# QUANTUM TECHNOLOGIES: The information revolution that will change the future





### Bibliometric Analysis of Inhibitory Compounds in the Reduction of Enteric Methane in Ruminants: Trends, Advances and Sustainable Perspectives

Thaís Santos Pimenta<sup>1\*</sup>, Madson Moreira Nascimento <sup>2</sup>, Jose Luís Gonçalves de Almeida <sup>2</sup>, Ana Lucia Barbosa de Souza<sup>2</sup> e Tatiana Oliveira do Vale<sup>2</sup>

<sup>1</sup> Master's student in Sustainable Development, SENAI CIMATEC University; Salvador, Bahia, Brazil,

<sup>2</sup>SENAI CIMATEC University; Salvador, Bahia, Brazil;

\*Corresponding author: Avenida Orlando Gomes, 1845, Piatã. Salvador, Bahia, Brasil.

Zip Code: 41650-010; enfthaisspimenta@gmail.com

Abstract: Enteric fermentation is a major agricultural source of methane (CH<sub>4</sub>), accounting for about 32% of anthropogenic emissions and contributing significantly to global warming. Research increasingly investigates natural and synthetic inhibitory compounds in ruminant diets to reduce emissions without compromising digestion or productivity. This work presents a bibliometric analysis of studies published between 2005 and 2025, using the *Web of Science* (WoS) database and 20 keywords in four thematic categories combined with Boolean operators. Of 1,058 publications retrieved, 115 met the co-occurrence criteria. Analysis with *VOSViewer*® identified five key research areas, including rumen physiology, nutritional strategies, and bioactive compounds, with strong alignment to Sustainable Development Goals (SDGs), particularly Climate Action. Publication trends show marked growth since 2020, underscoring the topic's rising scientific and societal relevance. The results position methane mitigation in livestock as a research priority, supporting the development of sustainable production pathways.

Keywords: Ruminant; Inhibitory Compounds; Enteric Methane; In vitro; Agroindustrial By-products.

#### 1. Introduction

In 2022, the IPCC estimated that enteric fermentation emitted 118 Tg CH<sub>4</sub>, representing 32% of anthropogenic methane. FAO and UNFCCC inventories show a ~20% variation due to different reporting methodologies, highlighting underestimation and the need for harmonization. The livestock sector remains a major global methane source [1] [2].

In the rumen, cellulolytic bacteria degrade fibrous carbohydrates into volatile fatty acids, releasing H<sub>2</sub>, which methanogenic archaea (mainly Methanobrevibacter spp.) use to reduce CO<sub>2</sub> to CH<sub>4</sub>, expelled mainly by eructation [3]. composition influences Diet the acetate:propionate ratio, affecting hydrogen availability and methane output. Inhibitory natural synthetic, compounds, or reduce methanogenesis by inhibiting archaea, redirecting hydrogen, or altering substrate degradation [4], [5], [6].

Natural options like tannins, saponins, pectin, and essential oils have shown potential to lower methane without harming digestion, while synthetic additives such as nitrate, 3-NOP, and brominated algae expand mitigation strategies [6], [7], [8].

This study conducts a bibliometric analysis of inhibitory compounds in ruminant feed to assess trends and opportunities for reducing methane while maintaining productivity.

#### 2. Methodology

The research was based on a bibliometric analysis, aiming to identify collaborative trends





and emerging patterns in the respective scientific field, considering the last 20 years, from 2005 to 2025, specifically until July 2025. The database used was Web of Science (WoS), due to its scope and relevance as a scientific database, where descriptors were assigned in four categories, (I) Animal: "Ruminant". "Rumen ferment". "Rumen microbio", "Methanogen archaea", "microorganism", (II) Biology: "Inhibit", "Redox potential", "Methane". "Carbon sequest", "Methane mitigation", (III) Analytical Methodologies: "ampts", "Batch ferment", "Methane quantif", "Anaerobic digestion", "In vitro ferment", (IV) Raw Material: "Orange peel", "Cacao pod husk", "pectin", "Phenolic compound", "Hesperidin", with an emphasis on compounds that inhibit methane production in ruminants. Using Boolean operators "AND" and "OR" to formulate the search phrase, multiple combinations between categories were created, according to the Table 1.

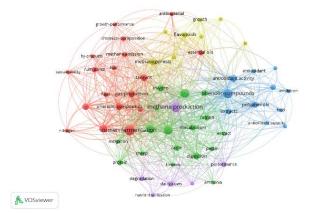
**Table 1**. Keyword combination

| Search<br>Line | Combina<br>tion                  | Description                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7              | #1 AND<br>#2 AND<br>#3 AND<br>#4 | ("Ruminant*" OR "Rumen ferment*" OR "Rumen microbio*" OR "Methanogen archaea*" OR "microorganism*") AND ("ampts*" OR "Batch ferment*" OR "Methane quantif*" OR "Anaerobic digestion*" OR "In vitro ferment*") AND ("Inhibit*" OR "Redox potential*" OR "Methane* " OR "Carbon sequest*" OR "Methane mitigation*") AND ("Orange peel*" OR "Cacao pod husk*" OR "pectin*" OR "Phenolic compound*" OR "Hesperidin*") |

|    | #1 AND<br>#2 AND<br>#4 | ("Ruminant*" OR "Rumen              |
|----|------------------------|-------------------------------------|
|    |                        | ferment*" OR "Rumen microbio*"      |
|    |                        | OR "Methanogen archaea*" OR         |
|    |                        | "microorganism*") AND ("Inhibit*"   |
| 9  |                        | OR "Redox potential*" OR            |
| 9  |                        | "Methane* " OR "Carbon sequest*"    |
|    |                        | OR "Methane mitigation*") AND       |
|    |                        | ("Orange peel*" OR "Cacao pod       |
|    |                        | husk*" OR "pectin*" OR "Phenolic    |
|    |                        | compound*" OR "Hesperidin*")        |
|    | #1 AND<br>#3 AND<br>#4 | ("Ruminant*" OR "Rumen              |
|    |                        | ferment*" OR "Rumen microbio*"      |
|    |                        | OR "Methanogen archaea*" OR         |
|    |                        | "microorganism*") AND ("ampts*"     |
|    |                        | OR "Batch ferment*" OR "Methane     |
| 10 |                        | quantif*" OR "Anaerobic             |
|    |                        | digestion*" OR "In vitro ferment*") |
|    |                        | AND ("Orange peel*" OR "Cacao       |
|    |                        | pod husk*" OR "pectin*" OR          |
|    |                        | "Phenolic compound*" OR             |
|    |                        | "Hesperidin*")                      |

Source: Author's own elaboration.

The research focused on articles, including studies, conferences, and review articles from *Web of Science* (WoS). The search was refined to titles, keywords, and abstracts, resulting in more accurate data. *VOSviewer®* software was used to analyze and visualize the thematic groups and clusters.


#### 3. Results and Discussions

The analysis of 1,058 publications retrieved from the WoS database identified 115 articles meeting all three thematic co-occurrence criteria. Thematic focus and predominant approaches were examined through a keyword co-occurrence network (**Figure** 1), organized into five clusters representing the core research axes on enteric fermentation and sustainability.



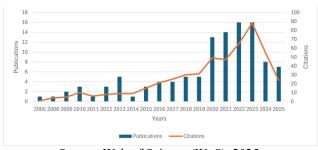


**Figure** *1*. Representation of the keyword network and correlation of the most relevant themes



Source: VOSViewer, 2025.

The Red Cluster forms the structural core, integrating terms such as "rumen," "fermentation," "methane emission," and "gas production," which describe the physiological basis of methanogenesis, alongside "tannins" and "phenolic compounds," indicating the role of natural compounds in environmental mitigation. The Green Cluster combines "digestion," "metabolism," "cattle," and "sheep," reflecting interspecies comparisons, while "protein," "pectin," and "kinetics" highlight nutritional optimization, "performance" with and "mitigation" indicate the challenge of balancing productivity and emission reduction. The Blue activity," Cluster links "antioxidant "polyphenols," and "inhibition," signaling the potential of bioactive compounds for microbial control and animal health via "extracts" and "food." Yellow Cluster The connects "flavonoids," "essential oils," and "antibacterial" with "methanogenesis" and "in vitro," supporting their role as methane inhibitors, with "growth" suggesting systemic effects. The smaller Purple Cluster associates "methane production" and "dairy cows" with "degradation," "ammonia," and "nutrient utilization," pointing to precision nutrition strategies. Overall, research concentrated on physiological mechanisms and environmental mitigation (Red and Green), with complementary approaches exploring bioactive solutions (Blue/Yellow) and targeted nutritional management (Purple).


Scientific output trends (**Figure 2**) show modest, irregular publication rates between 2005 and 2014 (1–5 papers/year, <10 citations/year), with occasional peaks (e.g., 2013). From 2015, publication numbers rose steadily, with citations surpassing 30 in 2019. A major increase occurred in 2020 (13 papers, 49 citations), followed by sustained high output through 2023 (16 papers, 88 citations). Together, 2020–2023 account for over half of the analyzed output. The apparent decline in 2024–2025 likely reflects incomplete





indexing. These trends indicate growing relevance of methane mitigation research for ruminants, sustainability, and climate change.

Figure 2. Several publications and citations vs. years.



Source: Web of Science (WoS), 2025.

Analysis of Sustainable Development Goal (SDG) alignment (Figure 3) reveals a predominance of environmental goals, especially SDG 13 - Climate Action (72 publications, 62.6%), linked to Target 13.2 through emission mitigation and adaptation in agriculture. Other relevant goals include SDG 12 - Responsible Consumption and Production (15; Target 12.3), via agro-industrial waste valorization; SDG 7 – Affordable and Clean Energy (13; Target 7.2), via methane-to-biogas conversion; and SDG 6 -Clean Water (implicit; Target 6.3) through effluent management. Social goals are led by SDG 3 – Good Health and Well-being (19; Target 3.9), focusing on animal health and reduced antibiotic use, and SDG 2 – Zero Hunger (2;

Target 2.4), promoting sustainable food systems.

SDG 11 – Sustainable Cities (1; Target 11.6)

addresses waste management. Eight publications

were technical/methodological without direct

SDG linkage.

**Figure 3**. The Most Common Sustainable Development Goals



Source: Author's own elaboration.

The 20 most relevant and cited studies are summarized in **Table 2**, with objectives and associated clusters from Figure 1. While most address enteric fermentation, others focus on anaerobic digestion of lignocellulosic biomass or agro-industrial residues. Notable works [9, 11, 12, 14] expand biochemical and microbiological understanding of methanogenesis and its mitigation. The breadth of approaches highlights the interdisciplinarity of the field and points to

### QUANTUM TECHNOLOGIES: The information revolution

The information revolution that will change the future





promising, sustainable innovations for animal production.

**Table 2**. Comparative table of the 20 most relevant and cited articles

| Authors | Study Objective                                           | Associated Cluster          |  |
|---------|-----------------------------------------------------------|-----------------------------|--|
|         | Study Sofethie                                            | and Keyword                 |  |
| [9]     | To assess the enzymatic potential                         | Blue: Bioactive             |  |
|         | for the valorization of agro-                             | compounds                   |  |
|         | industrial by-products.                                   | ("polyphenols",             |  |
|         |                                                           | "enzymes").                 |  |
| [10]    | To evaluate the effect of                                 | Red and Green:              |  |
|         | including tannins, pectin, and                            | Methanogenesis              |  |
|         | polyethylene glycol in rumen                              | physiology                  |  |
|         | fermentation, aiming to reduce                            | ("tannins") and             |  |
|         | the negative impacts of tannins                           | nutritional                 |  |
|         | on microbiota and gas                                     | optimization                |  |
|         | production.                                               | ("pectin").                 |  |
| [11]    | To optimize orange peel waste                             | Yellow and Blue:            |  |
|         | ensiling for sustainable anaerobic                        | Essential oils              |  |
|         | digestion, evaluating d-limonene                          | ("essential oils")          |  |
|         | removal.                                                  | and antimicrobial           |  |
|         |                                                           | activity                    |  |
|         |                                                           | ("antioxidant               |  |
| [13]    | T 1                                                       | activity").                 |  |
| [12]    | To evaluate the integration of                            | Purple and Red:             |  |
|         | pyrolysis and anaerobic digestion                         | Application in dairy        |  |
|         | in the conversion of                                      | cow nutrition               |  |
|         | lignocellulosic biomass into                              | ("methane                   |  |
|         | methane.                                                  | production") and            |  |
|         |                                                           | methanogenesis              |  |
|         |                                                           | ("methane production").     |  |
| [12]    | To marriage liama callulacia                              | +                           |  |
| [13]    | To review lignocellulosic                                 | Red and Purple:             |  |
|         | biomass liquefaction for methane production via anaerobic | Methanogenesis<br>("methane |  |
|         | digestion.                                                | production") and            |  |
|         | digestion.                                                | dairy cow                   |  |
|         |                                                           | nutritional                 |  |
|         |                                                           | management                  |  |
|         |                                                           | ("nutrient                  |  |
|         |                                                           | utilization").              |  |
| [14]    | To evaluate carbohydrate sources                          | Green and Purple:           |  |
| [* •]   | and protein degradability on                              | Nutritional                 |  |
|         | lactation, rumen fermentation,                            | optimization                |  |
|         | and blood profile in dairy cows.                          | ("protein", "pectin")       |  |
|         |                                                           | and precision               |  |
|         |                                                           | feeding in dairy            |  |
|         |                                                           | cows ("dairy-               |  |
|         |                                                           | cows").                     |  |
| [15]    | To evaluate the antimicrobial and                         | Blue: Antioxidant           |  |
| -       | antioxidant activity of                                   | bioactive                   |  |
|         | pomegranate, orange, and banana                           | compounds                   |  |
|         | peel extracts.                                            | ("antioxidant               |  |
|         |                                                           | activity").                 |  |
| [16]    | To evaluate the expression of                             | Red and Purple:             |  |
| ,       | bacterial genes in the rumen                              | Methanogenesis              |  |
|         | related to methane emission,                              | ("methane                   |  |
|         | linked to methyl compound                                 | emission") and              |  |
|         | production.                                               | specific nutritional        |  |
|         |                                                           | management                  |  |
|         |                                                           | ("nutrient                  |  |
|         |                                                           | utilization").              |  |
| [17]    | To evaluate the effect of biochar                         | Purple and Green:           |  |
|         | in the anaerobic digestion of                             | Precision nutrition         |  |
|         | citrus residues, focusing on                              | ("dairy-cows") and          |  |
|         | microbial communities and                                 | digestive                   |  |
|         | methane production.                                       | optimization                |  |
|         |                                                           | ("metabolism").             |  |

| [10] | To investigate the effect of                                        | Blue and Red:                             |
|------|---------------------------------------------------------------------|-------------------------------------------|
| [18] | To investigate the effect of phloroglucinol on rumen                | Microbial inhibition                      |
|      | fermentation and methane                                            | ("inhibition") and                        |
|      | emissions.                                                          | methanogenesis                            |
|      |                                                                     | ("methanogenesis").                       |
| [19] | To review the use of plant                                          | Blue and Yellow:                          |
|      | secondary metabolites as feed                                       | Bioactive                                 |
|      | additives in calves, evaluating antimicrobial mechanisms.           | compounds ("polyphenols") and             |
|      | antimicrobiai mechanisms.                                           | essential oils                            |
|      |                                                                     | ("essential oils").                       |
| [20] | To review the antibacterial                                         | Blue and Yellow:                          |
|      | mechanisms of plant phenolic                                        | Phenolic                                  |
|      | compounds using systems                                             | compounds                                 |
|      | biology.                                                            | ("phenolic                                |
|      |                                                                     | compounds") and                           |
|      |                                                                     | flavonoids<br>("flavonoids").             |
| [21] | To assess the antimicrobial                                         | Blue and Yellow:                          |
| [21] | activity of fruit peels against                                     | Bioactive                                 |
|      | pathogenic bacteria and fungi.                                      | compounds                                 |
|      |                                                                     | ("phenolic                                |
|      |                                                                     | compounds") and                           |
|      |                                                                     | essential oils                            |
|      | 77 1 2 2 2 2                                                        | ("essential oils").                       |
| [22] | To evaluate the effect of flavonoids (Bioflavex®) on                | Red, Yellow, and<br>Blue:                 |
|      | rumen fermentation and in vitro                                     | Methanogenesis                            |
|      | methane production.                                                 | ("methanogenesis"),                       |
|      |                                                                     | flavonoids                                |
|      |                                                                     | ("flavonoids"), and                       |
|      |                                                                     | bioactive                                 |
|      |                                                                     | compounds                                 |
| [22] | T 1 4 41 66 4 6                                                     | ("polyphenols"). <b>Yellow:</b> Essential |
| [23] | To evaluate the effects of essential oils on in vitro rumen         | oils in                                   |
|      | fermentation, analyzing end                                         | methanogenesis                            |
|      | products such as volatile fatty                                     | inhibition                                |
|      | acids and ammonia.                                                  | ("essential oils").                       |
| [24] | To investigate the diversity of the                                 | Red and Green:                            |
|      | intestinal archaeome in animals,                                    | Methanogenesis                            |
|      | analyzing its relationship with diet and intestinal physiology.     | physiology                                |
|      | diet and intestinal physiology.                                     | ("methane<br>emission") and               |
|      |                                                                     | nutritional                               |
|      |                                                                     | optimization                              |
|      |                                                                     | ("digestion").                            |
| [25] | To evaluate the antifungal                                          | Blue and Yellow:                          |
|      | activity of orange peel essential                                   | Essential oils                            |
|      | oil against <i>Aspergillus flavus</i> , by direct contact and vapor | ("essential oils")<br>and antimicrobial   |
|      | exposure.                                                           | activity                                  |
|      |                                                                     | ("antibacterial").                        |
| [26] | To evaluate cashew nut shell                                        | Red, Blue, and                            |
| . ,  | liquid as a methane inhibition and                                  | Green: Methane                            |
|      | propionate promoter in rumen                                        | inhibition                                |
|      | fermentation.                                                       | ("methane-                                |
|      |                                                                     | inhibiting"), phenolic                    |
|      |                                                                     | compounds                                 |
|      |                                                                     | ("phenolic                                |
|      |                                                                     | compounds"), and                          |
|      |                                                                     | nutritional                               |
|      |                                                                     | optimization                              |
| [27] | To assess the effects of                                            | ("propionate").  Blue and Red:            |
| [27] | fermentation on the composition                                     | Bioactive                                 |
|      | and bioactivity of polyphenols in                                   | compounds                                 |
|      | fermented foods.                                                    | ("polyphenols") and                       |
|      |                                                                     |                                           |
|      |                                                                     | fermentation                              |
|      |                                                                     | processes                                 |
| (20) |                                                                     | processes ("fermentation").               |
| [28] | To produce single-cell protein through solid-state fermentation     | processes                                 |

compounds

ISSN: 2357-7592



## QUANTUM TECHNOLOGIES: The information revolution

The information revolution that will change the future





of orange waste, investigating synergistic microbial interactions. optimization ("food").

Source: Author's own elaboration

### 4. Conclusions

Over the past two decades, research on enteric methane mitigation in ruminants has grown steadily, integrating physiology, nutrition, and biotechnology. Remaining gaps include standardization in bioactive compound use and economic viability assessments. Continued applied research is essential to develop efficient, sustainable nutritional strategies aligned with global environmental goals.

### Acknowledgement

I would like to thank everyone who contributed to the success of this work. My gratitude goes to the Green Hydrogen Competence Center and the Competence Center for Engineering for the Intensification of Chemical and Biochemical Processes at SENAI CIMATEC University for their support.

### References

- EPA Environmental Protection Agency. Global mitigation of non-CO<sub>2</sub> greenhouse gases: 2010-2030. Washington, DC: EPA, 2013.
- [2] FAO, 2023. FAOSTAT Climate Change: Agrifood systems emissions, Emissions Totals, http://www.fao.org/faostat/en/#data/GT
- [3] KRÓLICZEWSKA, B.; PECKA-KIEŁB, E.; BUJOK, J. Strategies used to reduce methane emissions from ruminants: controversies and issues. Agriculture, v. 13, 602, 2023. DOI: 10.3390/agriculture13030602
- [4] GOMEZ-URIOS, C.; SIROLI, L.; GRASSI, S.; PATRIGNANI, F.; BLESA, J.; LANCIOTTI, R.; FRÍGOLA, A.; IAMETTI, S.; ESTEVE, M. J.; NUNZIO, M. DI. Sustainable valorization of citrus by-products: natural deep eutectic solvents for bioactive extraction and biological applications of *Citrus sinensis* peel. *Eur Food Res Technol* (2025). https://doi.org/10.1007/s00217-025-04757-3

- [5] PALANGI, V.; LACKNER, M. Management of enteric methane emissions in ruminants using feed additives: a review. *Animals*, v. 12, e3452, 2022.
- [6] ÖZTÜRK, H.; GÜR, G. Rumen physiology: microorganisms, fermentation and manipulation. Ankara Üniversitesi Veteriner Fakültesi Dergisi, v. 68, n. 4, p. 423-434, 2021. DOI: 10.33988/auvfd.960447.
- [7] RANILLA, M. J.; ANDRÉS, S.; GINI, C.; BISCARINI, F.; SARO, C.; MARTÍN, A.; MATEOS, I.; LÓPEZ, S.; GIRÁLDEZ, F. J.; ABDENNEBI-NAJAR, L.; PEREIRA, D.; FALLEH, H.; KSOURI, R.; CREMONESI, P.; CASTIGLIONI, B.; CECILIANI, F. Effects of Thymbra capitata essential oil on in vitro fermentation end-products and ruminal bacterial communities. Sci Rep 13, 4153 (2023). https://doi.org/10.1038/s41598-023-31370-9
- [8] JAYANEGARA, A.; YOGIANTO, Y.; WINA, E.; SUDARMAN, A.; KONDO, M.; OBITSU, T.; KREUZER, M. Combination Effects of Plant Extracts Rich in Tannins and Saponins as Feed Additives for Mitigating in Vitro Ruminal Methane and Ammonia Formation. Animals 2020, 10, 1531. https://doi.org/10.3390/ani10091531
- [9] Barcelos MCS, Ramos CL, Kuddus M, Rodriguez-Couto S, Srivastava N, Ramteke PW, et al. Enzymatic potential for the valorization of agro-industrial by-products. Biotechnol Lett [Internet]. 2020;42(10):1799–827. Disponível em: http://dx.doi.org/10.1007/s10529-020-02957-3
- [10] Bento MHL, Acamovic T, Makkar HPS. The influence of tannin, pectin and polyethylene glycol on attachment of 15N-labelled rumen microorganisms to cellulose. Anim Feed Sci Technol [Internet]. 2005;122(1–2):41–57. Disponível em: http://dx.doi.org/10.1016/j.anifeedsci.2005.04.010
- [11] Calabrò PS, Fazzino F, Sidari R, Zema DA. Optimization of orange peel waste ensiling for sustainable anaerobic digestion. Renew Energy [Internet]. 2020;154:849–62. Disponível em: http://dx.doi.org/10.1016/j.renene.2020.03.047.
- [12] Fabbri D, Torri C. Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass. Curr Opin Biotechnol [Internet]. 2016;38:167–73. Disponível em: http://dx.doi.org/10.1016/j.copbio.2016.02.004
- [13] Ghimire N, Bakke R, Bergland WH. Liquefaction of lignocellulosic biomass for methane production: A review. Bioresour Technol [Internet]. 2021;332(125068):125068. Disponível em: http://dx.doi.org/10.1016/j.biortech.2021.125068
- [14] Hall MB, Larson CC, Wilcox CJ. Carbohydrate source and protein degradability alter lactation, ruminal, and blood measures. J Dairy Sci [Internet]. 2010;93(1):311–22. Disponível em: http://dx.doi.org/10.3168/jds.2009-2552
- [15] Hanafy SM, Abd El-Shafea YM, Saleh WD, Fathy HM. Chemical profiling, in vitro antimicrobial and antioxidant activities of pomegranate, orange and banana peel-extracts against pathogenic microorganisms. J Genet Eng Biotechnol [Internet]. 2021;19(1):80. Disponível em: http://dx.doi.org/10.1186/s43141-021-00151-0
- [16] Kelly WJ, Leahy SC, Kamke J, Soni P, Koike S, Mackie R, et al. Occurrence and expression of genes encoding methyl-compound production in rumen bacteria. Anim Microbiome [Internet]. 2019;1(1):15. Disponível em: http://dx.doi.org/10.1186/s42523-019-0016-0
- [17] Martínez EJ, Rosas JG, Sotres A, Moran A, Cara J, Sánchez ME, et al. Codigestion of sludge and citrus peel wastes: Evaluating the effect of biochar addition on microbial communities. Biochem Eng J [Internet]. 2018;137:314–25. Disponível em: http://dx.doi.org/10.1016/j.bej.2018.06.010
- [18] Martinez-Fernandez G, Denman SE, Cheung J, McSweeney CS. Phloroglucinol degradation in the Rumen promotes the capture of excess hydrogen generated from methanogenesis inhibition. Front Microbiol [Internet]. 2017;8:1871. Disponível em: http://dx.doi.org/10.3389/fmicb.2017.01871
- [19] Reddy PRK, Elghandour MMMY, Salem AZM, Yasaswini D, Reddy PPR, Reddy AN, et al. Plant secondary metabolites as feed additives in calves for antimicrobial stewardship. Anim Feed Sci Technol [Internet]. 2020;264(114469):114469. Disponível em: http://dx.doi.org/10.1016/j.anifeedsci.2020.114469
- [20] Rempe CS, Burris KP, Lenaghan SC, Stewart CN Jr. The potential of systems biology to discover antibacterial mechanisms of plant



### QUANTUM TECHNOLOGIES: The information revolution

The information revolution that will change the future





- phenolics. Front Microbiol [Internet]. 2017;8:422. Disponível em: http://dx.doi.org/10.3389/fmicb.2017.00422
- [21] Saleem M, Saeed MT. Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. J King Saud Univ Sci [Internet]. 2020;32(1):805–10. Disponível em: http://dx.doi.org/10.1016/j.jksus.2019.02.013
- [22] Seradj AR, Abecia L, Crespo J, Villalba D, Fondevila M, Balcells J. The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Anim Feed Sci Technol [Internet]. 2014;197:85–91. Disponível em: http://dx.doi.org/10.1016/j.anifeedsci.2014.08.013
- [23] Spanghero M, Zanfi C, Fabbro E, Scicutella N, Camellini C. Effects of a blend of essential oils on some end products of in vitro rumen fermentation. Anim Feed Sci Technol [Internet]. 2008;145(1–4):364–74. Disponível em: http://dx.doi.org/10.1016/j.anifeedsci.2007.05.048
- [24] Thomas CM, Desmond-Le Quéméner E, Gribaldo S, Borrel G. Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. Nat Commun [Internet]. 2022;13(1):3358. Disponível em: http://dx.doi.org/10.1038/s41467-022-31038-4
- [25] Velázquez-Nuñez MJ, Avila-Sosa R, Palou E, López-Malo A. Antifungal activity of orange (Citrus sinensis var. Valencia) peel essential oil applied by direct addition or vapor contact. Food Control [Internet]. 2013;31(1):1–4. Disponível em: http://dx.doi.org/10.1016/j.foodcont.2012.09.029
- [26] Watanabe Y, Suzuki R, Koike S, Nagashima K, Mochizuki M, Forster RJ, et al. In vitro evaluation of cashew nut shell liquid as a methane-inhibiting and propionate-enhancing agent for ruminants. J Dairy Sci [Internet]. 2010;93(11):5258–67. Disponível em: http://dx.doi.org/10.3168/jds.2009-2754
- [27] Yang F, Chen C, Ni D, Yang Y, Tian J, Li Y, et al. Effects of fermentation on bioactivity and the composition of polyphenols contained in polyphenol-rich foods: A review. Foods [Internet]. 2023;12(17). Disponível em: http://dx.doi.org/10.3390/foods12173315
- [28] Zhou Y-M, Chen Y-P, Guo J-S, Shen Y, Yan P, Yang J-X. Recycling of orange waste for single cell protein production and the synergistic and antagonistic effects on production quality. J Clean Prod [Internet]. 2019;213:384–92. Disponível em: http://dx.doi.org/10.1016/j.jclepro.2018.12.168