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Abstract: This work presents an analysis of how the learning rate in a modular Artificial Neural Network
(ANN) influences the development of the Goodman Diagram for the DD5 composite material. Experimental
data involving multiple S-N curves were collected, and a mathematical approach based on the Generalized
Power Law was employed to determine the stress amplitude and the average number of cycles to failure. The
Goodman Diagram was constructed by calculating the mean stress from the stress amplitude and fatigue ratio.
Data normalization was applied to prevent neuron saturation and enhance the generalization capability of the
ANN. For training, three fatigue ratio values (R = 0.1, 2, and 10) were chosen, while an additional value (R =
0.5) was reserved for validation purposes. The hidden layer neuron count varied from 5 to 25, with learning
rates tested at 0.05, 0.1, and 0.5 over 3000 training epochs. Analysis of the mean squared error (MSE)
demonstrated that learning rates of 0.05 and 0.1 yielded errors on the order of 10, whereas the 0.5 rate
produced higher errors around 103. The best performance was achieved with the 0.1 learning rate, as its
Goodman Diagram curves closely matched the experimental data, reflecting superior learning ability and
robustness of the model. This methodology illustrates that modular ANNs provide an efficient, fast, and cost-
effective alternative for fatigue life analysis of composite materials, supporting improvements in structural
design with enhanced safety and reliability.

Keywords: Fatigue analysis, Goodman Diagram, Artificial Neural Network (ANN), Composite materials and
Learning rate.

1. Introduction fatigue is the fatigue ratio (R), which can be seen
in Equation 1 (Souza, 1982,[1]; Freire Jr.,

The objective of this work is to analyze how the 2005,[3]; Mott, 2015,[4]).

learning rate of a modular architecture Acrtificial
Neural Network influences the results of the
development of the Goodman diagram for the
DD5 composite.

Each material has a tensile strength limit.
However, when subjected to time-varying
stresses, materials may fail at stress levels lower
than this limit, characterizing fatigue failure
1982,[1]; Nisbett,

2016,[2]). Since machine elements are subjected

(Souza, Budynas and

to cyclic loads, their design must take into
account the material’s service life (Sutherland,

1999). An important relation for the study of
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R = Omin (1)

Omax

1.1 Composite

The data used for training and validating the
ANN refer to the DD5 material
extracted from the work of Mandell and
Samborsky (1997) [5]. The DDS5 is a glass fiber

structural composite widely used in applications

and were

requiring good mechanical performance under
static and cyclic loading, such as wind turbine
blades, nautical components, and automotive
structures. Its performance strongly depends on

the reinforcement layer configuration, fiber
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volume fraction, and polymer  matrix
characteristics. The DD5 consists of a laminate
with a [0/+45/0] layer configuration, indicating
that most fibers are oriented in the longitudinal
direction (0°), while some are inclined at +45°
relative to the main loading direction. This hybrid
architecture aims to provide strength both in
tension and shear. The fiber distribution in the
laminate comprises approximately 70% of fibers
in the 0° direction, favoring uniaxial tensile
strength, and 30% in the +45° layers, which
contribute to shear stiffness and material

performance under complex loading conditions.

1.2 Goodman diagram

In the prevention of fatigue failures in
composites, the Goodman Diagram has proven to
be an effective tool, although it requires the
development of a specific diagram for each type
of composite analyzed. Obtaining the curve
requires representative data of the material’s
behavior, which can be achieved by keeping the
fatigue ratio constant and subjecting each
specimen to a specific maximum stress value
during testing. To determine the number of cycles
to failure for different R values, new tests must be
conducted, and specific S-N curves must be
constructed for each condition (Freire Jr.,
2005,[3]; Diniz, 2017,[6]). According to Bond
(1999)[7],

Diagram requires, at a minimum, a mathematical

the construction of the Goodman

model representing the S—N curve, obtained from
experimental data from alternating stress tests, in
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addition to the tensile and compressive strength
limits of the material. With this data, the diagram
is developed using the mathematical model to
determine the values of stress amplitude (o,) and
mean stress (omed) for 103, 104, 10%, 10¢, and 107
cycles. For composites, the main function of the
Goodman Diagram is to define the safe regions of
cyclic loading, indicating the number of cycles
the material can withstand before failure. This is
because, in most cases, these materials do not
present a fatigue strength limit; that is, regardless
of the applied stress, failure will occur after a

finite number of cycles.

1.3 Mathematical equations

The specialized literature (Subramanian et al.,
1995,[8]; Mandell et al., 1997,[5]; Sutherland,
1999,[9]) presents several equations aimed at
modeling the fatigue behavior of composites.
these  mathematical

However, none of

expressions  proves to be sufficiently
comprehensive to satisfactorily represent the
fatigue phenomenon in all types of composites.
For a mathematical function to adequately
represent fatigue behavior, it must consider at
least three essential variables: the number of
cycles to failure (N), the stress value (o), and the
fatigue ratio (R). Following this approach,
Equation 2 expresses the stress amplitude (o.) as
a function of the mean stress (emed) and the
number of cycles, without compromising the

representation of the material’s behavior:

XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

UNIVERSIDADE



XI SIINTEC

INTERNATIONAL SYMPOSIUM ON
INNOVATION AND TECHNOLOGY

- QU ’j SENA
TECHNOLOGlES MATEC

The information revolution
that will change the future

Quantum Science
and Technology

04 = f(Omea, N) (2)
However, the previous equation does not
satisfactorily represent the material’s behavior,
requiring a generalization. In this sense, Equation
(3), proposed by Subramanian et al. (1995)[9],
can be used to more adequately describe the
relationship between maximum stress and the
average number of cycles to failure (N):

Omax = A — B[log(N)]*  (3)
The addition of parameters A and C in Equation
3 aims to provide a better fit of the curve to the
analyzed experimental results, allowing a
representation closer to the fatigue behavior of
composites. Another way to represent the S-N
curve data is by using the Power Law (Equation
4). The main advantage of this equation is to
provide smoothing of the curve for high numbers
of cycles. However, it assumes that the material
exhibits linear behavior on a log—log scale, which
is not always experimentally observed. In such

cases, it is possible to apply a generalization,

presented in Equation 5 (Philippidis and

Vassilopoulos, 2002,[10]; Wahl et al., 2002,
[11]).

Omax = aN B (4)

log(0max) = A — Bllog(N)]° (®)

The parameters a, A, B, and C must be
determined during the curve fitting process. With
these values, it is possible to define the equation
necessary for the development of the normalized

Goodman Diagram.
Omed W rucs Omed v
ﬁ f( - UTS) (ﬁ-l_ UTS) (6)
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In Equation 6, UTS and UCS

respectively, the tensile and compressive strength

represent,

limits. The variables f, u, and v are parameters
that vary as a function of the number of cycles to
failure (N). According to Freire Jr. and Aquino
(2009)[12], the main limitation of Equation 5 is
the need for a large number of S-N curves to
obtain satisfactory results. Another factor that
disadvantages the model is the possible lack of
correspondence between constant-life curves,
which usually occurs when the number of
available S-N  curves is insufficient,
compromising the faithful representation of the
material’s fatigue behavior. In their studies,
(2010)[13] proposed the

development of a model capable of determining

Vassilopoulos et al.

the fatigue behavior of a composite from a
relatively reduced number of S-N curves. To this
end, they mathematically demonstrated the
existence of a relationship between mean stress
(omed), fatigue ratio (R), and stress amplitude
(0a), expressed in Equation 7. This model allows
describing the material behavior using only two
parameters, since the third can be obtained from

the equation itself.

1-R
Gy = H_Ro_med (7)

Based on this proposal, equations were developed
to represent each of the fatigue ratio regions,
whose boundary conditions were defined from
the experimental data of the S-N curves. The
corresponding equations, as well as details about

the construction of the constant-life Goodman
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Diagram, can be found in Vassilopoulos et al.
(2010)[13].

1.4 Artificial Neural Network

An artificial neural network (ANN) is a
massively parallel processor composed of simple
processing units, with a natural capacity to store
experimentally obtained knowledge and make it
available for use. Several characteristics make the
field of ANNSs attractive for solving complex
problems. Among them, the ability to learn from
examples and generalize information stands out;
that is, the network can provide consistent
responses for unknown situations or inputs even
with a reduced amount of data. Therefore, it is
essential to have a well-designed training set that
is representative of real behavior, combined with
an appropriate network architecture and an
efficient training algorithm.

The activation function defines the neuron’s
output in terms of its internal activation level.
Various types of activation functions can be
applied, such as threshold function, piecewise
threshold, ReL U, hyperbolic tangent (TanH), and
sigmoid (lyoda, 2000,[14]; Haykin, 2001,[15];
Glorot et al., 2011,[16]). Among these, the last is
highlighted and was used in this work. The
sigmoid function is considered the most common
form of activation function in multilayer artificial
neural networks trained by the back-propagation
algorithm, as pointed out by lyoda (2000)[14] and
Silva (2009)[17].

increasing function that offers an appropriate
ISSN: 2357-7592

It is defined as a strictly

balance between linear and nonlinear behavior
(Haykin, 2001,[15]). 8 and 9

mathematically express the sigmoid function and

Equations

its respective derivative.
1

o) = — ®)

i

=apW)[1- )] (9)

The main characteristic of the perceptron network

—(-aje™ %)
(1+e~%iv)2

@'(v) =
is the use of neurons with nonlinear activation
functions and a feedforward layered architecture.
Generally, this type of network consists of a set
of sensory units (input layer), one or more hidden
layers of computational neurons, and an output

layer. Its training is performed in a supervised

manner through the error backpropagation
algorithm.
Modular Networks are neural networks

composed of two or more independent modules

(subsystems),  without direct connections
between them. The outputs of these modules are
mediated by a routing network, which does not
feedback. This

combines the outputs of the modules to form the

provide routing  network
system’s final output, as well as determines how
input patterns are distributed among the modules
(Haykin, 2001,[15]). According to Ishikawa
(1995)[18], learning in modular networks occurs
in two stages: the first involves training the
synaptic weights in each expert module, and the
second corresponds to adjusting the synaptic
weights that connect the different modules.

The ability to learn through interaction with the
environment or the information source is one of

the main characteristics of neural networks. The
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fundamental concept of training a neural network
consists of gradually modifying the synaptic
weights, following a learning rule that determines
how these weights will be adjusted (Haykin,
2001,[15]).

Supervised training is the most commonly used
method for training ANNSs. It is based on a
predefined set of input and output data that guides
the network’s learning. Thus, the network is
expected to respond approximately to the
presented data. Furthermore, it is desirable that
the network has the ability to generalize, i.e.,
provide consistent responses for both known and
previously unseen data. According to lyoda
(2000)[14],

supervised learning in neural networks is through

a common way to implement
iterative error correction procedures. Using a
training algorithm structured to minimize error,
combined with an adequate training set and a
sufficient number of iterations, results in a neural
network capable of performing tasks such as
pattern classification and function approximation
(lyoda, 2000,[14]; Haykin, 2001,[15]).

The backpropagation algorithm is the most used
method for training multilayer perceptron
artificial neural networks (ANNSs), based on the
error correction rule. Its computational structure
basically consists of two stages: feedforward
processing, in which an input is applied to the
network and its effect is propagated layer by
layer, with weights kept fixed, until the output
layer generates a set of actual network responses;
and backward processing, in which an error

signal is propagated in the opposite direction,
ISSN: 2357-7592

layer by layer. At the end of this process, the
network weights are adjusted according to the
error correction rule (Braga et al., 2000,[19];
lyoda, 2000,[14]; 2001,[15]; Nied,
2007,[20]). Thus, the function of

backpropagation training is based on minimizing

Haykin,

the mean squared error as in Equation 10.
—ZQ —1(dk — z)?

Where EMQ is the mean squared error, Q is the

EMQ = (10)

total number of data points, K is the number of
neurons in the output layer, and dk and zk are the
desired response and the actual response of the k-

th output neuron, respectively.

2. Methodology

The study development begins with the collection
of experimental data, involving at least three S-N
curves of the material under analysis. With these
data, a mathematical approach based on the
Generalized Power Law (Equation 5) was
adopted, from which the values of stress
amplitude (o4) and average number of cycles (N)
were determined. Finally, using the stress
amplitude and the fatigue ratio, the mean stress
(omed) Was calculated according to Equation 7.
Normalization is a data preprocessing step aimed
at preventing neuron saturation in the network,
thus avoiding inadequate training. This method
consists of restricting the input values of the S-N
curves to a range between 0 and 1 for the stress
amplitude, as shown in Equation 11.

— __ log(N)
nor = log(Nmax)

(11)
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Normalization of the other parameters also aids
in the generalization of the ANN architecture
usage. After normalizing the dataset during the
preprocessing stage, the choice of network
architecture constitutes the next step, being
equally fundamental for successful training.

For network training, three fatigue ratio values
were selected: R = 0.1, R =2, and R = 10. To
validate the synaptic weights obtained by the
ANN, a dataset including all data plus an
additional fatigue ratio, R = 0.5, was used. It is
worth noting that the DD5 material employed has
ultimate tensile strength (UTS) values of 1397
MPa and ultimate compressive strength (UCS) of
-722 MPa.

The number of neurons in the hidden layer ranged
from 5 to 25 in each module. For training, 3000
epochs were used, with learning rates varying
between 0.05, 0.1, and 0.5.

The selection of synaptic weights for the
representation of the Goodman Diagram
considered the parameter set that showed the
lowest mean squared error when evaluating all
data.

The analysis of the dispersion of the Mean
Squared Error (EMQ) values allows assessing
two main characteristics of an artificial neural
network (ANN): its generalization capability and
the robustness (repeatability) of the trained
algorithm. The errors obtained were on the order
of 10~* for learning rates 0.05 and 0.1, and on the

order of 1072 for the learning rate 0.5.

ISSN: 2357-7592

3. Results

The construction of the Goodman Diagram
results from the combination of the experimental
data used in training with the curves generated by
the ANN. As illustrated in Figure 1 to Figure 3,
the points on the lines, which represent each
value of R, correspond to the experimental data
used in training, except for R = 0.5, which was
used only for network validation. The curves
represent the set of points of stress amplitude
versus mean stress for a given number of cycles.
Figure 1, Figure 2, and Figure 3 present the
Goodman Diagrams obtained through the applied
methodology, considering learning rates of 0.05,
0.1, and 0.5, respectively.

The curves located below the points presented in
the graph indicate that the model’s behavior
remains within safe limits, ensuring structural
integrity and the reliability of the obtained results.
This relationship demonstrates that the model
meets the established performance criteria,
providing confidence for its practical application.

4. Conclusion

In the evaluation of the Mean Squared Error,
which attests to the robustness (repeatability
during training) of the trained algorithm, it is
concluded that the adoption of only three S—N
curves is sufficient to ensure consistent and
representative results. This number of curves
proves capable of adequately capturing the

material’s fatigue behavior, providing reliable
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information for both service life prediction and
structural integrity assessment. Such an approach
streamlines the modeling process, reducing
experimental complexity without compromising
estimation accuracy, thus enabling faster and
more cost-effective fatigue life analyses

By analyzing the generated Goodman Diagrams,
it is observed that the ANN trained with a
learning rate of 0.1 delivered the best results, as
the curves of this diagram were closer to the
experimental data. Therefore, even compared to
higher learning rates, the learning capability of
the network with a 0.1 rate proved to be superior.
This result indicates that increasing the
processing rate, as well as extending the time
allocated to performing the analyses, does not
necessarily lead to an improvement in the quality
or accuracy of the results obtained. In other
words, even with greater computational capacity
or longer processing time, the model’s
performance may remain unchanged,
highlighting that efficiency is not solely
associated with intensive resource usage, but
rather with the adequacy of the parameters and
methods employed.
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Figure 1. Goodman diagram for learning rates
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Figure 2. Goodman diagram for learning rates
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Figure 3. Goodman diagram for learning rates
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