

Desidrogenação do ácido fórmico catalisada por nanopartículas de paládio ancoradas em biochar derivado de cascas de banana

Igor Pecly Estephaneli (G),1* Marcela de Oliveira Brahim Cortez (PG),1 Renata Pereira Lopes Moreira (PO),1

¹ Departamento de Química, Universidade Federal de Viçosa, Viçosa-MG. <u>igor.estephaneli@ufv.br*</u>

RESUMO

O aumento da temperatura média global e a elevação do nível do mar são exemplos das consequências do aquecimento global, que é intensificado, principalmente, pela dependência energética da população, como a utilização de fontes de energia não renováveis. Por outro lado, o hidrogênio é uma fonte renovável de energia que pode evitar as emissões de gases do efeito estufa emitidos por outras fontes. No entanto, devido ao seu caráter altamente explosivo, desafios como a estocagem e transporte de H₂ devem ser superados. Assim, a desidrogenação do armazenador químico ácido fórmico (AF) catalisada por nanopartículas de paládio (Pd NPs) ancoradas em biochar (BC) é uma alternativa promissora, sendo capaz de produzir gás hidrogênio de forma segura e eficaz. Neste trabalho foram utilizadas cascas de banana como biomassa para produção de BC que foi usado como suporte de Pd NPs para produção de H₂ a partir da desidrogenação de AF.

Palavras-chave: hidrogênio, estocagem de hidrogênio, biomassa.

Introdução

A dependência populacional de combustíveis fósseis à base de carbono tem intensificado a emissão de gases de efeito estufa, resultando em consequências ambientais, como o aquecimento global, o derretimento das geleiras e a acidificação dos oceanos. Como alternativa a essa problemática, a geração de hidrogênio surge como uma rota sustentável para mitigar os principais impactos ambientais, especialmente quando utilizado como combustível veicular e/ou na produção de fertilizantes, por exemplo.

Porém, problemas relacionados a baixa densidade, baixo ponto de ebulição e inflamabilidade do H₂ dificultam sua utilização em grande escala. Para viabilizar o seu uso, armazenadores químicos de hidrogênio têm sido empregados para geração in situ de hidrogênio de forma segura e controlada⁽¹⁾. Entre tais armazenadores, destaca-se o ácido fórmico (AF), cuja desidrogenação produz apenas H₂ e CO₂. Embora ocorra a geração de CO2, é importante destacar que o ácido fórmico pode ser obtido a partir de biomassa, o que garante neutralidade em termos de crédito de carbono. A produção de H₂ a partir de AF requer o uso de catalisadores específicos, entre os quais nanopartículas de Pd (Pd NPs). Estas, porém, podem se aglomerar, o que faz o uso de materiais suportes, como o biocarvão (BC), uma solução atraente. A conversão de resíduos agroindustriais em produtos com alto valor agregado está alinhada com os objetivos da ODS, como ODS 11 (cidades e comunidades sustentáveis) e ODS 12 (consumo e produção conscientes). Portanto, este trabalho teve por objetivo sintetizar BC derivado de cascas de banana decorado com Pd NPs para uso na desidrogenação de AF.

Experimental

Síntese do biochar (BC)

As cascas de banana foram obtidas do Restaurante Universitário da Universidade Federal de Viçosa. As cascas foram secas à 60 °C por 24 h. Na sequência, a biomassa foi impregnada com ZnCl₂ na razão 1:2. A mistura resultante foi submetida à secagem a 105 °C por 24 h, seguida de etapa de pirólise à 600 °C por 60 min. O material resultante foi lavado com solução de HCl (0,100 mol L⁻¹), seguido de lavagem com água deionizada aquecida a 80 °C, até que o pH do filtrado atingisse a neutralidade. Por fim, o BC obtido foi seco à 65 °C durante 48 h e armazenado para análises posteriores.

Síntese das Pd NPs-BC

A síntese das Pd NPs foi realizada utilizando-se 30 mg do BC, que foram dispersos na solução do precursor do Pd, seguida de adição de 5 mL de uma solução de NaBH₄ (0,106 mol L⁻¹). Os materiais foram caracterizados por diferentes técnicas analíticas.

Sistema de evolução de H2 a partir do AF

Para a reação, foi utilizado um tubo Schlenk hermeticamente fechado e acoplado à bureta. A reação permaneceu sob temperatura controlada. O volume de gás foi determinado por deslocamento de água na bureta.

Otimização dos parâmetros reacionais

Os parâmetros como dose de metal, quantidade de biocarvão, temperatura e melhor razão de AF e formiato de sódio foram otimizados, todos baseados nos valores mais significativos de TOF (Turnover Frequency).

Captura de CO₂

Com o objetivo de investigar a composição do gás gerado, foi feito uma armadilha de NaOH entre o tubo Schlenk e a bureta, visando-se capturar o $\text{CO}_2^{(2)}$.

Resultados e Discussão

A análise por difração de raios X (DRX) do biocarvão (BC) revelou um pico largo entre 10 e 30°, característico de materiais com estrutura amorfa. Além disso, foram detectados picos em $2\theta = 12,7^{\circ}$; $21,9^{\circ}$; $22,9^{\circ}$; $25,6^{\circ}$; $31,5^{\circ}$; $34,1^{\circ}$; $38,9^{\circ}$ e $48,9^{\circ}$, os quais indicam a presença da fase cristalina $Zn_2(SiO_4)$, devido à utilização do $ZnCl_2$ como agente de ativação. O Si se deve à presença de sílica na biomassa. A espectroscopia no infravermelho com transformada de Fourier (FTIR) evidenciou bandas atribuídas a grupos aromáticos (1581 cm⁻¹) e hidroxilas (3409 cm⁻¹). Por espectroscopia Raman foram observadas as bandas D, em 1335 cm⁻¹, típica de estruturas grafíticas, e a banda G em 1587 cm⁻¹, relacionada a imperfeições estruturais. Por fim, a análise de adsorção de nitrogênio demonstrou que o material apresenta uma elevada área superficial específica, de $602 \text{ m}^2 \text{ g}^{-1}$.

A otimização dos parâmetros reacionais permitiu determinar as melhores condições, como dose metálica de 1,6% de Pd NPs em relação ao ácido fórmico (AF), razão de 1:4 de AF para formiato e massa de 30 mg de biochar. Além disso, avaliou-se o efeito da temperatura na reação de desidrogenação do ácido fórmico e observou-se que 70 °C apresentou um melhor TOF (2805 h⁻¹), como mostrado na Figura 1.

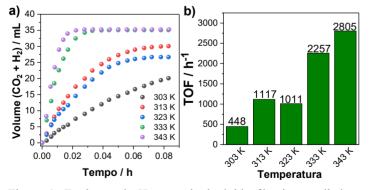


Figura 1. Evolução de H₂ a partir de ácido fórmico mediada por Pd NPs decoradas em BC (a) Volume de gás em relação ao tempo, (b) TOF em relação à temperatura.

Os resultados empregando-se a armadilha de NaOH são mostrados na Figura 2. Pode-se observar que o volume de gás foi reduzido à metade, confirmando a captura total do CO_2 e a razão molar de 1:1 entre esse gás e o H_2 .

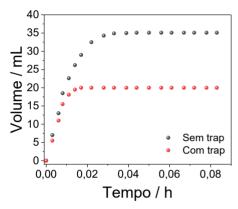


Figura 2. Evolução de H₂ a partir de ácido fórmico mediada por Pd NPs decoradas em BC com e sem armadilha de NaOH

Conclusões

A partir dos resultados obtidos, pode-se concluir que a desidrogenação do AF é potencializada com a utilização de Pd NPs decoradas em biochar derivado de cascas de banana. Além disso, com o experimento de armadilhamento realizado, concluiu-se que a produção de CO2 durante a reação do ácido fórmico (AF) não representa um problema significativo, uma vez que esse gás pode ser eficientemente sequestrado. Dessa forma, o biochar derivado de resíduo surge como uma alternativa viável para aplicações catalíticas sustentáveis. Portanto, o hidrogênio obtido por meio de rotas limpas pode representar uma contribuição promissora para a mitigação dos problemas ambientais enfrentados na atualidade.

Agradecimentos

Os autores agradecem ao CNPq (Processos: 312400/2021-7; 405828/2022-5; 407799/2022-2), à FAPEMIG (APQ-01275-18; RED-00144-22, APQ-03572-23), à CAPES e Universidade Federal de Viçosa (UFV).

Referências

- 1. J. Shen; Y. Liang; C. Wang; Y. Zhu, Chem. Eng. J., 2023, 473, 144640.
- 2. Y. Liu; F. Fu; L. Salmon; B. Espuche; S. Moya; M. Berlande; J. L. Pozzo; J. R. Hamon; D. Astruc, ACS Appl. Mater. Interfaces, 2023, 15(19), 23343–23352.