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Abstract: This work presents an analysis of how the learning rate in a modular Artificial Neural Network 

(ANN) influences the development of the Goodman Diagram for the DD5 composite material. Experimental 

data involving multiple S-N curves were collected, and a mathematical approach based on the Generalized 

Power Law was employed to determine the stress amplitude and the average number of cycles to failure. The 

Goodman Diagram was constructed by calculating the mean stress from the stress amplitude and fatigue ratio. 

Data normalization was applied to prevent neuron saturation and enhance the generalization capability of the 

ANN. For training, three fatigue ratio values (R = 0.1, 2, and 10) were chosen, while an additional value (R = 

0.5) was reserved for validation purposes. The hidden layer neuron count varied from 5 to 25, with learning 

rates tested at 0.05, 0.1, and 0.5 over 3000 training epochs. Analysis of the mean squared error (MSE) 

demonstrated that learning rates of 0.05 and 0.1 yielded errors on the order of 10⁻⁴, whereas the 0.5 rate 

produced higher errors around 10⁻³. The best performance was achieved with the 0.1 learning rate, as its 

Goodman Diagram curves closely matched the experimental data, reflecting superior learning ability and 

robustness of the model. This methodology illustrates that modular ANNs provide an efficient, fast, and cost-

effective alternative for fatigue life analysis of composite materials, supporting improvements in structural 

design with enhanced safety and reliability. 

 

Keywords: Fatigue analysis, Goodman Diagram, Artificial Neural Network (ANN), Composite materials and 
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1. Introduction 

 

The objective of this work is to analyze how the 

learning rate of a modular architecture Artificial 

Neural Network influences the results of the 

development of the Goodman diagram for the 

DD5 composite. 

Each material has a tensile strength limit. 

However, when subjected to time-varying 

stresses, materials may fail at stress levels lower 

than this limit, characterizing fatigue failure 

(Souza, 1982,[1]; Budynas and Nisbett, 

2016,[2]). Since machine elements are subjected 

to cyclic loads, their design must take into 

account the material’s service life (Sutherland, 

1999). An important relation for the study of 

fatigue is the fatigue ratio (R), which can be seen 

in Equation 1 (Souza, 1982,[1]; Freire Jr., 

2005,[3]; Mott, 2015,[4]).   

  R =
σmin

σmax
   (1) 

1.1 Composite 

 

The data used for training and validating the 

ANN refer to the DD5 material and were 

extracted from the work of Mandell and 

Samborsky (1997) [5]. The DD5 is a glass fiber 

structural composite widely used in applications 

requiring good mechanical performance under 

static and cyclic loading, such as wind turbine 

blades, nautical components, and automotive 

structures. Its performance strongly depends on 

the reinforcement layer configuration, fiber 
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volume fraction, and polymer matrix 

characteristics. The DD5 consists of a laminate 

with a [0/±45/0] layer configuration, indicating 

that most fibers are oriented in the longitudinal 

direction (0°), while some are inclined at ±45° 

relative to the main loading direction. This hybrid 

architecture aims to provide strength both in 

tension and shear. The fiber distribution in the 

laminate comprises approximately 70% of fibers 

in the 0° direction, favoring uniaxial tensile 

strength, and 30% in the ±45° layers, which 

contribute to shear stiffness and material 

performance under complex loading conditions. 

 

1.2 Goodman diagram 

 

In the prevention of fatigue failures in 

composites, the Goodman Diagram has proven to 

be an effective tool, although it requires the 

development of a specific diagram for each type 

of composite analyzed. Obtaining the curve 

requires representative data of the material’s 

behavior, which can be achieved by keeping the 

fatigue ratio constant and subjecting each 

specimen to a specific maximum stress value 

during testing. To determine the number of cycles 

to failure for different R values, new tests must be 

conducted, and specific S–N curves must be 

constructed for each condition (Freire Jr., 

2005,[3]; Diniz, 2017,[6]). According to Bond 

(1999)[7], the construction of the Goodman 

Diagram requires, at a minimum, a mathematical 

model representing the S–N curve, obtained from 

experimental data from alternating stress tests, in 

addition to the tensile and compressive strength 

limits of the material. With this data, the diagram 

is developed using the mathematical model to 

determine the values of stress amplitude (𝜎ₐ) and 

mean stress (𝜎ₘₑd) for 10³, 10⁴, 10⁵, 10⁶, and 10⁷ 

cycles. For composites, the main function of the 

Goodman Diagram is to define the safe regions of 

cyclic loading, indicating the number of cycles 

the material can withstand before failure. This is 

because, in most cases, these materials do not 

present a fatigue strength limit; that is, regardless 

of the applied stress, failure will occur after a 

finite number of cycles. 

 

1.3 Mathematical equations 

 

The specialized literature (Subramanian et al., 

1995,[8]; Mandell et al., 1997,[5]; Sutherland, 

1999,[9]) presents several equations aimed at 

modeling the fatigue behavior of composites. 

However, none of these mathematical 

expressions proves to be sufficiently 

comprehensive to satisfactorily represent the 

fatigue phenomenon in all types of composites. 

For a mathematical function to adequately 

represent fatigue behavior, it must consider at 

least three essential variables: the number of 

cycles to failure (𝑁), the stress value (𝜎), and the 

fatigue ratio (𝑅). Following this approach, 

Equation 2 expresses the stress amplitude (𝜎ₐ) as 

a function of the mean stress (𝜎med) and the 

number of cycles, without compromising the 

representation of the material’s behavior: 
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𝜎𝑎 = 𝑓( 𝜎𝑚𝑒𝑑, 𝑁)  (2) 

However, the previous equation does not 

satisfactorily represent the material’s behavior, 

requiring a generalization. In this sense, Equation 

(3), proposed by Subramanian et al. (1995)[9], 

can be used to more adequately describe the 

relationship between maximum stress and the 

average number of cycles to failure (𝑁̅): 

σ𝑚𝑎𝑥 = 𝐴 − 𝐵[log(𝑁)]𝑐  (3) 

The addition of parameters 𝐴 and C in Equation 

3 aims to provide a better fit of the curve to the 

analyzed experimental results, allowing a 

representation closer to the fatigue behavior of 

composites. Another way to represent the S-N 

curve data is by using the Power Law (Equation 

4). The main advantage of this equation is to 

provide smoothing of the curve for high numbers 

of cycles. However, it assumes that the material 

exhibits linear behavior on a log–log scale, which 

is not always experimentally observed. In such 

cases, it is possible to apply a generalization, 

presented in Equation 5 (Philippidis and 

Vassilopoulos, 2002,[10]; Wahl et al., 2002, 

[11]). 

σ𝑚𝑎𝑥 = 𝑎𝑁̅−𝐵   (4) 

log(𝜎𝑚𝑎𝑥) = 𝐴 − 𝐵[log(𝑁̅)]𝑐 (5) 

The parameters a, A, B, and C must be 

determined during the curve fitting process. With 

these values, it is possible to define the equation 

necessary for the development of the normalized 

Goodman Diagram. 

𝜎𝑎

𝑈𝑇𝑆
= 𝑓 (1 −

𝜎𝑚𝑒𝑑

𝑈𝑇𝑆
)

𝑢

(
𝑈𝐶𝑆

𝑈𝑇𝑆
+  

𝜎𝑚𝑒𝑑

𝑈𝑇𝑆
)

𝑣

  (6) 

In Equation 6, UTS and UCS represent, 

respectively, the tensile and compressive strength 

limits. The variables 𝑓, 𝑢, and 𝑣 are parameters 

that vary as a function of the number of cycles to 

failure (𝑁). According to Freire Jr. and Aquino 

(2009)[12], the main limitation of Equation 5 is 

the need for a large number of S-N curves to 

obtain satisfactory results. Another factor that 

disadvantages the model is the possible lack of 

correspondence between constant-life curves, 

which usually occurs when the number of 

available S-N curves is insufficient, 

compromising the faithful representation of the 

material’s fatigue behavior. In their studies, 

Vassilopoulos et al. (2010)[13] proposed the 

development of a model capable of determining 

the fatigue behavior of a composite from a 

relatively reduced number of S-N curves. To this 

end, they mathematically demonstrated the 

existence of a relationship between mean stress 

(𝜎med), fatigue ratio (𝑅), and stress amplitude 

(𝜎𝑎), expressed in Equation 7. This model allows 

describing the material behavior using only two 

parameters, since the third can be obtained from 

the equation itself. 

σ𝑎 =  
1−𝑅

1+𝑅
σ𝑚𝑒𝑑    (7) 

Based on this proposal, equations were developed 

to represent each of the fatigue ratio regions, 

whose boundary conditions were defined from 

the experimental data of the S-N curves. The 

corresponding equations, as well as details about 

the construction of the constant-life Goodman 
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Diagram, can be found in Vassilopoulos et al. 

(2010)[13]. 

 

1.4 Artificial Neural Network 

 

An artificial neural network (ANN) is a 

massively parallel processor composed of simple 

processing units, with a natural capacity to store 

experimentally obtained knowledge and make it 

available for use. Several characteristics make the 

field of ANNs attractive for solving complex 

problems. Among them, the ability to learn from 

examples and generalize information stands out; 

that is, the network can provide consistent 

responses for unknown situations or inputs even 

with a reduced amount of data. Therefore, it is 

essential to have a well-designed training set that 

is representative of real behavior, combined with 

an appropriate network architecture and an 

efficient training algorithm. 

The activation function defines the neuron’s 

output in terms of its internal activation level. 

Various types of activation functions can be 

applied, such as threshold function, piecewise 

threshold, ReLU, hyperbolic tangent (TanH), and 

sigmoid (Iyoda, 2000,[14]; Haykin, 2001,[15]; 

Glorot et al., 2011,[16]). Among these, the last is 

highlighted and was used in this work. The 

sigmoid function is considered the most common 

form of activation function in multilayer artificial 

neural networks trained by the back-propagation 

algorithm, as pointed out by Iyoda (2000)[14] and 

Silva (2009)[17]. It is defined as a strictly 

increasing function that offers an appropriate 

balance between linear and nonlinear behavior 

(Haykin, 2001,[15]). Equations 8 and 9 

mathematically express the sigmoid function and 

its respective derivative. 

 𝜑(𝑣) =  
1

1+𝑒−𝑎𝑖𝑣     (8) 

𝜑′(𝑣) =  
−(−𝑎𝑖𝑒−𝑎𝑖𝑣)

(1+𝑒−𝑎𝑖𝑣)2 = 𝑎𝑖𝜑(𝑣)[1 −  𝜑(𝑣)]  (9) 

The main characteristic of the perceptron network 

is the use of neurons with nonlinear activation 

functions and a feedforward layered architecture. 

Generally, this type of network consists of a set 

of sensory units (input layer), one or more hidden 

layers of computational neurons, and an output 

layer. Its training is performed in a supervised 

manner through the error backpropagation 

algorithm. 

Modular Networks are neural networks 

composed of two or more independent modules 

(subsystems), without direct connections 

between them. The outputs of these modules are 

mediated by a routing network, which does not 

provide feedback. This routing network 

combines the outputs of the modules to form the 

system’s final output, as well as determines how 

input patterns are distributed among the modules 

(Haykin, 2001,[15]). According to Ishikawa 

(1995)[18], learning in modular networks occurs 

in two stages: the first involves training the 

synaptic weights in each expert module, and the 

second corresponds to adjusting the synaptic 

weights that connect the different modules. 

The ability to learn through interaction with the 

environment or the information source is one of 

the main characteristics of neural networks. The 
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fundamental concept of training a neural network 

consists of gradually modifying the synaptic 

weights, following a learning rule that determines 

how these weights will be adjusted (Haykin, 

2001,[15]). 

Supervised training is the most commonly used 

method for training ANNs. It is based on a 

predefined set of input and output data that guides 

the network’s learning. Thus, the network is 

expected to respond approximately to the 

presented data. Furthermore, it is desirable that 

the network has the ability to generalize, i.e., 

provide consistent responses for both known and 

previously unseen data. According to Iyoda 

(2000)[14], a common way to implement 

supervised learning in neural networks is through 

iterative error correction procedures. Using a 

training algorithm structured to minimize error, 

combined with an adequate training set and a 

sufficient number of iterations, results in a neural 

network capable of performing tasks such as 

pattern classification and function approximation 

(Iyoda, 2000,[14]; Haykin, 2001,[15]). 

The backpropagation algorithm is the most used 

method for training multilayer perceptron 

artificial neural networks (ANNs), based on the 

error correction rule. Its computational structure 

basically consists of two stages: feedforward 

processing, in which an input is applied to the 

network and its effect is propagated layer by 

layer, with weights kept fixed, until the output 

layer generates a set of actual network responses; 

and backward processing, in which an error 

signal is propagated in the opposite direction, 

layer by layer. At the end of this process, the 

network weights are adjusted according to the 

error correction rule (Braga et al., 2000,[19]; 

Iyoda, 2000,[14]; Haykin, 2001,[15]; Nied, 

2007,[20]). Thus, the function of 

backpropagation training is based on minimizing 

the mean squared error as in Equation 10. 

𝐸𝑀𝑄 =  
1

2𝑄
∑ ∑ (𝑑𝑘 − 𝑧𝑘)2𝐾

𝑘=1
𝑄
1          (10) 

Where EMQ is the mean squared error, Q is the 

total number of data points, K is the number of 

neurons in the output layer, and 𝑑𝑘 and 𝑧𝑘 are the 

desired response and the actual response of the k-

th output neuron, respectively. 

 

2. Methodology 

 

The study development begins with the collection 

of experimental data, involving at least three S-N 

curves of the material under analysis. With these 

data, a mathematical approach based on the 

Generalized Power Law (Equation 5) was 

adopted, from which the values of stress 

amplitude (𝜎𝑎) and average number of cycles (𝑁 ̅) 

were determined. Finally, using the stress 

amplitude and the fatigue ratio, the mean stress 

(𝜎med) was calculated according to Equation 7. 

Normalization is a data preprocessing step aimed 

at preventing neuron saturation in the network, 

thus avoiding inadequate training. This method 

consists of restricting the input values of the S-N 

curves to a range between 0 and 1 for the stress 

amplitude, as shown in Equation 11. 

𝑁̅𝑛𝑜𝑟 =  
log(𝑁̅)

log (𝑁𝑚𝑎𝑥)
            (11) 
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Normalization of the other parameters also aids 

in the generalization of the ANN architecture 

usage. After normalizing the dataset during the 

preprocessing stage, the choice of network 

architecture constitutes the next step, being 

equally fundamental for successful training. 

For network training, three fatigue ratio values 

were selected: 𝑅 = 0.1, 𝑅 = 2, and 𝑅 = 10. To 

validate the synaptic weights obtained by the 

ANN, a dataset including all data plus an 

additional fatigue ratio, 𝑅 = 0.5, was used. It is 

worth noting that the DD5 material employed has 

ultimate tensile strength (UTS) values of 1397 

MPa and ultimate compressive strength (UCS) of  

-722 MPa. 

The number of neurons in the hidden layer ranged 

from 5 to 25 in each module. For training, 3000 

epochs were used, with learning rates varying 

between 0.05, 0.1, and 0.5. 

The selection of synaptic weights for the 

representation of the Goodman Diagram 

considered the parameter set that showed the 

lowest mean squared error when evaluating all 

data. 

The analysis of the dispersion of the Mean 

Squared Error (EMQ) values allows assessing 

two main characteristics of an artificial neural 

network (ANN): its generalization capability and 

the robustness (repeatability) of the trained 

algorithm. The errors obtained were on the order 

of 10⁻⁴ for learning rates 0.05 and 0.1, and on the 

order of 10⁻³ for the learning rate 0.5. 

 

 

3. Results 

 

The construction of the Goodman Diagram 

results from the combination of the experimental 

data used in training with the curves generated by 

the ANN. As illustrated in Figure 1 to Figure 3, 

the points on the lines, which represent each 

value of 𝑅, correspond to the experimental data 

used in training, except for 𝑅 = 0.5, which was 

used only for network validation. The curves 

represent the set of points of stress amplitude 

versus mean stress for a given number of cycles. 

Figure 1, Figure 2, and Figure 3 present the 

Goodman Diagrams obtained through the applied 

methodology, considering learning rates of 0.05, 

0.1, and 0.5, respectively.  

The curves located below the points presented in 

the graph indicate that the model’s behavior 

remains within safe limits, ensuring structural 

integrity and the reliability of the obtained results. 

This relationship demonstrates that the model 

meets the established performance criteria, 

providing confidence for its practical application. 

 

4. Conclusion 

 

In the evaluation of the Mean Squared Error, 

which attests to the robustness (repeatability 

during training) of the trained algorithm, it is 

concluded that the adoption of only three S–N 

curves is sufficient to ensure consistent and 

representative results. This number of curves 

proves capable of adequately capturing the 

material’s fatigue behavior, providing reliable 
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information for both service life prediction and 

structural integrity assessment. Such an approach 

streamlines the modeling process, reducing 

experimental complexity without compromising 

estimation accuracy, thus enabling faster and 

more cost-effective fatigue life analyses  

By analyzing the generated Goodman Diagrams, 

it is observed that the ANN trained with a 

learning rate of 0.1 delivered the best results, as 

the curves of this diagram were closer to the 

experimental data. Therefore, even compared to 

higher learning rates, the learning capability of 

the network with a 0.1 rate proved to be superior. 

This result indicates that increasing the 

processing rate, as well as extending the time 

allocated to performing the analyses, does not 

necessarily lead to an improvement in the quality 

or accuracy of the results obtained. In other 

words, even with greater computational capacity 

or longer processing time, the model’s 

performance may remain unchanged, 

highlighting that efficiency is not solely 

associated with intensive resource usage, but 

rather with the adequacy of the parameters and 

methods employed. 

 

 

 

 

 

 

 

 

 

Attachments 

 

Figure 1. Goodman diagram for learning rates 

0.05. 

 

Figure 2. Goodman diagram for learning rates 

0.1.

 

Figure 3. Goodman diagram for learning rates 

0.5. 
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