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Abstract

This paper introduces a novel, time-varying framework for high-dimensional factor-
based asset pricing models. It leverages shrinkage techniques on regressions spanning
pricing anomalies to identify statistically significant factors from a vast pool, akin to a
financial Hunger Games – the Factor Games – where may the odds (p-values) be ever in
their favor. The framework emphasizes sparsity, proposing methods to select a limited
number of impactful factors and outperform a stricter benchmark that incorporates the
Fama-French 3-factor model proposed methodology - all while avoiding look-ahead bias.
Recognizing the implicit sparsity assumption in traditional models, the framework explic-
itly considers similar scarcity during factor selection. We apply the proposed framework
to a large set of factors and various time periods, demonstrating that simple techniques
can yield interesting results when applied with proper methodology. Overall, this pa-
per provides valuable tools for researchers and practitioners, offering guidance for pricing
factor selection and advocating for sparsity.

Keywords— Factor investing, Shrinkage penalization, Time-varying asset pricing, Statistical

significance

May God forgive those bad people.

Adriano “Imperador” Ribeiro

∗I am indebted to Marcelo Medeiros for advising this project. I must also thank Chuanping Sun for his help
with the data. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior - Brasil (CAPES) - Finance Code 001.

†PhD candidate at PUC-Rio (hfstellet@poli.ufrj.br)
‡Insper - Institute of Education and Research (fernandotm@al.insper.edu.br)



Contents

1 Introduction 3

2 Methodology 6

2.1 Assessing factors’ significance in a low-dimensional environment . . . . . . . . . . . . . 6

2.2 Spanning factors’ returns in a high-dimension environment . . . . . . . . . . . . . . . . 6

2.2.1 Avoiding extreme multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Estimating intercept’s p-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Setting up the penalization parameter . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4 Accessing factor relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Out-of-sample analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Time-varying factor selection framework . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Data 14

3.1 Anomaly factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Test assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Empirical analysis 16

4.1 Accounting for multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Reducing dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Out-of-sample results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 Penalizing through BIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.2 Using FRC for 5 factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Fair comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Conclusion 26

6 Appendix 31

6.1 Statistically significant factors over time . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Other outperforming portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



1 Introduction

In the dystopian nation of Panem, the lingering shadow of a past rebellion weighs heavily upon

its twelve districts. The Hunger Games, a brutal televised event orchestrated by the extravagant

Capitol, stands as a grim punishment for the districts’ past defiance. Each year, these Games force

children, known as tributes, to battle to the death in a savage test of survival, pitting tributes from

each district against one another until only one emerges victorious from the carnage.

Imagine a similar contest, not with human lives at stake, but with the alleged anomaly factors

that influence how assets are priced. These factors, much like the tributes, represent various influences,

some well-established, others more controversial, on asset returns. This financial rendition of the

Hunger Games employs a series of spanning regressions, with a shrinkage technique serving as our

arena master, compelling these factors to confront each other directly. In this framework, resembling

the Games’ arena, each anomaly’s return undergoes regression against the returns of its counterparts.

Here, the shrinkage technique meticulously tests if any anomaly could have their returns explained by

a cunning combination of the others.

However, our objective is not the literal elimination of infants but rather the identification of

statistically significant factors. Just as a tribute’s survival in the Games hinges on its strength and

tactics, a factor’s explanatory prowess is determined by the statistical significance of its intercept in

the spanning regression. Factors with non-significant - high p-values - intercepts, like tributes who

fall early in the Games, are deemed unable to explain asset returns independently when their peers

are already accounted for. Conversely, factors boasting statistically significant intercepts, akin to the

Games’ victor, have demonstrated their unique impact on asset returns, distinguishing themselves

from the competition and asserting their significance in this economic arena. Our research endeavors

to unveil these triumphant factors, the true heavyweights in the quest to explain asset returns. May

the p-values be ever in your favor!

The quest for factors that potentially explain aspects of the cross-section of expected returns

has spawned (i)numerous contenders in the literature. Nevertheless, Cochrane (2011) contends that

researchers may have overstepped by introducing an overwhelming multitude of factors, making it

impractical and conceptually unwise to consider them collectively. He coins this phenomenon as a

“factor zoo” and cautions against the indiscriminate use of numerous factors to explain the average

cross-sectional returns.

This critique prompts a pertinent inquiry: which factors hold genuine significance? With

such an abundance of potentially pertinent factors, this scenario presents itself as a high-dimensional

conundrum. One pragmatic approach involves employing shrinkage techniques to enforce sparsity.

Feng et al. (2020) addressed the “factor zoo” challenge by employing a double-LASSO selection
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procedure (see Belloni et al., 2014), favoring more parsimonious asset pricing models. Emphasizing

out-of-sample predictability, Sun (2023) utilized the Ordered Weighted LASSO (OWL - Figueiredo

and Nowak, 2016) to pinpoint factors capable of jointly explaining cross-sectional returns. Likewise,

Freyberger et al. (2020) employed the Adaptive Group LASSO (see Huang et al., 2010) to “non-

parametrically dissect the factor zoo”.

These studies tackle the dimensionality issue of the factor zoo within a framework based on the

Stochastic Discount Factor (SDF) model, deriving the shrinkage regression from the SDF error expres-

sion. Despite their ingenuity, this approach diverges from conventional methodologies for assessing the

statistical significance of pricing factors in lower dimensions. Usually, classic methodologies involve

spanning the proposed factor’s returns against a given set of benchmark factors and scrutinizing the

statistical significance of the intercept, as seen in studies by Jensen et al. (2023), Frazzini and Pedersen

(2014), and Loh and Warachka (2012).

Similarly to approaches applied to the Stochastic Discount Factor (SDF) challenge, shrinkage

regressions can be integrated into the spanning factors framework to address the dimensionality is-

sue. One could use a shrinkage technique to factor spanning regressions and estimate the p-value of

the intercept. Estimating a confidence interval for shrinkage regression coefficients isn’t straightfor-

ward, given the bi-modal distributions of regressors’ coefficients (Meinshausen and Bühlmann, 2006).

However, refined techniques proposed by Meinshausen et al. (2009), build upon the foundation laid

by Wasserman and Roeder (2009), offer promising avenues for estimating the statistical significance

of the LASSO’s intercept - with tailored adjustments for accommodating time-series data, one may

emulate lower-dimensional solutions in high-dimensional environments.

The LASSO, known for shrinking coefficients toward zero, encounters a challenge in the pres-

ence of multicollinearity, prevalent in pricing anomalies’ returns: distinguishing the genuine effects

of individual regressors becomes difficult in such scenarios. Coefficients associated with correlated

features may undergo shrinkage toward zero, even if one or both harbor true effects. Efforts by Frey-

berger et al. (2020) and Sun (2023) have deployed adaptations of the raw LASSO within the SDF

framework to address this challenge. Another approach to mitigate major multicollinearity issues in-

volves conducting a Variance Inflation Factor analysis before shrinkage regressions, similarly to Green

et al. (2017).

The careful application of shrinkage is crucial when employing any of the aforementioned tech-

niques, requiring researchers to calibrate the penalization parameter(s) carefully. Various method-

ologies have been advanced, each with distinct priorities; some prioritize predictability, exemplified

by the K-fold Cross-Validation (CV) method (Stone, 1974), while others emphasize in-sample fit, as

illustrated by the Bayesian Information Criterion (BIC) (Schwarz, 1978) and the Akaike Information
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Criterion (AIC) (Akaike, 1974). It’s worth noting, however, that none of these commonly employed

criteria explicitly focus on ensuring a predefined level of sparsity.

Our contributions encompass three main fronts. Firstly, we introduce a framework for re-

searchers dealing with the factor zoo issue using the classical factor-spanning method. This framework

enables the distinction between the time series used to handle high multicollinearity between regres-

sors, the one for estimating spanning regressions’ intercepts to identify relevant factors, and the final

one to predict out-of-sample returns. Secondly, we propose a new benchmark for evaluating factor

selection models’ out-of-sample predictability, inspired by the well-known Fama-French 3-factor model

(Fama and French, 1993). This benchmark is stricter than just checking the Sharpe ratios of resulting

hedge portfolios.

Additionally, we suggest methods to ensure a certain level of sparsity, both in shrinkage regres-

sions and in assessing the relevance of pricing anomalies. In our study, we used LASSO regression for

spanning regressions, employing traditional Bayesian Information and the proposed Fixed Regressors

Criteria. Results slightly favored fixing 5 regressors as relevant.

The relevance of pricing factors was determined by examining the p-values of their spanning

regression’s intercept. When adhering to the conventional statistical significance approach, setting a

significance level of 0.10 and utilizing factors with p-values below this threshold, results were under-

whelming - particularly due to certain periods lacking any factors meeting this criterion. However,

when we imposed a predefined level of sparsity, incorporating a fixed number of factors ranked by

their p-values, we observed substantial enhancements in out-of-sample performance. We managed to

build long-short portfolios with annualized Sharpe ratios - net of trading costs - reaching as high as

2.04.

Upon applying our proposed framework and sparsity-ensuring mechanisms to the factor-spanning

challenge, we were able to observe how dissociating relevant periods impacted the factor zoo dimen-

sionality problem. Traditionally, the literature has employed the same period, typically 120 months,

for both factor selection and return prediction. However, our findings indicate that this dissociation

resulted in more precise out-of-sample predictions, enhancing overall performance.

This paper is structured into five sections. Section 1 served as an introduction to the related

literature and the achievements of this study. In section 2, we present the proposed framework,

including a classical approach for accessing factor statistical significance and adjustments necessary

for exploring its application in the high-dimensional factor zoo environment. Then, section 3 describes

the data used in this paper, as well as the methodology for constructing the anomaly factors and test

portfolios. In section 4, we present obtained results and propose a stricter benchmark for out-of-sample

predictability. Finally, section 5 concludes the article, summarizing contributions and results.
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2 Methodology

We evaluate the statistical significance of each factor individually through a series of spanning

regressions, wherein we assess whether a combination of the other pricing anomalies can account for

each factor’s abnormal returns. This approach draws inspiration from studies by Jensen et al. (2023),

Frazzini and Pedersen (2014), and Loh and Warachka (2012).

We delineate the classical approach for assessing the significance of pricing anomalies in section

2.1. Section 2.2 is dedicated to adapting this classical approach to the high-dimensional environment

of the factor zoo. This includes addressing high multicollinearity (subsection 2.2.1), developing a

methodology for estimating statistical significance (subsection 2.2.2), introducing two distinct criteria

for setting the penalization parameter in shrinkage regressions (subsection 2.2.3), and proposing two

criteria for assessing pricing factors’ relevance within our framework (subsection 2.2.4). We elucidate

the out-of-sample analysis conducted to verify the predictive capabilities of the selected factors in

section 2.3 and introduce a rolling-window approach to the factor selection problem in section 2.4.

2.1 Assessing factors’ significance in a low-dimensional environment

Denoting f as a proposed pricing anomaly, it is possible to assess f ’s significance by running a

regression of its returns (retf) over some benchmark factor model, as shown in Equation 1 below.

retf = α +
∑

j∈Fbench

βjretfj
, (1)

where retfj
represents the returns of a pricing factor that belongs to the set of relevant factors of the

benchmark model (Fbench).

Take the classical Fama-French 3-factors model as an example benchmark model: retfj
would

represent the returns of market, size, and value factors - see Fama and French (1993). Factor f would

then be considered relevant in pricing returns if its alpha is relevant, i.e., if equation 1’s intercept

presents a low enough p-value. This idea is broadly used in the pricing anomalies literature, as in

studies by Jensen et al. (2023), Frazzini and Pedersen (2014), and Loh and Warachka (2012).

2.2 Spanning factors’ returns in a high-dimension environment

However, in recent years, the asset pricing literature has accepted as relevant a massive amount

of factors - Hou et al. (2020) even compiled a data library of 447 published anomaly variables. Cochrane

(2011) labeled this situation as a “zoo of factors”, likening the vast variety of animals in a zoo to the

myriad of factors available in the literature, each emitting a particular noise. Despite most of these
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factors having shown some evidence of pricing impact, it is highly unlikely that all of them are jointly

relevant in explaining the cross-section of returns.

We propose an approach that levels the playing field for every potentially relevant pricing

anomaly, and while allowing for time-varying importance (see section 2.4), seeks to identify which

factors have been the most statistically relevant. This is achieved through a slight modification of

equation 1. The model is as follows:

retfi,t
= αfi

+
∑

j ̸=i,j∈F

βjretfj,t
+ ϵfi

(2)

where retfi,t
is the return of factor fi at time t, F is the set of all available pricing factors, αi is the

intercept of the regression, βj is the linear coefficient for factor fj , and ϵfi
is the error term.

The idea is to estimate each factor’s alpha (αfi
), calculate its p-value, and finally consider

only the most statistically relevant. If done multiple times, using rolling windows of time series, this

framework should capture how factor relevance has changed over time.

The factor zoo is a well-known high-dimensional environment, therefore it is not advisable to

estimate equation 2 using a simple OLS regression. This is especially true as the object of interest

will be the p-value of the intercept, and the more regressors we consider on the right-hand side of the

model, the less likely it is to find a statistically significant intercept.

One possible solution is to estimate the model described in equation 2 using a shrinkage tech-

nique, such as the LASSO - see Tibshirani (1996).1 However, two major concerns arise with the

implementation of such a regression technique:

• Ordinarily, estimating the p-values for the LASSO’s coefficients is a rather tricky exercise. We

use a regression technique that will calculate an unbiased estimation of the LASSO intercept’s

p-value, accounting for situations where the data is presented as a time series;

• The LASSO regression is a technique sensitive to its penalization parameters. The literature

provides some methodologies for properly setting it, like the information criteria and cross-

validation, but we propose a way of ensuring the sparsity level desired.

2.2.1 Avoiding extreme multicollinearity

One of the primary concerns highlighted by Cochrane in his presidential address (Cochrane,

2011) is the extreme improbability that all proposed pricing factors are jointly relevant in pricing the

cross-section of asset returns. This skepticism arises because some factors capture similar qualitative

1Results for the Elastic Net (Zou and Hastie, 2005) and Adaptive LASSO (Zou, 2006) will be available in
the final version’s Appendix.
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information (e.g., illiquidity and zero trading days), some are combinations of others (e.g., current

ratio and percentage change in current ratio), some vary only by a time frame of interest (e.g., 1, 6,

12, 36-month momentum), and some are even squared versions of others (e.g., beta and beta squared).

While extreme multicollinearity doesn’t introduce bias in estimated slope coefficients, it does

inflate their standard errors. For instance, severe multicollinearity poses a challenge for methods like

the LASSO regression, which may arbitrarily drop one (or more) of the covariates from the model if

they are highly correlated.

Green et al. (2017) proposes a classic solution to mitigate the effects of multicollinearity, sug-

gesting the use of Variance Inflation Factors (VIFs). VIFs are defined as:

V IFi = 1
1 − R2

i

, (3)

where R2
i is the unadjusted coefficient of determination for regressing the ith independent variable on

the remaining ones.

The closer R2
i is to zero (one), the less (more) correlated the ith independent variable is to the

others, implying that multicollinearity is less (more) likely to exist. The researcher then chooses a

threshold for the higher VIF she will accept, disregarding all independent variables that exceed this

set value - Green et al. (2017) removes factors for which V IFi > 7. Used properly, this metric should

capture how well the other factors’ returns explain a given factor’s returns.

We employ a procedure similar to Green et al. (2017) to address extreme factors’ multicollinear-

ity. However, we propose a few simple modifications to ensure that we do not introduce any look-ahead

bias into the analysis. In their analysis, Green et al. (2017) calculate candidate factors’ VIFs con-

sidering all available data. While this approach posed no major harm to their study focused on the

cross-section of returns, our study allows for time-variant factors relevance. Removing factors based

on full-sample multicollinearity introduces a clear source of look-ahead bias. Therefore, we conduct

the VIF analysis in rolling windows, considering data available only before the time of interest.2

Furthermore, we adopt a method of removing high VIF factors one at a time, in decreasing

order. The usual approach is to calculate the VIF for all independent variables at once, and then

disregard the ones with high enough VIF. However, two variables could present a VIF higher than

the threshold, and after removing one of them from the pool of independent variables, the other

variable’s VIF could potentially decrease to fit the acceptance level. To account for this behavior

when addressing severe multicollinearity, we compute the VIF value for all candidate factors, remove

only the one with the highest VIF, and then recalculate the VIF for all remaining factors - repeating

the process until only factors with low enough Variance Inflation Factors survive.

2See section 2.4 for details on the time-variant framework.
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2.2.2 Estimating intercept’s p-value

In lower dimensions, where simple OLS regression can be used without significant concerns

about overfitting, verifying the statistical significance of the intercept in equation 2 is straightforward.

However, in higher dimensions, especially when applying shrinkage regressions, this task becomes more

challenging.

Meinshausen et al. (2009) extend the concept of splitting the data into two parts, one for

reducing the problem’s dimensions and the other for applying classical variable selection techniques,

originally proposed by Wasserman and Roeder (2009). They present a methodology for calculating

the p-value for high-dimensional regressions. 3

We follow the approach of Meinshausen et al. (2009). However, their methodology does not

account for time-series data - therefore, our bootstrap procedure must consider the specificities of

such data. To achieve this, we modify the simple bootstrap procedure used in the original study to

employ a block bootstrap. For simplicity, we employ a non-overlapping blocks procedure (see Hall,

1985; Carlstein, 1986).

Taking B as the total number of bootstrap repetitions, for b = 1, ..., B:

• Randomly split the original dataset into two disjoint groups, Db
shrk and Db

p−val:

– This split must be done in blocks due to the time-series nature of the data;

• Run the shrinkage regression, estimating the set of active predictors (F̃ b), using data from Db
shrk:

– Thereafter, F̃ b = {j, βj ̸= 0} after running the shrinkage in equation 2;

• Using only Db
p−val, fit the selected factors in F̃ b with Ordinary Least Squares and calculate the

p-value for the intercept, P b
αi

.

This procedure leads to a total of B p-values P b
αi

- and their suitable summary statistics are

quantiles (see Meinshausen et al., 2009). For γ ∈ (0, 1), define

P̃αi(γ) = min{1, qγ([P b
αi

/γ; b = 1, ..., B])}, (4)

where qγ(·) is the empirical γ-quantile function.

In equation 4, we provide a p-value for any fixed 0 < γ < 1. However, selecting γ appropriately

is not straightforward, and searching for its optimal value does not guarantee error control. To

determine the final p-value, we can adopt an adaptive approach that selects a suitable quantile value

using a data-driven methodology. Let γmin ∈ (0, 1), typically set to 0.05, be a lower bound for γ. We

3Wasserman and Roeder (2009) results are based on a single-split, whereas Meinshausen et al. (2009) pro-
posed a multisplit method to avoid the randomness caused by data dependence.
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then define the final p-value as:

Pαi = min{1, (1 − log γmin) inf
γ∈(0,γmin)

P̃αi(γ)} (5)

We acknowledge that both the Bonferroni correction (Bonferroni, 1936) —applied after the

bootstrap’s final step — and the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) —

employed after calculating the final p-values for all factors’ intercepts — could be alternatives for

mitigating data mining concerns. However, the results obtained in the empirical analysis, detailed in

section 4, led us to conclude that these concerns were unnecessary. In general, lower p-values would

have led to a potentially harmful decrease in out-of-sample portfolio performance.

2.2.3 Setting up the penalization parameter

The shrinkage penalty parameter merits special attention as a crucial component of the objective

function, set by the researcher to promote sparsity and prevent overfitting. It dictates how severe the

penalization will be, thus regulating the extent of shrinkage. Various techniques exist to aid in setting

penalization parameters, including K-fold Cross-Validation (CV) and Information Criteria, such as

Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC).

Cross-Validation, originally proposed by Stone (1974), partitions the data into training and

validation sets, fits the model on the training set, and evaluates its performance on the validation

set. It serves as a robust technique to circumvent overfitting and does not rely on assumptions about

data distribution. Conversely, Bayesian Information Criterion (BIC) (Schwarz, 1978) and Akaike

Information Criterion (AIC) (Akaike, 1974) weigh the trade-off between model fit and complexity,

with BIC often favoring more parsimonious models than AIC.

One advantage of employing Information Criteria over Cross-Validation lies in their computa-

tional efficiency and ease of application to large datasets. However, Information Criteria hinge on

strong data distribution assumptions and may be sensitive to their violation. In contrast, Cross-

Validation offers robustness against such violations but demands computational resources and a sub-

stantial sample size for accurate prediction error estimates. As suggested by Freyberger et al. (2020),

we posit that, within customary methodologies, BIC emerges as more suitable for our application.

In the process of traversing the factor zoo across different periods, there is no guarantee that

the number of factors surviving the shrinkage process in spanning regressions will remain constant.

This is particularly significant given that our methodology relies on assessing intercepts’ p-values: the

greater the number of factors with non-zero βj coefficients in equation 2, the less likely it is for αfi
to

differ significantly from zero.

To address this challenge, we propose a distinct criterion for setting the penalization parame-
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ters in shrinkage regressions. The objective is to ensure that a predetermined number of regressors

(as determined by the researcher) will possess non-zero coefficients. This criterion proves especially

advantageous in the realm of factor-based asset-pricing models, offering ad-hoc means to ensure the

implicit sparsity assumption inherent in models like the Fama-French 3/5, Carhart, and q-4 factors

(Fama and French, 1993, 2015; Carhart, 1997; Hou et al., 2015), by selecting a penalty parameter that

precisely returns the desired number of non-zero coefficient regressors.

The Fixed Regressors Criterion (FRC) determines the penalty parameter (λ) through the fol-

lowing algorithm:

• Initialize an array of candidate values and perform the shrinkage regression on them;

• Ensure that the desired number of final regressors is included in the range of candidate λ’s:

– If the number of selected factors for the highest (lowest) candidate λ is too low (high),

adjust for lower (higher) values. Re-run the regression for this new set of candidate λ’s;

• If no value precisely returns the desired number of regressors, narrow the range:

– Set the new highest (lowest) possible value as the higher (lower) penalization that yields

fewer (more) than the desired number of factors. Re-run the regression for this new array

of candidate penalization parameters;

• Repeat the above steps until at least one candidate value returns exactly the desired number of

factors with non-zero coefficients:

– As multiple penalization values may return the set number of relevant regressors, select

the median value as the penalization parameter.

While implementing the FRC, the researcher should consider the specifics of the chosen esti-

mation technique. For instance, the LASSO does not guarantee a monotonically increasing number

of selected factors as the penalization parameter decreases. Additionally, although highly unlikely,

there is no assurance that the exact number of desired regressors will be chosen for any set value

of the penalty parameter. Given the numerous regressions involved, it’s probable that an isolated

unlikely situation will occur, and the researcher should be prepared to address it. We recommend

selecting the median value from the highest penalization sequence of candidate values to address the

non-monotonicity issue and ceasing the search for the perfect lambda after several iterations, opting

for the highest penalization that yields one more relevant factor.4

4Regarding the extra factor, it is up to the researcher to decide what to do. If the data is scaled and the
absolute values of the coefficients are comparable, we suggest disregarding the factor with the lower |β|, as
suggested by Sun (2023). However, disregarding selected regressors means not necessarily being supported by
the chosen regression properties.
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2.2.4 Accessing factor relevance

The estimation of factors’ intercepts p-values emphasizes the relevance of factors with smaller p-

values. A statistically correct approach for selecting relevant factors involves stipulating a significance

level and considering factors with Pαfi
lower than that level.

However, this approach may not be optimal in environments where predictability is challenging,

resulting in relatively large p-values. This is particularly true in fields such as return predictability,

where regressions often have less-than-ideal explanatory power. In some cases, none of the candidate

factors may generate p-values small enough to be considered significant. Conversely, there may even

be instances where too many factors survive the shrinkage process, leading to an unwieldy number of

factors to account for.

Given these concerns, we propose an alternative approach to assess factor relevance in pricing

assets’ returns. Rather than fixing a significance level, we fix the number of factors considered relevant,

allowing the researcher the flexibility to set the desired number of factors in their model.

With this approach, we can maintain the silent sparsity assumption of classic asset pricing

models, where only a handful of factors are considered. However, instead of selecting factors solely

based on financial or economic intuition, we rely on the data, using statistical significance to identify

relevant factors. Testing for more extreme sparsity levels is also possible, such as considering only the

single factor with the lowest p-value.

2.3 Out-of-sample analysis

We assess the predictability of the chosen factors through an out-of-sample analysis, inspired

by the methodology outlined in Freyberger et al. (2020).

We use the returns of hedge portfolios constructed from the predictions of test assets’ returns

based on the selected factors. Freyberger et al. (2020) employ the returns of the selected factors,

delayed by one period, as predictors for test asset returns in simple OLS regressions conducted over

rolling windows of 120 months. Subsequently, the OLS coefficients are utilized to forecast the returns

of test assets one period ahead. A trading strategy is then formulated, involving hedge portfolios:

assets in the top decile of predicted returns are bought, while those in the bottom decile are sold. If

the strategy yields significant alpha, the variable selection is deemed successful.

This kind of one-period delay approach is common in the literature and tacitly assumes factor

momentum, as it implies that the best approximation for the factor return at time t is the return at t−1.

Given the widespread acceptance of factor momentum (see Houweling and Van Zundert, 2017; Gupta

and Kelly, 2019), we find this assumption reasonable, particularly considering the interpretability of

the results.
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We adopt the same methodology as Freyberger et al. (2020) but allow for variations in the

rolling window sizes. The rationale behind this choice is that different window lengths may carry

distinct economic implications. A shorter window, where observations are on average closer to the

return to be predicted, may offer less overall information but closely reflect market behavior around the

estimation period. Conversely, longer time series will capture the relationship between selected factors

and test assets over an extended horizon, albeit less “instantly” related to the prediction moment, yet

benefiting from greater statistical power due to the larger dataset.

2.4 Time-varying factor selection framework

Our framework empowers researchers with creative freedom, enabling them to consider various

distinct windows of interest. This approach may support diverse financial intuitions while meticulously

avoiding look-ahead biases.

Drawing from the methodology proposed by Freyberger et al. (2020), we advocate for the

separation of rolling windows into three distinct phases: one for addressing multicollinearity, another

for estimating relevant factors, and a final one for conducting out-of-sample prediction regressions -

denoted as RWV IF , RWshrk, and RWpred, respectively.

This segmentation facilitates a comprehensive exploration of the factor zoo in a time-varying

manner. Specifically, it allows for the investigation of different time frames to select relevant factors

and understand the relationship between the returns of these factors and the returns of test assets.

Figure 1: Variable section rolling-window framework scheme
Illustration of the proposed time-variant factor selection framework. In this scenario, for forecasting test assets’
returns for time τ , VIFs are computed with data from τ − 1 to τ − RWV IF , factor selection considers data from
τ − 1 to τ − RWshrk, and assets’ returns at time t are predicted using a time series from τ − 1 to τ − RWpred.

The schematic representation of the proposed variable selection framework is presented in figure

1, and goes as follows:

• To forecast test assets’ returns at time τ , run the VIF procedure (see subsection 2.2.1) using

data from τ − 1 to τ − RWV IF ;

• For every surviving factor fi, estimate αfi,τ−1 (see equation 2) using data from τ − 1 to τ −

RWshrk, find its corresponding p-value (following subsection 2.2.2), and select the relevant
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factors - criteria presented in subsection 2.2.4;

• Over a different time series, from τ − 1 to τ − RWpred, regress the returns of selected factors

against every test asset’s returns, delayed by one period, as described in section 2.3;

• Finally, use the OLS coefficients to project test assets’ returns for time τ :

– Build neutral long-short portfolios based on predicted returns, buying (selling) the top

(bottom) decile;

• Repeat the process for all possible time periods, storing the long-short portfolio returns;

• Calculate a (some) metric(s) for validating the strategy’s performance - like the Sharpe Ratio -

see Sharpe (1998).

This methodology facilitates the examination of the spanning factors problem by ensuring

a clear separation between the time series used for major multicollinearity treatment, the one to

compute p-values and select relevant factors, and the time series utilized to forecast returns based on

that selection. It offers versatility, accommodating studies that focus on stable factor models spanning

decades of data, as well as those focusing on shorter periods such as intraday estimations.

3 Data

We utilize data from the Center for Research in Security Prices (CRSP) and Compustat

databases, covering the period from January 1980 to December 2021. The dataset comprises 504

months of data on all common stocks listed on NYSE, AMEX, and NASDAQ, encompassing the same

80 characteristics used by Sun (2023). Risk-free rate and market excess returns are obtained from

Kenneth French’s online data library. In section 3.1, we detail how the anomaly factors were calculated

and provide an overview of the zoo of factors, while in section 3.2, we explain how we constructed the

test assets.

3.1 Anomaly factors

Factors considered in this study are constructed based on published asset pricing anomalies,

which are defined by Brennan and Xia (2001) as “statistically significant differences between the realized

average returns associated with certain characteristics of securities, or on portfolios of securities formed

based on those characteristics, and the returns that are predicted by a particular asset pricing model”.

In addition to the market factor, we examine 80 additional characteristics as possible regressors

- see table 1. We exclude micro stocks with a market capitalization smaller than the 20th percentile

of NYSE-listed stocks.5

5Micro stocks are classified monthly.
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Table 1: Anomaly factors
This table lists all used factors. The abbreviation is consistent with Green et al. (2017) and Sun (2023). Detailed
information is available at Green et al. (2017).

Abbreviation Description Abbreviation Description
absacc Absolute accruals mom1m 1-month momentum
acc Working capital accruals mom36m 36-month momentum
aeavol Abnormal earnings announcement volume mom6m 6-month momentum
agr Asset growth ms Financial statement score
baspread Bid-ask spread mve Size
beta Beta mve ia Industry adjusted size
betasq Beta squared nincr Number of earnings increases
bm Book-to-market operprof Operating profitability
bm ia Industry adjusted book-to-market pchcapx ia Industry adjusted % change in capital expenditures
cash Cash holding pchcurrat % change in current ratio
cashdebt Cash flow to debt pchdepr % change in depreciation
cashpr Cash productivity pchgm pchsale % change in gross margin - % change in sales
cfp Cash flow to price ratio pchquick % change in quick ratio
cfp ia Industry adjusted cfp pchsale pchinvt % change in sale - % change in inventory
chatoia Industry adjusted change in asset turnover pchsale pchrect % change in sale - % change in A/R
chcsho Change in share outstanding pchsale pchxsga % change in sale - % change in SG&A
chempia Industry adjusted change in employees pchsaleinv % change in sales-to-inventory
chinv Change in inventory pctacc Percent accruals
chmom Change in 6-month momentum pricedelay Price delay
chpmia Industry adjusted change in profit margin ps Financial statement score
chtx Change in tax expense quick Quick ratio
cinvest Corporate investment retvol Return volatility
currat Current ratio roaq Return on assets
depr Depreciation roavol Earning volatility
dolvol Dollar trading volume roeq Return on equity
dy Dividend-to-price roic Return on invested capital
ear Earnings announcement return rsup Revenue surprise
egr Growth in common shareholder equity salecash Sales to cash
ep Earnings-to-price saleinv Sales to inventory
gma Gross proditability salerec Sales to receivables
grcapx Growth in capital expenditure sgr Sales growth
grltnoa Growth in long term net operating assets sp Sales-to-price
hire Employee growth rate std dolvol Volatility of liquidity (dollar trading volume)
idiovol Idiosyncratic return volatility std turn Volatility of liquidity (share turnover)
ill Illiquidity stdacc Accrual volatility
invest Capital expenditure and inventory stdcf Cash flow volatility
lev Leverage tang Debt capacity/firm tangibility
lgr Growth in long term debt tb Tax income to book income
maxret Max daily return turn Share turnover
mom12m 12-month momentum zerotrade Zero trading days

We compute the factors as the spread returns between top and bottom decile portfolios, con-

trolling for size. This approach is akin to a more tail-oriented version of Fama and French (1993)’s

methodology, which uses deciles instead of 30% percentiles. For our estimation, the key consideration

is whether the factor survives the dimensionality-lowering procedure, and all factors are calculated on

a high-minus-low basis - regardless of whether they are characterized as low-minus-high. We demean

and adjust all factors to share the same standard deviation as the market factor. This facilitates

interpretation and makes the magnitudes of estimated coefficients comparable. Finally, we remove

characteristics that cannot produce factors for all available dates.
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3.2 Test assets

The literature offers different perspectives on the ideal set of test assets for asset pricing models.

Some scholars advocate using individual stocks, while others promote the utilization of sorted portfo-

lios. While individual stocks have been used in some studies (see Harvey and Liu (2021) and Lewellen

(2015)), Feng et al. (2020) have argued that characteristic-sorted portfolios have more stable betas,

generally present better signal-to-noise ratios, and are more protected from missing data issues.6 In

line with these arguments, we generate our test assets by sorting the stocks into portfolios based on

their factors’ characteristics.

Following the methodology of Sun (2023), we construct a comprehensive set of bivariate sorted

portfolios as our test assets, in line with the approach proposed by Feng et al. (2020) and Freyberger

et al. (2020). The approach involves creating all 5 × 5 bivariate sorted portfolios, formed by intersecting

stocks’ size with each of the 80 characteristics considered in the previous subsection. The construction

process is similar to that described in section 3.1 for anomaly factors, but resulting portfolios are both

long-only and less extreme.

At the end of the process, any bivariate portfolio that fails to generate diversified portfolios for

all dates of interest will be excluded from the set of test assets. Therefore, we end up using a total of

1896 diversified portfolios as the full set of test assets.

4 Empirical analysis

In this section, we apply the methodology outlined in section 2 to scrutinize the factor zoo,

aiming to reduce its dimensionality by examining the interplay of factor returns. Each factor’s returns

are compared against all others using the LASSO methodology to identify factors capable of generating

statistically significant intercepts in the spanning regression (refer to equation 2). We set the rolling

window for the VIF methodology (RWV IF ) at 240 months.7 We also explore three different window

lengths (120, 180, and 240 months) for both RWshrk and RWpred.

To determine the shrinkage penalization parameter, we consider 100 possible values, with initial

values set at 10−4 and 10−1 for the lowest and highest possible penalization parameters, respectively.

The block bootstrap procedure is employed with eighty repetitions of blocks of five observations.

We report results for two approaches for selecting the shrinkage penalization parameter: the

classic Bayesian Information Criterion (BIC) and our proposed Fixed Regressors Criterion (FRC),

6Fama and French (2008) and Hou et al. (2015) have also advocated using of sorted portfolios as test assets.
7Threshold for accepted VIF value is 10 - a little more permissive than Green et al. (2017).
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which fixes five regressors in the spanning regression.8

We commence by discussing the results of the VIF multicollinearity treatment in section 4.1,

followed by addressing the high-dimensionality issue in section 4.2. Subsequently, we present the out-

of-sample performance of our framework in section 4.3. Finally, section 4.4 proposes a new benchmark

for assessing the out-of-sample performance of the resulting portfolios.

4.1 Accounting for multicollinearity

The empirical analysis begins by addressing potential issues arising from extreme multicollinear-

ity among pricing anomalies. We address this concern by applying the Variance Inflation Factor (VIF)

criterion, which evaluates the R2 of regressions where all other factors’ returns explain each factor’s

returns (refer to subsection 2.2.1).

The results of this procedure, conducted with a rolling window of 240 periods,9 are presented in

this section. Figure 2 illustrates the number of factors that survive this process over time, indicating a

relatively constant count of accepted factors throughout the sample period. The accepted factors range

from 60 to 64 for most of the studied period, with an average elimination of 18.62 factors. Notably,

there is a discernible increase in the number of factors accepted by the VIF analysis after the second

half of 2019, suggesting a potential decrease in overall multicollinearity among pricing anomalies.

Figure 2: Pricing anomalies accepted by the Variance Inflation Factor control trough time
The plot reports the number of factors that survived the VIF analysis throughout all the available periods.

Complementing the analysis, table 2 lists all the anomalies rejected after the VIF procedure for

8Although our results do not account for trading and slippage costs, average monthly turnover is reported.
9In the final version, results using distinct periods will be presented as robustness checks.
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at least one period. It reveals that seven candidate pricing factors were consistently disregarded due

to multicollinearity, while seventeen factors were rejected in at least 80% of the time series.

Furthermore, our results demonstrate notable stability in identifying factors prone to multi-

collinearity issues. Nineteen out of the thirty-one pricing anomalies that encountered problems at

least once failed to survive the VIF procedure more than 60% of the time.1011

Table 2: Summary of pricing anomalies rejected by the Variance Inflation Factor control
This table lists all factors rejected by the VIF analysis at least once, and reports the number of times the factors
presented multicollinearity issues - and the percentage of available periods they were rejected. The abbreviation
is consistent with Green et al. (2017) and Sun (2023).

Factor Rejections Percentage Factor Rejections Percentage
baspread 265 100.0% quick 219 82.6%
beta 265 100.0% roeq 176 66.4%
betasq 265 100.0% agr 160 60.4%
cash 265 100.0% stdacc 125 47.2%
lev 265 100.0% pchsaleinv 95 35.8%
retvol 265 100.0% roaq 91 34.3%
zerotrade 265 100.0% ep 72 27.2%
idiovol 262 98.9% currat 46 17.4%
mom6m 262 98.9% bm 30 11.3%
dy 260 98.1% gma 24 9.1%
stdcf 258 97.4% roavol 21 7.9%
std turn 253 95.5% absacc 10 3.8%
turn 251 94.7% pchsale pchinvt 6 2.3%
salecash 245 92.5% maxret 4 1.5%
ill 242 91.3% invest 1 0.4%
sp 232 87.5%

4.2 Reducing dimensionality

After addressing high multicollinearity, our next step was to select relevant factors and reduce

the dimensionality of the factor zoo. As outlined in subsection 2.2.2, we estimated the p-value of the

intercept in spanning regressions - see equation 2 - to guide our selection process.

In our empirical analysis, we employed the LASSO as the shrinkage estimator and considered

both methodologies detailed in subsection 2.2.3 for setting its penalty parameter: the classic BIC and

the proposed FRC, fixing five regressors (labeled f5). P-values were estimated using three distinct

rolling windows (RWshrk) of 120, 180, and 240 months.

Table 3 summarizes the results obtained using our proposed methodology, shedding light on

several interesting aspects. Firstly, our methodology is notably conservative in estimating p-values,

with only a small average number of factors yielding valid p-values, reaching approximately 13.4% of

10Exploring more the reasons behind factors multicollinearity is a possible aspect to develop. It is possible to
extract which factors were more relevant in the VIF analysis to find out which variables were more relevant in
explaining each removed factor.

11Reporting a table with the average VIF for each factor may be a nice addition. We could point out which
factors are less explained by the others.
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candidates. Moreover, the number of factors with valid p-values appears to decrease as the length of

the time series used for regression increases.12

Table 3: Spanning factors returns shrinkage outcome
This table summarizes the outcomes of applying the LASSO regressions over the factors spanning regressions,
reporting the average number of valid p-values, i.e., p-values under 1.0, the average number of p-values under
the threshold of 0.10, and the percentage of time that any factor presents associated p-value smaller than 0.10,
setting shrinkage penalization parameter through BIC of FRC (fixing 5 regressors - f5), and different values for
RWshrk.

Penalty style RWshrk
Average # of valid Average # of % of periods with

p-values p-values < 0.10 zero p-values < 0.10
BIC 120 10.00 1.09 34%
BIC 180 9.37 1.18 32%
BIC 240 7.15 1.24 34%
f5 120 10.69 1.24 30%
f5 180 9.99 1.20 35%
f5 240 7.15 1.12 36%

Secondly, the average number of factors with relatively low p-values, under 0.10, is small across

all combinations of penalty styles and rolling windows analyzed. This trend may be attributed to the

third insight gleaned from table 3: a significant percentage of periods (at least 30% of the time) saw

no factor exhibiting an intercept p-value below 0.10.

Considering all the aforementioned aspects, employing the fixed 5 regressors criterion for setting

the shrinkage penalization and conducting regressions using 120-period windows yielded the most

favorable results. This approach yielded the highest average number of valid p-values, the highest

average of factors with low p-values, and the lowest percentage of periods with no factor exhibiting a

p-value below 0.10. However, there is no clear indication that a particular penalty style or RWshrk is

optimal, as there is no evidence of a relationship between RWshrk and the overall level of statistical

significance of the factors’ p-values. Additionally, there is no discernible time-variant behavior, as

illustrated by plots at the appendix.

An elevated number of periods without statistically significant pricing factors could significantly

undermine the performance of a hedge portfolio constructed based on the forecasted returns of test

assets — a common approach in the literature applied in this study— as it would frequently lead to

deallocation. Moreover, the relatively low statistical significance is not entirely unexpected, given that

time-varying asset pricing operates within a particularly noisy environment. Therefore, a method that

rejects all pricing factors more than 30% of the time may be overly selective.

Sailing through the turbulent sea of pricing factors, it might be intriguing to focus on the most

promising options, regardless of their individual p-values. As proposed in subsection 2.2.4, rather

12Meinshausen et al. (2009) methodology provides a conservative approach to family-wise error rate (FWER)
control, similar in spirit to Holm (1979). If many null-hypotheses rejections were to happen, the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995) could be considered.
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than setting a threshold value for the factor p-value, we can instead designate a desired number of

factors to be considered relevant and select those with the highest statistical significance, i.e., the

lowest p-values — even if they exceed the typical acceptance threshold. This proposal, involving an

ad-hoc determination of the number of relevant factors, also aligns with the silent sparsity assumption

of classic asset pricing models. Just as the literature accepts classic models like Fama-French (see

Fama and French, 1993, 2015), or Carhart and q-4 factors (see Carhart, 1997; Hou et al., 2015), with

only a handful of pricing factors, why not let a statistical model dictate comparable sparsity levels

without relying on prior qualitative information?13

4.3 Out-of-sample results

In this subsection, we will present the results obtained by applying the methodology explained

in section 2.3. We will begin by presenting the results obtained using the BIC criterion for setting the

penalization parameter in the spanning regression (subsection 4.3.1). Subsequently, we will discuss

the results obtained by fixing five regressors according to the proposed FRC (see subsection 4.3.3).

In each exposition, we will initially present the results obtained using only factors whose p-values are

lower than 0.10, followed by the presenting results using one, three, or five factors with the lowest

p-value(s).

4.3.1 Penalizing through BIC

Results obtained using the BIC for penalization in the spanning regressions, with a signifi-

cance threshold set at p-values under 0.10, are presented in table 4, showcasing not that impressive

performances.

At first glance, an uninformed reader might find the overall gross Sharpe Ratios above unity

somewhat impressive. However, a closer examination reveals that these results indicate, at most, a

promising direction rather than significant performance gains. Moreover, they fail to outperform the

results obtained with a more suitable benchmark, as later proposed in section 4.4.

The relatively underwhelming performance can be attributed to the method for selecting rel-

evant factors, a p-value threshold, which results in numerous periods where constructing long-short

portfolios becomes infeasible due to the absence of relevant factors for predicting test asset returns.14

13We intend to explore more the individual statistical significance of each factor. In this version, we focused
on the predictability results, however, in upcoming development, we will present information on each factor’s
average p-values, how statistical significance varied over time, how the nature of high-significant factors change
over time, and other peer suggestions.

14As demonstrated in table 3, when employing the BIC penalization, there are instances where no factor
exhibits a p-value under 0.10, accounting for at least 32% of the time.
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Table 4: Out-of-sample results - BIC penalty and p-values under 0.10
This table reports out-of-sample monthly mean returns and associated standard deviations, annualized Sharpe
ratios, and monthly average turnover of hedge portfolios going long-short the 10% of stocks with the highest-
lowest predicted returns, considering factors with associated p-values lower than 0.10, setting shrinkage penal-
ization parameter through BIC, for different combinations of RWshrk and RWpred.

RWshrk 120

RWpred Mean SD Sharpe Turnover
240 0.0088 0.0205 1.49 1.38
180 0.0085 0.0223 1.32 1.38
120 0.0088 0.0237 1.29 1.41

RWshrk 180

RWpred Mean SD Sharpe Turnover
240 0.0086 0.0246 1.21 1.39
180 0.0092 0.0258 1.23 1.40
120 0.0096 0.0261 1.27 1.40

RWshrk 240

RWpred Mean SD Sharpe Turnover
240 0.0100 0.0247 1.40 1.35
180 0.0104 0.0254 1.41 1.36
120 0.0102 0.0262 1.35 1.34

Consequently, there are many instances where the returns of the hedge portfolios are zero, thus diluting

the mean returns and undermining the obtained Sharpe ratios.15

Table 5 presents the results obtained when selecting a predetermined number of factors as

relevant, using the lowest p-values obtained for each period for ranking, revealing more promising

out-of-sample performance.

Hedge portfolios’ mean returns reported in table 5 exhibit more significant values, resulting in

improved Sharpe ratios, particularly when considering a smaller number of regressors, as shown in

the first two columns. Generally, smaller values for RWshrk and higher values for RWpred tend to

perform better. However, an intriguing aspect derived from the presented results is that there is no

clear optimal value for RWshrk and RWpred to achieve the highest Sharpe ratios. The best value (1.95)

is found in the pair (RWshrk = 120; RWpred = 240), while the third-best result (1.85) is observed in

the combination of (RWshrk = 240; RWpred = 180).

Regarding the number of considered factors, our results suggest that researchers should aim for

a high level of sparsity, selecting at most three factors when pricing asset returns. Most remarkably,

the best outcomes are achieved when the maximum degree of sparsity is enforced. This represents a

robust and unexpected finding, indicating that within our environment and proposed framework, the

15Since the hedge portfolios are constructed with 100% long-short positions, assigning a zero return when no
relevant factor is selected is the appropriate approach. Additionally, attributing a risk-free rate return when no
factor is chosen is not feasible in our Sharpe ratio analysis, as all long-short portfolios have cash available for
investment at all times due to their construction methodology.
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Table 5: Out-of-sample results - BIC penalty and 1, 3, and 5 lowest p-values
This table reports out-of-sample monthly mean returns and associated standard deviations, annualized Sharpe
ratios, and monthly average turnover of hedge portfolios going long-short the 10% of stocks with the highest-
lowest predicted returns, considering factors with the lowest 1, 3, and 5 associated p-values, setting shrinkage
penalization parameter through BIC, for different combinations of RWshrk and RWpred.

Lowest p-value

RWshrk 120

RWpred Mean SD Sharpe Turnover
240 0.0130 0.0231 1.95 1.40
180 0.0135 0.0247 1.89 1.41
120 0.0126 0.0254 1.72 1.39

RWshrk 180

RWpred Mean SD Sharpe Turnover
240 0.0121 0.0235 1.79 1.38
180 0.0129 0.0252 1.78 1.36
120 0.0130 0.0258 1.74 1.37

RWshrk 240

RWpred Mean SD Sharpe Turnover
240 0.0119 0.0252 1.64 1.37
180 0.0121 0.0268 1.56 1.41
120 0.0120 0.0276 1.51 1.48

3 lowest p-values

RWshrk 120

RWpred Mean SD Sharpe Turnover
240 0.0111 0.0231 1.67 2.15
180 0.0113 0.0245 1.61 2.20
120 0.0116 0.0260 1.54 2.30

RWshrk 180

RWpred Mean SD Sharpe Turnover
240 0.0122 0.0261 1.63 2.10
180 0.0129 0.0274 1.62 2.06
120 0.0132 0.0279 1.64 2.12

RWshrk 240

RWpred Mean SD Sharpe Turnover
240 0.0140 0.0265 1.83 2.17
180 0.0144 0.0271 1.85 2.17
120 0.0144 0.0277 1.80 2.27

5 lowest p-values

RWshrk 120

RWpred Mean SD Sharpe Turnover
240 0.0108 0.0271 1.38 2.52
180 0.0108 0.0274 1.37 2.54
120 0.0111 0.0281 1.37 2.64

RWshrk 180

RWpred Mean SD Sharpe Turnover
240 0.0115 0.0283 1.41 2.45
180 0.0118 0.0292 1.40 2.45
120 0.0119 0.0302 1.36 2.54

RWshrk 240

RWpred Mean SD Sharpe Turnover
240 0.0115 0.0297 1.34 2.49
180 0.0111 0.0299 1.29 2.50
120 0.0114 0.0301 1.31 2.55

noise inherent in the factor zoo is substantial enough to have better results potentially being yielded

when considering only the most relevant pricing factor over the shrinkage period.

Finally, it is noteworthy that turnover also increases with the number of factors considered. This

is a consequence of the persistence of the selected factor(s). Despite allowing for monthly changes,

this framework for factor selection does not impose frequent and significant alterations in the relevant

factors. This observation supports the notion of opting for a more sparse factor asset-pricing model,

as lower turnovers translate to more favorable trading conditions and reduced slippage costs.

4.3.2 Using FRC for 5 factors

Similar to its BIC counterpart, fixing five regressors in the spanning regressions before selecting

factors with p-values under 0.10 also yields unimpressive results, as shown in table 6.

Comparing table 6 to table 4, the overall results are very similar, with no clear indication of

which combination of RWshrk and RWpred is optimal.

Table 7 presents the out-of-sample results obtained by combining the fixed five regressors cri-

terion for the spanning regressions and selecting the lowest one, three, and five p-values for relevant

factors. Once again, the results are similar to those in table 5. However, using the f5 criterion, we

were able to achieve portfolios with Sharpe ratios greater than 2.0, surpassing the best out-of-sample

Sharpe ratio obtained in subsection 4.3.1: 1.95.
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Table 6: Out-of-sample results - FRC (f5) penalty and p-values under 0.10
This table reports out-of-sample monthly mean returns and associated standard deviations, annualized Sharpe
ratios, and monthly average turnover of hedge portfolios going long-short the 10% of stocks with the highest-
lowest predicted returns, considering factors with associated p-values lower than 0.10, setting shrinkage penal-
ization parameter through FRC, fixing 5 regressors, for different combinations of RWshrk and RWpred.

RWshrk 120

RWpred Mean SD Sharpe Turnover
240 0.0090 0.0219 1.42 1.41
180 0.0089 0.0229 1.35 1.40
120 0.0084 0.0241 1.21 1.44

RWshrk 180

RWpred Mean SD Sharpe Turnover
240 0.0079 0.0246 1.11 1.42
180 0.0080 0.0261 1.06 1.44
120 0.0087 0.0268 1.12 1.45

RWshrk 240

RWpred Mean SD Sharpe Turnover
240 0.0098 0.0236 1.44 1.29
180 0.0099 0.0245 1.41 1.32
120 0.0100 0.0256 1.35 1.33

Again, the results advocate for a high sparsity level, as choosing only one factor at a time

appears to be the superior approach — especially considering the lower turnover imposed. Overall,

results tend to improve when considering smaller shrinkage windows (RWshrk ∈ [120, 180]), longer

prediction time series (RWpred ∈ [240, 180]), and a lower number of factors considered (only the

lowest p-value). Nevertheless, this is not always the case: good results were obtained when using

RWshrk = 240 with the three lowest p-values —although those results impose a significant increase in

average turnover.

A last notable observation is that the results appear to be relatively insensitive to the choice of

the rolling window parameters: the sparsity level imposed by the researcher for factor selection seems

to have greater importance. Our findings suggest that, in a noisy environment, such as the zoo of

factors, sparsity matters.

4.4 Fair comparison

Practitioners often use an annualized Sharpe ratio, gross of trading costs, above one as a “rule

of thumb” for considering hedge portfolio returns interesting. However:

• No “rule of thumb” should be accepted in rigorous scientific research, and;

• Given that all the factor anomalies considered in our study were reported as statistically signifi-

cant return predictors in other studies, abnormal results may be a byproduct of their documented
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Table 7: Out-of-sample results - FRC (f5) penalty and 1, 3, and 5 lowest p-values
This table reports out-of-sample monthly mean returns and associated standard deviations, annualized Sharpe
ratios, and monthly average turnover of hedge portfolios going long-short the 10% of stocks with the highest-
lowest predicted returns, considering factors with the lowest 1, 3, and 5 associated p-values, setting shrinkage
penalization parameter through FRC, fixing 5 regressors, for different combinations of RWshrk and RWpred.

Lowest p-value

RWshrk 120

RWpred Mean SD Sharpe Turnover
240 0.0131 0.0226 2.01 1.38
180 0.0131 0.0241 1.88 1.38
120 0.0123 0.0248 1.72 1.35

RWshrk 180

RWpred Mean SD Sharpe Turnover
240 0.0135 0.0229 2.04 1.36
180 0.0142 0.0243 2.03 1.34
120 0.0144 0.0250 2.00 1.36

RWshrk 240

RWpred Mean SD Sharpe Turnover
240 0.0121 0.0246 1.71 1.40
180 0.0123 0.0262 1.62 1.43
120 0.0120 0.0270 1.54 1.50

3 lowest p-values

RWshrk 120

RWpred Mean SD Sharpe Turnover
240 0.0117 0.0232 1.75 2.15
180 0.0113 0.0244 1.60 2.18
120 0.0117 0.0257 1.57 2.30

RWshrk 180

RWpred Mean SD Sharpe Turnover
240 0.0120 0.0251 1.65 2.23
180 0.0122 0.0265 1.60 2.20
120 0.0125 0.0277 1.56 2.28

RWshrk 240

RWpred Mean SD Sharpe Turnover
240 0.0143 0.0259 1.91 2.18
180 0.0143 0.0266 1.86 2.17
120 0.0141 0.0273 1.79 2.25

5 lowest p-values

RWshrk 120

RWpred Mean SD Sharpe Turnover
240 0.0106 0.0256 1.44 2.51
180 0.0108 0.0260 1.45 2.54
120 0.0108 0.0273 1.37 2.63

RWshrk 180

RWpred Mean SD Sharpe Turnover
240 0.0104 0.0271 1.33 2.48
180 0.0107 0.0286 1.29 2.50
120 0.0108 0.0301 1.25 2.60

RWshrk 240

RWpred Mean SD Sharpe Turnover
240 0.0117 0.0288 1.41 2.48
180 0.0110 0.0297 1.28 2.46
120 0.0112 0.0305 1.27 2.52

relevance.

Merely observing the resulting Sharpe ratios of hedge portfolios could raise doubts about the

true benefits of ensuring sparsity in our framework. Therefore, we need to employ a more stringent

benchmark that adheres to relevant scientific research.

One way to establish a fair benchmark is to replicate standard procedures for testing pricing

anomalies while adjusting them to our framework. In that spirit, we generated out-of-sample results

by designating the classic 3-factor model factors (Fama and French, 1993) as relevant - the aim is to

incorporate the classic benchmark into our setup. The performance of this benchmark for all prediction

windows considered is presented in table 8.

Table 8: Out-of-sample returns prediction results - benchmark
This table reports out-of-sample annualized Sharpe ratios of hedge portfolios going long-short the 10% of stocks
with the highest-lowest predicted returns, setting the factors as Fama and French (1993), for different RWpred.

RWpred 120 180 240
3-factors Fama-French 1.57 1.64 1.49

Upon cross-examining the results presented in table 4, table 5, table 6, and table 7 alongside

the new benchmark performance in table 8, we observe that surpassing the proposed benchmark is no

simple task. Running the out-of-sample exercise with the 3 Fama-French factors yields gross of trading

costs Sharpe ratios as high as 1.64 for RWpred = 180. For instance, even the best results obtained
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with the p-value threshold method (see table 4 and table 6), 1.49 (RWshrk = 120, RWpred = 240) and

1.44 (RWshrk = 240, RWpred = 240), failed to outperform the Fama-French based selection for all

tested values of RWpred.

However, several hedge portfolios managed to outperform this stricter benchmark.16 As shown

in table 9, all these portfolios were constructed under the fixed number of relevant factors criterion,

and two key insights can be drawn:

• Even if the most statistically significant factor has a p-value higher than 0.10, using it provided

better results than not designating any factor as relevant;

• A higher sparsity level resulted in enhanced out-of-sample predictability.

Table 9: Outperforming hedge portfolios
This table reports the portfolios presented on table 4, table 5, table 6, and table 7 that yielded better annualized
Sharpe ratios than the best-performing benchmark portfolio (RWpred = 180) - presented on table 8.

Spanning
RWshrk

Factor selection
RWpred Mean SD Sharpe Turnovercriterion criterion

f5 180 lwst1 240 0.0135 0.0229 2.04 1.36
f5 180 lwst1 180 0.0142 0.0243 2.03 1.34
f5 120 lwst1 240 0.0131 0.0226 2.01 1.38
f5 180 lwst1 120 0.0144 0.0250 2.00 1.36

BIC 120 lwst1 240 0.0130 0.0231 1.95 1.40
f5 240 lwst3 240 0.0143 0.0259 1.91 2.18

BIC 120 lwst1 180 0.0135 0.0247 1.89 1.41
f5 120 lwst1 180 0.0131 0.0241 1.88 1.38
f5 240 lwst3 180 0.0143 0.0266 1.86 2.17

BIC 240 lwst3 180 0.0144 0.0271 1.85 2.17
BIC 240 lwst3 240 0.0140 0.0265 1.83 2.17
BIC 240 lwst3 120 0.0144 0.0277 1.80 2.27
f5 240 lwst3 120 0.0141 0.0273 1.79 2.25

BIC 180 lwst1 240 0.0121 0.0235 1.79 1.38
BIC 180 lwst1 180 0.0129 0.0252 1.78 1.36
f5 120 lwst3 240 0.0117 0.0232 1.75 2.15

BIC 180 lwst1 120 0.0130 0.0258 1.74 1.37
BIC 120 lwst1 120 0.0126 0.0254 1.72 1.39
f5 120 lwst1 120 0.0123 0.0248 1.72 1.35
f5 240 lwst1 240 0.0121 0.0246 1.71 1.40

BIC 120 lwst3 240 0.0111 0.0231 1.67 2.15
f5 180 lwst3 240 0.0120 0.0251 1.65 2.23

BIC 180 lwst3 120 0.0132 0.0279 1.64 2.12

Our findings suggest that the dimensionality issue of the zoo of factors can be satisfactorily

addressed by estimating the statistical significance of factor-spanning shrinkage regressions’ intercepts.

Specifically, our results show that when using monthly data in the framework proposed in section 2,

the most relevant factors should be selected assuming significant pre-defined sparsity, i.e., classifying

fewer than 3 factors as relevant.

More interestingly, although the best out-of-sample results are generally obtained considering a

combination of shorter factor selection and longer returns prediction windows, i.e., RWshrk ∈ [120, 180]

16The appendix shows which portfolios outperformed the benchmark for all prediction rolling windows.
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and RWpred ∈ [180, 240], it was possible to surpass the proposed benchmark with RWshrk = 240 or

RWpred = 120. This indicates that our findings are likely not very susceptible to data mining, as there

is no need for a specific combination of window sizes to obtain interesting out-of-sample results.

5 Conclusion

This paper introduces a novel framework designed to tackle the challenge of high-dimensionality

factor-based asset pricing models. Our approach leverages shrinkage methodologies applied to regres-

sions that span the returns of each pricing anomaly with those of all other anomalies. The versatility of

our framework allows for its application across various horizons of interest, involving the segmentation

of time series into distinct phases: one for controlling multicollinearity, another for factor selection, and

a final phase for predicting one-period-ahead returns. Our framework is adaptable to accommodate

alternative methodologies for shrinkage in the spanning regressions and returns forecasting, despite

presenting results for shrinking with the LASSO and forecasting using the OLS only.

We evaluate the statistical significance of factors’ relevance by examining the intercepts of

spanning regressions. Lower p-values associated with these intercepts indicate that the returns of

certain factors cannot be adequately explained by the returns of all other factors, suggesting that

these factors carry unique information that others cannot replicate.

Furthermore, we contend that traditional factor-based asset pricing models often assume high

sparsity levels arbitrarily, underscoring the potential value of ensuring a comparable scarcity of factors.

This sparsity assumption can be evaluated within our framework through two key steps: first, in the

spanning regressions, and second, when assessing factor relevance.

We advocate for an alternative criterion in setting the penalization parameter of shrinkage

regressions, wherein it is dynamically adjusted to ensure a predefined number of jointly relevant factors

are selected. This criterion proves advantageous when researchers possess prior beliefs regarding the

number of factors to be considered. Furthermore, we propose enforcing a set sparsity level during the

selection of relevant factors, recommending the consideration of a predetermined number of factors

ranked by their intercept’s p-value, regardless of any predefined statistical relevance ceiling. The

outcomes presented in our study suggest that this sparsity assumption holds merit in both instances.

Moreover, we introduce a more stringent benchmark for evaluating our results. We recognize

that test assets based on anomaly factors presumed to be relevant may yield a positive alpha simply as

a byproduct of their construction. Thus, our proposed benchmark blends elements of our out-of-sample

framework with the classic Fama-French 3 factors model, providing a fairer basis for comparison.

Applying our methodology to a comprehensive set of 80 factors drawn from the literature, along-
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side the market factor, we utilized the widely-adopted LASSO technique for the spanning regressions.

We fixed the rolling window for multicollinearity treatment at 240 periods and considered candidate

periods of 120, 180, and 240 months for both factor selection and returns forecasting. While the

results were less promising when considering only factors with associated p-values below 0.10, apart

from the methodology for setting the LASSO’s penalty parameter, selecting a predefined number of

factors ranked according to statistical significance enabled us to surpass the stricter benchmark in

various parameter combinations.

We observed that shorter windows for factor selection coupled with longer windows for return

prediction generally yielded superior results. This finding is grounded in the notion that the relevance

of factors should closely correspond to the present moment, while the estimation of the relationship

between selected factors’ returns and test assets’ returns benefits from a longer horizon. However,

certain combinations involving longer factor selection windows and extended time series for forecasting

test assets’ returns were able to outperform the proposed benchmark, indicating some robustness

degree against potential data-mining concerns, and bolstering our findings’ credibility.

Our framework offers researchers and practitioners a valuable tool for screening relevant pricing

factors, providing an additional criterion for setting the penalization parameter and encouraging ex-

ploration into methods for ensuring sparsity within their models. Our results demonstrate that even

simple regressions, in combination with properly set frameworks and criteria, can yield compelling

outcomes.

As we near the conclusion, it feels as though we’re stepping out of a fierce arena of financial

modeling, reminiscent of the trials faced in the Hunger Games. Just as tributes compete for survival,

the proposed pricing factors have engaged in intense competition within our statistical realm. Our

quest has been to discern the champions – factors endowed with p-values in their favor. So, as say bid

adieu to this econometric odyssey, let’s celebrate the victors, for in the realm of financial modeling,

the p-values were indeed in their favor.
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6 Appendix

6.1 Statistically significant factors over time

Figure 3: Pricing anomalies associated with low p-values trough time - BIC penalty
The plot reports the number of factors that presented elevated statistical significance over time, when setting
shrinkage penalization parameter through BIC, and for different values for RWshrk.

Figure 4: Pricing anomalies associated with low p-values trough time - FRC (f5) penalty
The plot reports the number of factors that presented elevated statistical significance over time, when setting
shrinkage penalization parameter through (fixing 5 regressors - f5), and for different values for RWshrk.
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6.2 Other outperforming portfolios

Table 10: Outperforming hedge portfolios - Second-best performing RWpred

This table reports the portfolios presented on table 4, table 5, table 6, and table 7 that yielded better annualized
Sharpe ratios than the second-best-performing benchmark portfolio (RWpred = 240) - presented on table 8.

Spanning
RWshrk

Factor selection
RWpred Mean SD Sharpe Turnovercriterion criterion

all 240 lwst1 240 0.0119 0.0252 1.64 1.37
all 180 lwst3 240 0.0122 0.0261 1.63 2.10
all 180 lwst3 180 0.0129 0.0274 1.62 2.06
f5 240 lwst1 180 0.0123 0.0262 1.62 1.43
all 120 lwst3 180 0.0113 0.0245 1.61 2.20
f5 120 lwst3 180 0.0113 0.0244 1.60 2.18
f5 180 lwst3 180 0.0122 0.0265 1.60 2.20
f5 120 lwst3 120 0.0117 0.0257 1.57 2.30

Table 11: Outperforming hedge portfolios - Worst performing RWpred

This table reports the portfolios presented on table 4, table 5, table 6, and table 7 that yielded better annualized
Sharpe ratios than the worst-performing benchmark portfolio (RWpred = 240) - presented on table 8.

Spanning
RWshrk

Factor selection
RWpred Mean SD Sharpe Turnovercriterion criterion

all 240 lwst1 180 0.0121 0.0268 1.56 1.41
f5 180 lwst3 120 0.0125 0.0277 1.56 2.28
all 120 lwst3 120 0.0116 0.0260 1.54 2.30
f5 240 lwst1 120 0.0120 0.0270 1.54 1.50
all 240 lwst1 120 0.0120 0.0276 1.51 1.48
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