

SÍNTESE E AVALIAÇÃO DO POTENCIAL FITOTÓXICO DE AMIDAS DERIVADAS DO GUAIACOL

Guilherme de O. Ferraz^{1*} (PG), Nicolas Zuim¹ (G), Yenara K. M. Silva (G)¹, Julianne A. Bruno (PG)¹, Jorge L. Pereira (PG)¹, Loren C. Vasconcelos (PG)², Patrícia F. Pinheiro¹ (PQ)

¹ Universidade Federal de Viçosa, Departamento de Química, Viçosa, Minas Gerais, Brasil
 ² Universidade Federal do Espírito Santo, Departamento de Biologia, Alegre, Espírito Santo, Brasil
 *e-mail: guilherme.o.ferraz@ufv.br

RESUMO

Plantas daninhas competem com culturas agrícolas e são comumente controladas por herbicidas. Compostos fenólicos naturais, como o guaiacol, possuem atividade fitotóxica e podem ser utilizados como base para o desenvolvimento de novos agroquímicos. Neste trabalho, foram sintetizadas amidas derivadas do guaiacol a partir do ácido guaiacoxiacético, obtido pela reação com cloroacetato de sódio em meio básico seguido de acidificação. A amidação foi realizada com anilinas *orto*, *meta* e *para* substituídas, usando EDC como agente de acoplamento. Seis amidas foram obtidas (rendimentos de 37-83%), caracterizadas por espectrometria de massas, infravermelho, RMN de ¹H e de ¹³C. A 2-(2-metoxifenoxi)-*N*-(p-tolil)acetamida apresentou atividade fitotóxica *in vivo* semelhante à do controle positivo (2,4-D) em plântulas de sorgo e pepino. As demais amidas serão avaliadas visando à identificação de novos herbicidas mais sustentáveis.

Palavras-chave: fenol natural, N-fenil-2-fenoxiacetamidas, fitotoxicidade

Introdução

Plantas daninhas são espécies indesejadas que competem com culturas de interesse comercial por recursos como água, luz e nutrientes, levando a redução de produtividade das lavouras (1). Desde 1960, os herbicidas (controle químico) têm sido o método mais utilizado para combater por essas espécies invasoras. Entretanto, a aplicação do mesmo herbicida com frequência, que apresenta o mesmo mecanismo de ação, tem feito uma pressão de seleção o que tem desencadeado plantas daninhas a adquirirem resistência aos herbicidas comerciais (2). Além disso, problemas relacionados ao meio ambiente, saúde dos homens e animais, são motivos pela qual há uma demanda por novos herbicidas eficientes e mais seguros. Dessa forma, os compostos naturais podem servir de fonte de inspiração para novos herbicidas. Como exemplo, o guaiacol (2-metoxifenol), um fenol derivado da lignina, que pode ser extraído do creosoto de madeira (3), é um composto que possui atividade fitotóxica e citotóxica contra Sorghum bicolor L. e Lactuca sativa (4). A partir de fenóis é possível sintetizar ácidos fenoxiacéticos capazes de inibir o crescimento dessas mesmas espécies (4). Estes ácidos podem ser precursores para a síntese de N-fenil-2fenoxiacetamidas, que podem ter efeito fitotóxico e citogenotóxico superior herbicidas comerciais (5). Sendo assim, este trabalho teve como objetivo utilizar o fenol natural guaiacol como precursor para a síntese de N-fenilfenoxiacetamidas, que foram sintetizadas usando anilinas orto, meta e para substituídas por F, Br, Cl, NO₂ e CH₃ e avaliar o potencial fitotóxico contra Sorghum bicolor L. (sorgo) e Cucumis sativus (pepino) a fim de obter um novo herbicida mais sustentável e ambientalmente seguro.

Experimental

Síntese do ácido fenoxiacético:

Em um balão de fundo redondo bitubulado acoplado a condensador, adicionou-se guaiacol (0,04 mol) dissolvido em 20 mL de etanol, seguido de solução de NaOH (0,04 mol) em 20 mL de água destilada.

A mistura foi mantida sob agitação por 20 minutos. Em seguida, uma solução de cloroacetato de sódio (0,05 mol), previamente ajustada para pH 9 e dissolvida em 20 mL de água destilada, foi adicionada gota a gota ao sistema. A reação foi conduzida sob refluxo por 5 horas. Após esse período, o meio reacional foi acidificado e o sólido formado foi isolado por filtração e lavado com água destilada gelada. (Esquema 1).

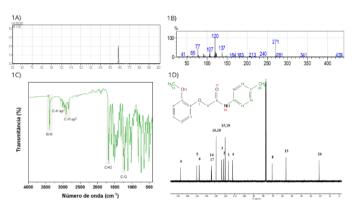
Síntese de N-fenil-2-fenoxiacetamidas:

O ácido (1 mmol) foi dissolvido em 2 mL de diclorometano, seguido pela adição de 0,1 mmol de 4-dimetilaminopiridina (DMAP), 1 mmol de 1-etil-3-(3-dimetilaminopropil)carbodiimida (EDC). Posteriormente, foi adicionado 1,5 mmol de anilina. A reação prosseguiu por 24 horas e foi purificada por cromatografia em coluna (Esquema 1).

Esquema 1: Rota reacional utilizada para síntese do ácido guaiacoxiacético e amidas derivadas.

Ensaio biológico:

Para os ensaios biológicos em casa de vegetação, a amida 2-(2-metoxifenoxi)-*N*-(p-tolil)acetamida (4M) foi solubilizada em Tween 20 a 0,5% (m.v⁻¹) e foram preparadas emulsões nas concentrações: 3,00 mmolL⁻¹; 1,50 mmolL⁻¹; 0,75 mmolL⁻¹ e 0,375 mmolL⁻¹. Cinco potes de 300 mL foram preenchidos com substrato para cada uma das quatro concentrações de amida. Em cada pote foram semeadas cinco sementes, fazendo desbaste para três plântulas. A pulverização com dois jatos da solução de amida foi feita quando as plantas possuíam dois pares de folhas. A avaliação foi realizada 15 dias após a aplicação, analisando massa seca e comprimento da parte aérea.


Análises Estatísticas:

Os resultados foram submetidos à análise de variância (ANOVA) e os valores médios ao Teste de Tukey ($p \le 0.05$), utilizando o software R, versão 4.0.0 (6).

Resultados e Discussão

Síntese e caracterização do ácido fenoxiacéticos e amidas: O ácido guaiacoxiacético foi sintetizado com rendimento de 56%, enquanto as amidas seguem em processo de síntese. Seis amidas foram sintetizadas usando as seguintes anilinas: anilina pura (60%), 2-cloro (51%), 4-cloro (40%), 3-bromo (38%), 4-bromo (37%), e 4-metil (83%).

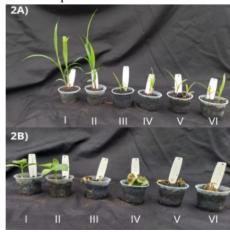

Todos os compostos sintetizados estão sendo caracterizados por infravermelho (FTIR), analisadas por cromatografia gasosa acoplada à espectrometria de massas (EM) e ressonância magnética nuclear (RMN) de ¹H e ¹³C. As caracterizações de 4M são mostradas na Figura 1.

Figura 1: Cromatograma (1A), espectro de massas (1B), FTIR (1C) e espectro de RMN de ¹³C em CDCl₃ (1D) de 4M.

Ensaio biológico:

A amida 4M foi submetida ao teste *in vivo* pós-emergente. As plântulas de sorgo (Figura 2A) e pepino (Figura 2B) foram comparadas visualmente com os controles negativos H₂O e H₂O e tween. Foi possível observar que a parte aérea das plântulas tratadas com 4M não se desenvolveram da mesma forma que os controles, o que é um indicativo do potencial herbicida desta molécula.

Figura 2: Plântulas de sorgo (2A) e pepino (2B) submetidas ao teste pós-emergente com H_2O (I), H_2O e tween (II) e 4M nas concentrações 3,00 (III), 1,50 (IV), 0,75 (V) e 0,37 (VI) mmolL⁻¹.

Análises Estatísticas:

O Teste de Tukey indica que não há diferença estatística significativa entre os valores médios de CPA e MS para as concentrações testadas de 4M e o controle positivo 2,4-D (Tabela 1). A mesma letra foi atribuída aos valores que não diferem significativamente. A concentração que melhor inibiu o crescimento da parte aérea de sorgo foi 3,00 mmolL⁻¹, enquanto para o pepino foi 0,75 mmolL⁻¹. Estes resultados demonstram a potencial fitotoxicidade da amida 4M contra as espécies testadas.

Tabela 1: Dados do teste fitotóxico realizado em sorgo e pepino

		Sorgo		Pepino	
Tratamento (Concentração (mmol/L)	CPA (cm)	MS (g)	CPA (cm)	MS (g)
2,4-D	3	4,86 ^a	0,02092 ^b	1,46 ^a	0,04838 ^a
	1,5	5,5 ^a	0,02358 ^b	2,66 ^a	0,07968 ^a
	0,75	9,33 ^a	0,07708 ^a	3,6 ^a	0,12574 ^a
	0,375	5,84 ^a	0,04272 ^{ab}	2,9 ^a	0,04272 ^a
4M	3	5,05 ^a	0,02646 ^{ab}	2,93 ^a	0,27654 ^a
	1,5	6,03 ^a	0,056 ^{ab}	1,96 ^a	0,15524 ^a
	0,75	5,86 ^a	0,03564 ^{ab}	1,66 ^a	0,14916 ^a
	0,375	5,46 ^a	0,03486 ^{ab}	2,23 ^a	0,27548 ^a
H ₂ O		16,13	0,19	1,9	0,21
H ₂ O+Tween		15,03	0,18	1,56	0,2

Conclusões

As metodologias aplicadas demonstraram eficiência na síntese dos compostos propostos. Ademais, os resultados preliminares obtidos no ensaio biológico *in vivo* pós-emergente com a amida 4M são promissores, incentivando a continuidade da pesquisa visando o desenvolvimento de um herbicida inovador com perfil ambientalmente mais adequado e sustentável.

Agradecimentos

Referências

- 1. R. Mesnage; A. Székács; J.G. Zaller in *Herbicides: Chemistry*, *Efficacy*, *Toxicology*, *and Environmental Impacts*, Elsevier, Amsterdam, **2021**, 1–20.
- 2. V.E. Perotti; A.S. Larran; V.E. Palmieri; A.K. Martinatto; H.R. Permingeat, *Plant Sci.* **2019**, 290, 110255.
- 3. P.F. Pinheiro; L.A.P. Menini; P.C. Bernardes; S.H. Saraiva; J.W.M. Carneiro; A.V. Costa; T.R. Arruda; M.R. Lage; P.M. Gonçalves; C.O. Bernardes; E.S. Alvarenga; L. Menini, *J. Agric. Food Chem.* **2018**, 66, 323–330.
- 4. T.A. Alves; P.F. Pinheiro; M.M. Praça-Fontes; L.F. Andrade-Vieira; M.P. Lourenço; M.R. Lage; T.A. Alves; F.A. Cruz; J.W.M. Carneiro; A. Ferreira; T.C.B. Soares, *An. Acad. Bras. Ciênc.* **2021**, 93(4), e20191368.
- P.F. Pinheiro; T.L.M. da Costa; K.B. Corrêa; T.C.B. Soares;
 L.A. Parreira; E.T. Werner; M.S.A.T. de Paula; U.A. Pereira;
 M.M. Praça-Fontes, J. Agric. Food Chem. 2024, 72 (9), 4610–4621.
 R Core Team. R: A Language and Environment for Statistical
- Computing. R Foundation for Statistical Computing, 2024.