, when including the volatility factor, the dynamics displayed
by the λt factor changes significantly.

In the analysis carried out using the in-sample adjustment of the yield curve, we can
conclude that the model extensions estimated with GAS dynamics contribute significantly
to improving the adjustment capacity of the Nelson-Siegel model in the dynamic formulation
proposed by Diebold and Li (2006). The extension that treats the λt parameter as a
time-variant and multivariate stochastic volatility component (NS4F-V) was the one that
presented the most significant gains, encouraging its use in fixed income.
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Figure 1.2: Common Stochastic Volatility Factor.
Standard deviations multiplied by 1,000.

5 Parametric Immunization of Long-Term Assets
Immunizing a portfolio with fixed income instruments aims to minimize the volatility

of a portfolio’s results, that is, to reduce losses or financial profits arising from fluctuations
in interest rates.

Now suppose that in period t a financial institution has a credit asset with cash flows
receivable maturing in the distant future T0 = t + τ0. If there are long-term fixed income
instruments available, the institution could immunize this exposure by purchasing interest
rate derivatives with maturity τ0. However, in the Brazilian market, there are typically no
liquid instruments for maturities such as τ0 > 20 years, while for average maturities with
10 < τ0 < 15 years, the market is insufficiently liquid . Therefore, the financial institution
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Figure 1.3: Filtered Estimates for the Dynamic Factors of Nelson-Siegel Score-Driven Models. The
black series refer to the NS4F specification, while the red and blue series refer to the NS4F-V specifica-
tion.

needs to hedge its assets using instruments with short maturities τi < τ0.

The most common hedging technique with fixed income instruments is Hedging via
Duration. the term duration in this case refers to the sensitivity of a security’s price to
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changes in the interest rate, that is, it measures the approximate first-order change in the
asset’s price given an infinitesimal change in the interest rate curve. In other words, this
technique consists of building a portfolio with a duration equal to the maturity of the
exposure. For example, for a portfolio of n derivatives with maturities τi, the duration
of a portfolio with weights wi is given by D = ∑

i wiτi, a weighted average of instrument
maturities. Considering the case of an exposure longer than the instruments available on
the market, hedging via duration inevitably involves leverage, that is, some weights need
to be negative. The popularity of the duration technique derives from the property that
duration measures measure the relative variation in the value of the portfolio in relation
to parallel shocks in the interest rate curve. Thus, Duration hedging techniques apply
to variations over short intervals. For long intervals, the non-linearity of the price-yield
relationship introduces other risk factors, such as those presented in the Nelson-Siegel
formulation.

5.1 Building a Synthetic Credit Portfolio

The empirical exercise consists of selecting the optimal number of DI1 interest derivative
instruments (DI-Futuro) with a maturity lower than the duration of long-term assets, a
combination that will reproduce a mark-to-market (MtM) differential closest to zero in
the long term. However, an important step in this process is the selection of the portfolio
of instruments, since they will be liquid instruments with a shorter maturity than the
exposure to be immunized, a duration that does not have liquid instruments available in
the futures interest market. The optimal quantities are defined by the partial derivative
of the price function with respect to each of the three dynamic factors. The selection of
contracts will follow an optimization problem as will be demonstrated below.

The bank credit portfolio will begin on January 3, 2018 with 30 active credit operations
chosen at random, with future values between R$ 1 thousand and R$ 10 million and
maturity between 1,764 and 10,080 business days. The choice of terms aims to be in line
with the banking reality of portfolios where the granting of bank credit has a longer term.
All operations will be pre-fixed based on the interest curve negotiated on the day the
operation begins. On the first business day of each observed month, the credit portfolio
will receive 30 new transactions in the same format as the initial portfolio. The portfolio
rebalancing dynamics will take place on the first business day of each month. Hedging
and rebalancing costs will be taken into account, aiming for greater adherence to reality6.
The synthetic portfolio will be considered risk-free, without liquidity restrictions, aiming
to focus on immunizing only the market risk related to the Brazilian interest rate. As
mentioned previously, mark-to-market will follow the SWAP DI x Pre interest rate curve
provided by B3, interpolated by Cubic Splines. Below we present some relevant information

6For example, to adapt to each rebalancing, we will need to sell a certain amount of contracts
purchased in previous periods.
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about the simulated portfolio to be immunized.

Table 1.3: Simulated Credit Portfolio
Reference Portfolio Duration Portfolio MtM (R$) Aditional Notional (R$) Aditional Delta EVE (R$)

jan/18 25,4 1.606.078 34.557.693 914.551
feb/18 26,1 3.049.588 22.221.892 1.045.259

may/18 26,4 4.922.364 33.815.633 1.081.722
apr/18 21,2 6.505.109 19.500.287 1.099.333
may/18 23,6 7.657.324 21.103.889 1.024.947
jun/18 19,9 7.940.623 31.203.690 669.206
jul/18 23,6 7.828.185 42.268.446 673.982
aug/18 23,7 9.559.316 33.015.008 724.276
sep/18 23,1 10.885.290 50.921.994 529.584
oct/18 25,1 10.280.534 35.386.349 632.856
nov/18 23,8 14.151.054 28.019.962 996.623
dec/18 20,8 21.154.876 17.591.006 1.059.101
jan/19 23,2 23.814.972 20.549.964 1.217.899
feb/19 24,9 28.029.502 15.499.070 1.375.970
mar/19 25,1 31.793.238 19.871.213 1.264.659
apr/19 24,7 31.552.550 21.584.261 1.325.014
may/19 23,2 34.262.692 17.310.984 1.286.280
jun/19 22,3 35.679.576 14.911.449 1.520.729
jul/19 21,2 43.618.765 13.612.499 1.992.250
aug/19 22,6 55.410.825 14.228.876 2.026.571
sep/19 23.8 57.643.630 12.922.493 1.900.792
oct/19 22,2 57.055.574 9.524.465 2.150.220
nov/19 22,3 65.214.207 8.866.039 2.502.191
dec/19 22,7 74.082.082 7.920.247 2.159.402
jan/20 21,8 67.202.151 8.613.927 2.044.489
feb/20 21,9 66.727.335 12.464.579 2.041.442
mar/20 21,0 68.447.788 8.806.426 2.039.703
apr/20 21,0 68.234.007 8.824.703 1.449.894
may/20 21,7 53.695.835 11.970.016 1.444.197
jun/20 20,8 55.542.953 11.562.022 1.631.959
jul/20 21,8 62.903.699 10.541.131 1.814.881
aug/20 22,3 70.105.703 7.494.657 2.021.032
sep/20 20,5 76.862.909 9.246.934 1.694.282
oct/20 22,0 67.711.413 20.525.746 1.400.461
nov/20 23,9 59.988.575 16.299.765 1.381.919
dec/20 22,4 59.622.839 16.044.168 1.452.941
jan/21 22,8 63.216.974 10.947.406 1.846.935
feb/21 21,5 75.776.836 12.677.008 1.703.750
mar/21 20,7 69.715.425 9.203.812 1.363.475
apr/21 19,2 58.107.226 17.687.705 1.154.445
may/21 20,4 51.225.400 15.083.129 1.147.206
jun/21 19,2 51.611.452 17.403.410 1.159.684
jul/21 20,3 52.081.313 23.382.594 1.129.774
aug/21 22,4 50.772.127 27.629.777 980.182
sep/21 22,9 45.577.864 43.130.283 783.610
oct/21 23,2 38.475.722 44.893.242 705.347
nov/21 21,3 35.162.254 40.298.847 545.384
dec/21 19,9 29.245.986 23.496.531 692.802
jan/22 21,1 35.010.179 21.509.384 751.246
feb/22 19,9 37.188.588 44.210.647 686.361
mar/22 20,9 34.904.989 44.253.614 668.575
apr/22 20,7 34.118.048 30.678.308 729.621
may/22 21,5 36.094.823 40.771.215 598.941
jun/22 22,5 31.229.550 41.835.465 563.702
jul/22 21,1 29.879.854 53.610.996 518.272
aug/22 20,5 28.325.375 61.008.676 536.059
sep/22 21,1 29.408.289 34.569.031 633.090
oct/22 20,9 33.368.284 22.160.436 678.218
nov/22 19,7 35.119.921 24.991.686 669.352
dez/22 19,2 34.444.666 55.201.943 529.718

Notes: Durationt =
∑n

t=1
τ · Ft

(1+i)τ∑n

t=1
Ft

(1+i)τ

.
Delta EVE is a measure of interest rate risk used by financial institutions around the world,
it measures the worst loss in terms of present value in the face of a shock of 4% in the inter-
est curve (in the case of fixed rates it is the High shock).
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5.2 Factor Hedge Portfolio Optimization

Since we are interested in reducing the risk of a portfolio, we should look at portfolio
returns, as suggested in Litterman and Scheinkman (1991). Therefore, for the portfolio
optimization stage, we will transform the model structure to focus on excess returns
instead of fees. In this case, excess returns have the same factor structure as rates.

To get the excess returns, we first need to get the logarithm of prices as

log(Pt(τ)) = pt(τ) = log(e−τyt(τ)) = −τyt(τ) (1.45)

and define the returns as

rt+1,i = (pt+1,τi
− pt,τi+1)/pt,τi+1 (1.46)

where, for short horizons (1 day, for example), we can approximate the above returns as

rt+1,i ≈ log pt+1,τi

pt,τi

= −τi∆yt+1,τi
(1.47)

where ∆ is the first difference operator, i.e., ∆yt+1,τi
= yt+1,τi

− yt,τi
is the variation of the

maturity yield τi.

The excess returns of an instrument of maturity τi in period t + 1 in relation to the
risk-free rate is defined as

rt+1(τ) = log(exp(−τi · yt+1,τi
) − log(exp(−τi · yt,τi

) − log(exp(−τ1 · yt,τ1))

= −τi · (yt+1,τi
− yt,τi

) − yt(1)
252

(1.48)

so that the above returns can be calculated as the difference of the logarithm of prices
multiplied by 100, and the rate risk-free yt(1)/252, is the 1-day CDI.

Based on market data, it is known that the volatility of returns increases almost linearly
with maturity. The definition pt(τ) = −τyt(τ) also suggests that returns are proportional
to maturity if yields move in parallel. Therefore, we weight returns by maturity, i.e., we
define the excess returns weighted by maturity as ρt(τ) = rt(τ)/τ .

For the remainder of this section we assume that the factors βt and λt are known.
Working with known factors is common in immunization processes that use the Nelson-
Siegel model or when factors are obtained through principal components techniques (PCA)
based on historical returns. An example is the seminal work by Litterman and Scheinkman
(1991) who applies hedging techniques using a three-factor model estimated by PCA.

The construction of the DI Futuro derivatives portfolio for immunization is described
as follows. Once the estimated βt and λt for SWAP DI x Pre yield curve data are known,
we consider the following reformulation of the factor model:ρ0t

ρt

 =
b0t

bt

 ft +
ϵ0t

ϵt

 (1.49)
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where the matrix bt of dimension (n × k) contains the loadings for the net maturities
eligible for hedging, which use estimated values of λt from the NS3F and NS4F models,
and b0 is the vector (1 × k) of factor loadings calculated each period t for maturity target,
b0,t = Λt,0(λt)/τ0. Note that bt is also a matrix of loadings obtained through the estimated
values of λt and depends on the maturity of the derivatives to be selected at each exposure
renewal. We have established that the set of liquid instruments for hedging will consist of
the 14 available contracts with a maturity of more than 252 business days at each exposure
renewal. The rows of the matrix bt are denoted as bt,i, and are defined as bt,i = Λt,i(λt)/τ

to make it compatible with the weighting of excess returns. The vectors ρ0t and ρt follow
the same rationale described for b0t and bt. In the case of ρ0t, we calculated based on
information from the SWAP DI x Pre reference curves, used by financial institutions for
marking to market. The residues ϵt and ϵ0t collect the respective prediction error terms
and have a covariance matrix σ2I, in the case of specifications with constant volatility.

Due to the ϵ0t and ϵt errors, it is no longer possible to obtain a 100% perfect hedge.
Since the excess returns of long assets ρ0 are exposed to the same risk factors as market-
traded instruments, ρt, a portfolio holding a portfolio w with the same target exposure
B0

7, i.e. w
′
B = B0, this portfolio will immunize all risk factors. To define w, we consider

Litterman and Scheinkman (1991)’s concept of hedge construction. In practice, we consider
the construction of a portfolio of excess returns of liquid instruments that present better
replication of excess returns target through a problem of minimizing hedging errors.

Furthermore, since we use maturity-weighted excess returns, we need to adjust the
scale of returns as

r̂0t = w′rt with wi = giτ0/τi (1.50)

where the weight vector gt of dimension n×1 determines the weights of the hedge portfolio.
As in Diebold and Li (2006), the portfolio w presents the same Generalized Duration B0

of the asset target (i.e. a perfect hedge can be constructed if we find weights wi that result
in ∑i wiBi = B0).

We can relax the restriction that the hedge portfolio has the same Generalized Duration
as the asset target. As before, let gt be the vector of maturity-weighted weights of the
hedge portfolio, and let w be the portfolio weights. We choose w (or equivalently g) as
the vector that minimizes the squares of the residuals of the hedging errors, that is,

min
w

E
[
(r0t − w

′
rt)2

]
= τ 2

0 min
g

E
[
(ρ0t − g

′
ρt)2

]
(1.51)

7We can define the Generalized Duration vector of the target exposure as

B0 =
H∑

h=1

pt,τh
ch∑H

h=1 pt,τh
ch

τhbh

, where ch are payment flows to be received in τh terms and bh are the loadings for the respective
terms, h =, ..., H.
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where the hedging error vector is given by

ϵ̂0t = ρ0t − g
′
ρt = ε0t − g

′
εt + (b0 − g

′
b)ft (1.52)

and has three components: (i) the non-immunized error term ϵ0t; (ii) idiosyncratic noise
in the cross-section of returns g

′
ϵt, and (iii) a bias that depends on the performance of

the hedge portfolio in immunizing exposure to risk factors. Given ft, we can estimate
Σ = E[ftf

′
t ], such that the squares of the hedge residuals have expectation

E[ϵ̂2
0t] = σ2(1 + g

′
g) + (b0 − g

′
b)Σ(b0 − g

′
b)′ (1.53)

where minimization of the above equation with respect to gt returns the optimal predictor
(MSE-optimal)

g = (bΣb
′ + σ2I)−1bΣb

′

0 (1.54)

. where we calculate the weights over time using the estimates from the NS models.
When λ and σ2 vary over time, the hedge portfolio also becomes time-varying, even if
the factor loadings remain stable. Therefore, we can use estimates b̂, Σ̂ = Ê[ftf

′
t ] =

1
T

∑
t f̂tf̂

′
t − σ̂2(b′

b)−1 and σ̂2 estimated from NS3F, NS4F, NS3F-V and NS4F-V to find in
each case a vector gt of optimal hedge weights.

5.3 Hedge Results

In this step we present the hedge performance results using the estimates from the
models presented in the previous section. With the estimates of βt, λt and the variance
σt, it is possible to use the equations on excess returns to find the optimal portfolios that
replicate the synthetic credit portfolio exposures over time. We calculate the optimized
portfolios for each of the NS3F, NS4F, NS3F-V, and NS4F-V specifications for each time
period and evaluate the hedging errors produced by each model. According to Table (1.4),
models that consider λt and time-varying volatility perform better in terms of RMSE.

Table 1.4: Hedging Performance
benchmark NS3F NS3F-V NS4F NS4F-V

Bias -0.06 -0.05 -0.03 -0.03 -0.01
StDev 1.53 1.49 1.35 1.24 1.18
RMSE 1.53 1.49 1.35 1.24 1.18

Notes: The above measures are obtained from the difference
between the predicted values of excess returns of the synthetic
portfolio and the observed values of ρ0,t.

Figure 1.4 presents some general results of the composition of portfolios derived from
the NS4F-V specification. The optimal portfolios constructed in each period t are more
heavily weighted in the long part, and to a lesser extent in the short part. To control for
other risk factors, some contracts located at the middle of the curve have a weight equal
to zero or are negative. We assume there are no liquidity restrictions and use all available
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contracts on the day of each monthly recalibration. Another point to be considered is that
DI Future contracts are not split, and this worsens the fit to the data.
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Figure 1.4: Portfolio NS4F-V: The figure presents the median of the optimal weights calculated for
the respective median maturities of the futures contracts used. The dotted lines are the 5% and 95%
percentiles of the weight distribution.

6 Final Remarks
In this article we implement extensions to the Nelson-Siegel family term structure

model. Using data from futures interest market contracts traded on B3, we estimate the
Nelson-Siegel model with dynamic factors and common volatility varying over time. We
follow the structure proposed by Koopman, Mallee, and Wel (2010), and model the decay
parameter λ as a time-varying parameter. We also consider a common stochastic volatility
component for measurement errors.

Since the model is non-linear, we propose the use of the Kalman-GAS Filter to estimate
the dynamic parameters of interest. We present the analytical derivations of the Nelson-
Siegel with the GAS methodology in state space format, which can be called Score-Driven
Nelson-Siegel. The great advantage of this methodology is that the likelihood function
of the state space model with time-varying parameters is available in closed form, which
facilitates the estimation of parameters using maximum likelihood and substantially reduces
the computational cost in relation to other econometric techniques. This structure allows
capturing the volatility of the yield curve in a flexible and yet parsimonious way.

The results of our estimations provide evidence for improved predictive power with the
modeling of λt and heteroscedasticity as time-varying parameters following GAS dynamics,
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especially the quality of fit obtained for longer maturities. This was already expected,
according to the structure of the parametric model, which depends on λ, and is in line
with other evidence highlighted in the literature, for example, in Caldeira, Laurini, and
Portugal (2010). However, the use of this methodology for the Brazilian yield curve is
new.

We demonstrate the application of the Nelson-Siegel Dynamic model with stochastic
volatility for an empirical hedging exercise. Our attention is focused on how the treatment
of λ and volatility as time-varying factors is capable of improving the predictive quality
of maturities that do not have liquid instruments available for immunization. Using the
results of different Nelson-Siegel specifications estimated with the Kalman-GAS Filter, we
were able to find optimized portfolios and satisfactorily immunize a synthetic pre-fixed
credit portfolio with a maturity greater than 20 years.

The results presented in this work are of great interest to the financial market as they
indicate potential for efficiency gains in long-term hedging operations. Currently, there are
no liquid instruments available to immunize pre-fixed portfolios, and this leads institutions
to use swap operations with other indexers, which increases the final cost of an operation.

As for future applications, the present study can be used as a basis for a series of
applications, such as the immunization of ‘green’ long term liabilities, for long liabilities
of pension funds and for hedging with inflation-indexed bonds. Methodologically, some
modeling challenges can be refined and applied to the Brazilian market. The first of these
is to consider the expansion of volatility factors. As in Koopman, Lucas, and Zamojski
(2017), one could estimate the stochastic volatility factors for each of the maturities of the
vector of observables, but this would significantly increase the dimensionality of the matrix
system. Another innovation is to consider stochastic volatility in the covariance matrix of
the transition vector, as in Caldeira, Laurini, and Portugal (2010). The second refinement,
in line with good practices in the yield curve literature, is to test the application of the
methodology for the Svensson specification and for those specifications that consider
macroeconomic factors. Finally, the analytical properties of the Kalman-GAS Filter allow
other probability distributions to be considered, as in Mesters, Schwaab, and Koopman
(2014) and Koopman, Lucas, and Zamojski (2017), something not yet considered in
modeling the Brazilian yield curve.

It is also important to note that the results obtained for the Nelson-Siegel models are
valid for the in-sample adjustment, and an analysis for out-of-sample results could obtain
different results, favoring more parsimonious specifications, but we emphasize that the
focus of the present work was verify which structure is most appropriate for the behavior
observed in this interest curve and not directly make predictions outside the sample of
this curve. Therefore, an out-of-sample prediction exercise comparing the Kalman-GAS
Filter with other methodologies in the literature is future work to be considered.
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