
Efficiency-based index tracking optimization model

Abstract

We used asset efficiency as an approach for portfolio selection in a classical index tracking
(IT) optimization model. The stock efficiency levels are measured based on the Multifractal-
Detrended Fluctuation Analysis (MF-DFA). We form portfolios that seek to replicate the S&P500,
the Nikkei 225 and the Ibovespa index, such that our empirical analysis covers three financial
markets worldwide (US, Japan and Brazil), using daily stock returns from 2012 to 2021. Our
results indicate that using efficiency as a way of selecting the components for tracking portfolios
provides good solutions when compared to portfolios without constraint on their size, as well as
when compared to another study that was based on a robust numerical approach (a metaheuris-
tic defined as genetic algorithm) to solve the IT problem. We evidenced that using efficiency as
a way to form tracking portfolios is an interesting alternative to reduce the number of stocks in
the porrtfolios without the need to design a robust methodology to solve the IT optimization
especially in developed markets, in which case where the overall level of efficiency tends to be
larger (such as US and Japan).
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1. Introduction1

Index tracking (IT) is a passive investment strategy that seeks to replicate the performance2

of a market benchmark, such as the S&P 500 in the US stock market or the FTSE 100 in3

the British market. Through tracking, the investor’s goal is to earn the overall market return4

(represented by the benchmark), especially in the long run, instead of pursuing alpha to beat the5

market. The Efficient Market Hypothesis (EMH, proposed by Fama, 1965a,b; Samuelson, 1965)6

provides the theoretical background for the choice to replicate the market returns. According to7

the EMH, prices fluctuate randomly and reflect all information available. Therefore, assets are8

priced correctly, thus eliminating arbitrage opportunities and abnormal returns (returns above9

the level befitting the systematic risk). Consequently, investors should be better off using IT10

to replicate market returns instead of taking additional risk to attempt to add alpha to their11

portfolios.12

Assuming investors opt for the tracking strategy, one of the challenges in the IT problem is to13

select the stock components in the portfolios. In this paper, we describe an innovative strategy14

to make this selection: to compose the tracking portfolios based on stock efficiency. By doing so,15
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we aim to explore two direct benefits. First, from a financial viewpoint, we avoid using relatively16

inefficient stocks in the IT portfolios, i.e., stocks that potentialy have either lower liquidity or17

higher volatility (or both). If we presume inneficient stocks tend to present increasing volatility,18

then we would prefer to exclude such stocks from the tracking portfolios, as they would likely19

damage the portfolios’ tracking performance. Second, from a computational viewpoint, as a20

result of stock selection based on their efficiency level, we eliminate the cardinality constraint in21

the IT optimization model. Often, IT models use a cardinality constraint to limit the size of each22

portfolio to a certain number of stocks (for instance, to select a portfolio composed by 20 stocks23

to track a benchmark composed by 100 stocks). However, such constraint adds computational24

complexity to the model (because it relies on binary variables), thus making it more difficult25

to solve the model quickly without implementing a more robust numerical method (such as a26

heuristic approach). So, eliminating the cardinality constraint represents an advantage regarding27

the difficulty and time to solve the optimization.28

The EMH argues that efficient markets are such that asset prices reflect all information29

available on each asset and the entire market (Fama, 1970). As corroborated by studies such as30

Fama and French (2010), one of the consequences of the EMH is the challenge managers face to31

obtain returns superior to the market in the long run. Therefore, investors could choose the IT32

strategy to follow the market instead of attempting to overcome the aggregate market return.33

The most straightforward approach to select a tracking portfolio would be to make a replica34

of the index, i.e. a portfolio with the same index components and their respective weights in35

the index. However, this approach might become unviable, especially if we consider broader36

indexes such as the S&P 500 (composed by approximately 500 stocks), since buying all index37

components would lead not only to increasing transaction costs, but also larger operating costs38

related to the management of a larger portfolio.39

Thus, a common choice for IT is to compose tracking portfolios using only a subset of40

the stocks that comprise the index. In this case, the IT problem becomes how to make the41

portfolio selection, i.e. how to select the stock components and define their weights in the42

tracking portfolio. To address the IT problem, the literature contains a variety of studies43

encompassing distinct IT optimization methods to form portfolios with a reduced number of44

stocks relative to the total number of index components. In this case, the problem often consists45

of the minimization of the tracking error volatility (TEV), where the tracking error (TE) is the46

difference between the portfolio and index returns.47

A popular approach to solve the IT problem is the use of heuristics. Beasley et al. (2003)48

presented an evolutionary heuristic named genetic algorithm to solve the problem, including49

transaction costs, limit on the number of assets to compose the tracking portfolios, as well as50

rebalancing controls in the model. The use of the genetic algorithm approach allowed the authors51

to solve the optimization model relatively quickly, and their findings (based on stock market52

data for five countries) demonstrated the quality of the heuristic to solve the TEV minimization.53

2



Gaivoronski et al. (2005) investigated the role of the number of assets in IT portfolios, as well as54

the impact of adjustments to new information available in the market (the rebalancing process of55

those portfolios), analyzing static and dynamic IT strategies. Guastaroba and Speranza (2012)56

explored a heuristic defined as Kernel Search to solve the problem, Scozzari et al. (2013) used57

Differential Evolution, and Sant’Anna et al. (2017) applied a hybrid solution method combining58

genetic algorithm and nonlinear mathematical programming.59

The literature also shows the development of other approaches. Dunis et al. (2005) presented60

the use of cointegration, which is a method that relies on the application of ordinary least squares61

(OLS) regression. In this case, the stocks to compose the tracking portfolios must be selected62

ex-ante, since the OLS regression does not make variable selection. To assess this issue, we also63

find the use of lasso regression, such as in Wu et al. (2014) and Yang and Wu (2016), which is64

justified by the fact that the lasso regression allows one to determine the maximum number of65

independet variables that should present coefficients different from zero in the regression (which66

works as a constraint on the number of stocks in the portfolio). Alternatively, we also see the67

use of factor models (for instance, Corielli and Marcellino, 2006; Jiang and Perez, 2021).68

Among most of the studies cited above, the common point is a constraint in the optimization69

model to set the maximum number of stocks to compose each tracking portfolio. In this paper,70

we present an altenative approach, which is to select the portfolio components based on stock71

efficiency. Based on a long range of data from both well developed and emerging markets, Tiwari72

et al. (2019) show that the efficiency of equity markets varies over time and that markets are more73

efficient in the long term than in the short term. The authors argue that the lower efficiency can74

be justified by the lack of liquidity in the markets, and that the level of efficiency can be improved75

with greater transparency of information to investors, greater activity of active investment76

strategies based on variations in efficiency in the markets, and better trading technologies, among77

other factors. In the literature, we find the use of stock efficiency for portfolio selection in Maciel78

(2021), who makes use of efficiency considerations to solve the minimum variance problem. The79

author optimizes portfolios based on using subsets composed by the most efficient stocks and80

least efficient stocks in his database. The findings show a good performance for the portfolio81

using most efficient set of stocks, when compared to the least efficient.82

Similarly to Maciel (2021), in this study, we propose using stock efficiency as a parameter83

for portfolio selection. Instead of estimating an optimization model that includes a cardinality84

constraint to restrict the size of the portfolio to n stocks out of the N of stocks that compose85

the database (all index components), first we evaluate the efficiency level of all stocks and select86

the n most efficient to compose the tracking portfolio (n being the number of stocks chosen by87

the investor for the portfolio). Then, we solve the index tracking optimization using only the n88

most efficient stocks to set their weights in the portfolio. By considering asset-level efficiency,89

our goal is to restrict the space of solutions to some efficiency level, i.e., we reduce the number of90

assets that are part of the set of feasible solutions to the problem by considering only the most91
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efficient to solve the optimization. In this way, the higher (smaller) the number of stocks to92

compose the portfolio, the smaller (higher) the minimum stock efficiency level required. Thus,93

instead of regulating the size of the portfolio via the use of constraints in the optimization94

model, we use efficiency stock levels for this purpose. As a result, we employ a standard index95

tracking optimization model to minimize TEV, without the inclusion of constraints to define96

the maximum number of stocks to compose the portfolio. Thus, the optimization model can97

be solved promptly without the necessity of using some robust numerical techniques such as an98

heuristic or metaheuristic.99

To test our proposition for the use of stock efficiency for portfolio selection in the index100

tracking problem, first we select three stock markets: United States, Japan, and Brazil. We101

base our choice on the FTSE Equity Country Classification1 from September 2022 (see Table102

1 in Section 4.2). According to this classification, United States and Japan are two examples103

of developed countries, where stock market efficiency levels tend to be larger, and Brazil is an104

advanced emerging country, where markets might be less efficient than in developed countries.105

The stock efficient level is measured using the Market Deficiency Measure (MDM) approach106

as in Maciel (2021), and a variety of portfolios are built using a sample of data from 2012 to107

2021, three different sizes of tracking portfolios, and three distinct time windows for portfolio108

rebalancing overtime. As a result, we are able to obtain a considerable amount of results for109

different markets and distinct conditions (such as strong bull markets, consistent bear markets,110

and the crash related to the covid pandemic in 2020).111

Our tests are carried out initially based on the construction of tracking portfolios using112

stock efficiency levels to select the portfolio components. Then, in order to assess the quality113

of our approach, we apply our methodology using a dataset from another study in the index114

tracking literature, who used a robust numerical approach based on a metaheuristic defined115

as genetic algorithm for the IT problem. Our results indicate a good performance of tracking116

portfolios with efficiency constraints at the asset level. We identified that there is a trade-off117

between efficiency and tracking error: as we insert efficiency restrictions into the model, and,118

consequently, restrict the average number of assets in the portfolio, the tracking error increases.119

This effect is more pronounced for emerging markets, as is the case of Brazil in our sample.120

Also, when comparing with another method of solving the IT problem in the literature, where121

it makes use of a more complex approach, we verified the results of models with extremely close122

efficiency constraints, demonstrating the effectiveness of the proposed model in terms of tracking123

error.124

This study is organized as follows. First, Section 2 describes the methodology used to125

estimate stock efficiency. Second, Section 3 presents the index tracking optimization model.126

Then, Section 4 shows the results for the empirical tests, and Section 5 concludes our study.127

1Provided by the FTSE Russell – a market data provider company affiliated to the London Stock Exchange
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2. Efficiency measurement128

In this section, we discuss the Multifractal-detrended Fluctuation Analysis (MF-DFA) and the129

Market Deficiency Measure (MDM), which we use in our study to evaluate asset efficiency level.130

Several studies have already been made to test the efficient market hypothesis in its three131

theoretical distinctions: weak, semi-strong and strong efficiency. Concerning the semi-strong132

and strong market efficiency (for instance, Keown and Pinkerton, 1981; Patell and Wolfson,133

1984; Bardos, 2011), testing these forms is a somewhat laborious task, as they require higher134

levels of information in order to analyze informational efficiency. On the other hand, the weak135

form has been extensively tested in the literature due to its focus on using past trading data136

to analyze if stock prices follow a random walk (Holderness and Sheehan, 1985; Lin and Howe,137

1990; Brio et al., 2002). There are numerous methods for testing the weak form, such as serial138

correlation, variance ratio, unit root and spectral analysis, among others (Lim, 2007).139

One of the methods that has been explored in the literature is the Multifractal-Detrended140

Fluctuation Analysis (MF-DFA), proposed by Kantelhardt et al. (2002). A positive point of this141

approach is the ability to detect long-term correlations in non-stationary time series. Al-Yahyaee142

et al. (2018) uses MF-DFA to measure the efficiency for three classes: bitcoin, the gold market,143

and stock market. In this case, the results show that bitcoin is the least efficient among the144

three. Al-Yahyaee et al. (2020) use MF-DFA to check efficiency in the cryptocurrency market,145

as well as to search for the determinants of efficiency. The results indicate that higher liquidity146

combined with lower volatility help to eliminate existing arbitrage opportunities, thus raising147

the efficiency level. Several other studies use the MF-DFA to analyze the efficiency of markets148

(for instance, Tiwari et al., 2019; Zhu and Bao, 2019; Choi, 2021).149

Based on the relevance of the MF-DFA to evaluate market and asset efficiency in the lit-150

erature, we use this method to evaluate stock efficiency in this study. Essentially, MF-DFA151

collects the volatility of the time series in each time interval, as a statistical point that is used152

to calculate volatility functions. Then, the Hurst exponents are determined based on the power153

law of volatility functions. According to Kantelhardt et al. (2002), the methodology considers154

the following steps.155

Let x(i), i = 1, ..., N be a time series of log asset returns, where N is its length. The first156

step is to determine the profile function, y(i), which can be obtained by the difference between157

x(i) and its mean, x̄(i), for i = 1, .., N :158

Step 1. Profile Function:

y(i) =

i∑
k=1

[x(k)− x̄], (1)

where x̄ comprises the mean of the time series.159

Step 2: The profile function (y(i)) is divided into Ns ≡ int(N/s) non-overlapping segments,160
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of equal length s. The number of segments N will not necessarily be an integer that is a multiple161

of the segments s. Thus, a small part at the end of the series can be “left over”. In order not to162

disregard this part of the time series, we repeated the same procedure, this time starting from163

the opposite end of the series, until its beginning. The result is two Ns segments, so we have164

2Ns.165

Step 3: The local trend is calculated for each of the 2Ns segments by a least squares fit of

the series. From there, the variance is obtained:

F 2(s, v) =
1

s

s∑
i=1

{y[(v − 1)s+ i]− yv(i)}2, (2)

for each segment v, v = 1, ..., Ns, and

F 2(s, v) =
1

s

s∑
i=1

{y[N − (v −Ns)s+ i]− yv(i)}2 (3)

for each segment v, v = 1, ..., 2Ns. Here, yv(i) is the polynomial fitted in the segment v.166

Step 4: The q-th order fluctuation function Fq(s) is obtained by averaging all segments

(subsets):

Fq(s) =

[
1

2Ns

2Ns∑
v=1

[F 2(s, v)]q/2

] 1
q

(4)

where q 6= 0. For q = 0, the value h(0) cannot be determined directly because of the divergent167

exponent. Instead, a logarithmic averaging procedure should be employed. For q = 2, we have168

a standard DFA procedure (Tiwari et al., 2019).169

Step 5: Determine the scaling behavior of the fluctuation functions by analyzing log-log

plots of Fq(s) versus each value of q. If the series x(i) is correlated to the power law over a long

interval, Fq(s) increases to large values of s, similar to a power law:

Fq(s)sh(q) (5)

In general, the exponent h(q) will depend on q. If h(q) does not depend on q, the time

series is monofractal, otherwise it is multifractal, meaning that the behavior of scaling of small

fluctuations (q < 0) is different from that of large variations (q > 0). We adopt a range from -4

to 4 for q (Hurst exponent), in the same way as Maciel (2021). If 0 < h(q) < 0.5, the series has

anti-persistence. If 0.5 < h(q) < 1, the time series has persistence. If h(q) = 0.5, the stochastic

process corresponds to an uncorrelated geometric Brownian motion – a random walk (Maciel,

2021). To determine the asset deficiency level, we used the Market Deficiency Measure (MDM),
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according to Tiwari et al. (2019) and Maciel (2021):

MDM =
1

2
(|h(qmin)− 0.5|+ |h(qmax)− 0.5|) (6)

In this study, qmin = −4 and qmax = 4. Thus, the interpretation of the MDM is such that170

the larger (lower) the MDM value, the lower (larger) the asset efficiency. If MDM = 0, the asset171

or market in question can be considered efficient.172

3. Index tracking optimization model173

In this section, we describe the index tracking optimization model adopted in our study. We174

use an optimization model according to which the objective is to minimize the tracking error175

variance (TEV), the tracking error being the difference between portfolio and index returns.176

The model is described in Equations 7-9.177

Let I be a set of assets i = 1 : N that are part of the composition of the market index178

that we are attempting to replicate. Let Rt be the index return in t, and xi,t be the weight179

of asset i in the portfolio in t, and ri,t be the return on asset i ∈ I in t. Let X∗
t be the180

portfolio used to replicate the market index in the period t. The objective is to form a portfolio181

X∗
t = {xi,t, i ∈ I}, in each period t, that minimizes the average difference of return between182

the index and the portfolio. Let ψ be the set of portfolio projection periods. Then, we must183

build portfolios X∗
t , ∀ t ∈ ψ, such that the return distance relative to the index is minimized.184

The frequency by which we restate the weights of assets in X∗
t is determined by the rebalancing185

interval.186

The objective function in Equation 7 is associated with the formulation made by Gaivoronski

et al. (2005) and used in several other studies such as in Sant’Anna et al. (2017). It consists of

minimizing the mean squared difference between the portfolio return and the index return.

min
x

1

T

T∑
t=1

(
N∑
i=1

xirit −Rt

)2

(7)

s.t.

N∑
i=1

xi = 1 (8)

xi ≥ 0 ∀ i ∈ {1, · · · , N} (9)

Constraints 8 and 9 complement the model, such that Constraint 8 defines that the total187

wealth must be allocated to the portfolio, and Constraint 9 gives the weights a non-negativity188

property, so that no short positions are allowed in the portfolio.189
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The quadratic programming (QP) optimization model in Equations 7-9 defines that the

tracking portfolio will contain all stocks in the database used for the optimization, i.e., there is

no constraint on the size of the portfolio desired by the investor. Naturally, it is possible some

assets receive weight equal to zero; nonetheless, the model does not impose some assets must

receive weight equal to zero in order to limit the size of the portfolio. To impose a limitation on

the size of the portfolio, one could add Constraints 10-12, where C is a parameter defined by the

investor to set the maximum number of stocks in the portfolio, and zi is a binary variable that

receives 1 if the stock is included in the portfolio, and 0 otherwise. As a result, when combined,

Equations 10-12 form a cardinality constraint to limit the number of portfolio components in

the optimization.

N∑
i=1

zi ≤ C (10)

zi ≤ xi ∀ i ∈ {1, · · · , N} (11)

zi ∈ {0, 1} ∀ i ∈ {1, · · · , N} (12)

Thus, an optimization model using Equations 7-12 would define a portfolio constrained in190

its size (such as in Sant’Anna et al., 2017). However, when adding Constraints 10-12, we have191

a QP model with binary variables, which results in a NP-hard problem – a class of problems192

that presents high computational complexity and increasing time necessary to be solved. Thus,193

in the context of the index tracking problem, the consequence of this formulation is that if we194

consider broader indexes, such as the S&P 500 (composed by roughly 500 stocks) or the Russell195

1000 (about 1,000 stocks), and we desire to form reduced portfolios, with a small number of196

stocks relative to the index composition, then there would be an increase in the computing time197

necessary to solve the optimization. For this reason, a variety of numerical approaches have198

already been used in the literature, such as heuristics and metaheuristics, as described in the199

Introduction.200

3.1. Efficiency-constrained model201

In this paper, we propose to define tracking portfolios based on stock level efficiency. To do so,202

our approach is to consider the optimization model defined in Equations 7-9, without including203

the constraints to limit the size of the portfolio. Instead, we perform the stock selection ex-ante204

based on the efficiency level computed for each stock using the MF-DFA approach described in205

Section 2.206

First, we estimate the efficiency level for each stock in our database. Second, we rank the207

stocks from best (highest efficient) to worst (lowest efficient). Third, supposing our goal is to208

compose a portfolio using 10 stocks for instance, then we select the top 10 stocks with the209

highest efficiency level. Last, we solve the optimization defined by Equations 7-9 using only210
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the subset composed by the highest efficient stocks. By doing so, we eliminate the cardinality211

constraint in the optimization, thus being able to solve the optimization instantly.212

As described in detali in Section 4.1, we selected three market benchmarks for our empirical213

analysis. For each of the three indexes, we compose four portfolios.214

The first one is defined as the benchmark model (M1-B), which is done using the entire215

dataset of index components, i.e., we do not restrict the size of the tracking portfolios. Thus,216

we use these portfolios as references for comparison with the restricted portfolios. Second, we217

compose three restricted portfolios, each one with a different size. Since the choice for the size218

of the portfolios would be based on the investor’s preferences, we use three distinct sizes for the219

purpose of stressing our selection approach based on stock efficiency.220

i. portfolios using half of the number the stocks that compose the index (M2-E-M – the221

median of the list of stocks ranked according to their efficiency);222

ii. portfolios using 35% of the number of stocks that compose the market benchmark (M2-223

E-P35 – the 35th percentile of the ranking);224

iii. portfolios using 25% of the number of index components (M2-E-1Q – the first quartile of225

the ranking).226

As mentioned in the Section 2, the lower the MDM for a given asset (i.e. its efficiency level227

as defined in Equation 6), the more efficient it is. Thus, selecting assets that have an MDM228

below the median of the MDM distribution, comprises selecting the most efficient half of the229

distribution. When the constraint changes to the 35th percentile, in the M2-E-P35 model, we230

are being more rigorous relative to the level of efficiency that the stocks need to be included231

in the portfolios. The M2-E-1Q model is the most demanding, as it only considers assets that232

have an efficiency level that are in the first quartile of the MDM distribution.233

As we make the efficiency constraint more severe in the model, i.e., we move from the234

median (M2-E-M model) to the first quartile (M2-E-1Q model), the number of assets is reduced235

considerably, and the tracking error (TE) increases. This cost of maintaining a tracking portfolio236

with a low number of assets, the TE, should be more pronounced in emerging markets (which237

is the case of Brazil in our set of three countries), where overall efficiency levels tend to be238

lower. Tracking portolios in markets with lower efficiency levels would be more penalized by the239

efficiency constraint, presenting a more restricted set of assets, which do not necessarily present240

a good relationship with the target index.241

4. Empirical results242

This section is concerned with presenting the results of the study. In Section 4.1.1, the data used243

are described, and the procedures conducted in the empirical tests are presented in Section 4.1.2;244
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in 4.2, we comment on the results obtained in measuring the efficiency of assets in the different245

markets analyzed; then, Section 4.3 presents the main results for the efficiency constrained246

portfolios; last, in Section 4.4, we compare our results with the findings from another study247

(Sant’Anna et al., 2017), who used a metaheuristic approach defined as genetic algorithm.248

4.1. Data and empirical strategy249

4.1.1. Data250

To carry out the empirical research procedures, we selected three markets: the US market, the251

Japanese market and the Brazilian market. Thus, we have two developed markets (USA and252

Japan) and an emerging one (Brazil), which will help to identify differences in the behavior253

of projected portfolios in markets with different patterns of efficiency, liquidity and volatility.254

Table 1 presents the FTSE 2022 annual classification of equity markets, showing the classes in255

which the mentioned markets show up.256

Among all countries listed in Table 1, we chose the North American and Japanese markets257

as two examples of developed markets, considering the large availability of historical data for258

both of them and their relevance in the financial markets worldwide (roughly USD 23 trillion259

and USD 5 trillion in trading volume, respectively2). Additionally, we selected the Brazilian260

market as an example of emerging market, considering Brazil is one of the most representative261

among the emerging markets in terms of trading volume (roughly USD 1 trillion in 2019).262

TABLE 1 HERE

For the American market, the portfolios’ target index is the S&P500, which is one of the263

most famous indices in the world. For this market, our dataset comprises the daily returns of264

the 505 assets that were part of this index in February 2022, plus the index itself, from January265

2010 to December 2021. For the Japanese market, we selected as a target index the Nikkei266

225, which is one of the most popular in that market, and the sample of its components in267

February 2022, comprising 224 assets, in the same data range (Jan/10 to Dec/21). Finally, for268

the Brazilian market, the Ibovespa was selected as the target index for the portfolios, since this is269

the most representative benchmark in Brazil. As a dataset, we selected the assets that make up270

the Ibovespa in February 2022, comprising 93 assets, for the same mentioned interval (Jan/10271

to Dec/21). The daily returns of the datasets are adjusted for splits, mergers and dividend272

payments. Therefore, our tests are conducted considering a large range of data, covering periods273

of bull and bear markets, and in portfolios that seek to replicate both smaller indices, such as274

the Ibovespa, and broader indices, such as the S&P500.275

2Information obtained from the World Bank database <https://data.worldbank.org/>
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4.1.2. Empirical strategy276

The portfolio projection approach used in this study is based on rolling windows. To compose277

each portfolio, we use a data interval (in-sample data) of t = 120 trading days immediately prior278

to the initial portfolio projection date (as in Filomena and Lejeune, 2012, 2014) to compute the279

optimization model. After the portfolio is formed, its result is analyzed during the subsequent280

period of 120 trading days for portfolios using semiannual updates, 240 trading days for portfolios281

using annual updates, and 480 trading days for portfolios using a time window of roughly two282

years before the next update. The first portfolio is estimated using data from July 2011 to283

December 2011, and its projection starts in January 2012, moving in a rolling window until284

December 2021, thus comprising a 10-year projection.285

Regarding efficiency, we also adopt a dynamic approach, differently from Maciel (2021),286

which performs the estimation of efficiency only before the beginning of the out-of-sample period287

(projection period for the portfolios), and considers that the assets have a static efficiency288

throughout rebalancing. This study makes use of three years of data before the out-of-sample289

period to estimate asset efficiency. In a different way, our study uses one year of daily returns290

immediately prior to each rebalancing to estimate efficiency, instead of three years. This means291

that, for each rebalancing, we use a new, more up-to-date set of asset efficiency data, unlike the292

one used by Maciel (2021), which measures asset efficiency only once for portfolio projection.293

Considering all markets and the entire range, we have a total of 798 portfolios formed in this294

study, demonstrating the extent of the empirical procedures that will be dealt with in this295

section.296

To measure the tracking performance of the portfolios in the projection interval, we use the

tracking error (TE), that we define as the variance of the difference between index and portfolio

daily tracking returns, as in Beasley et al. (2003):

TE∗ =
1

T ∗

[
T∗∑
i=1

|rpt −R∗
t |2
] 1

2

(13)

where T ∗ represents the total range of out-of-sample periods; r∗i,t represents the return on asset297

i for the out-of-sample period t ∈ T ∗; therefore, rp
∗

t =
∑I

i=1 xir
∗
i,t represents the return of the298

portfolio formed in the out-of-sample interval; and R∗
t is the index return in t ∈ T ∗.299

The turnover of portfolios cannot be ignored either, being extremely important when choos-

ing suitable models. Turnover is a proxy for the amount of trades carried out by the portfolios

over time. Thus, the greater the turnover, the greater the amount of asset trades in the time

interval. In this way, we measure the average monthly turnover of the portfolios based on the
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following formulation, used by Sant’Anna et al. (2020):[
np∑
p=2

(∑N
i=n |x

p
i − x

p−1
i |

2

)]
× 1

f
(14)

where np is the number of portfolios formed for each model; p and p − 1 are the rebalancing300

time instants; and f = 6 for the semiannual rebalancing, 12 for the annual rebalancing, and 24301

for de two years interval of rebalancing.302

4.2. Efficiency levels303

The FTSE Russell classifies capital markets according to their level of development, as can be304

seen in Table 1, which shows the Equity Country Classification’s September 2022 classification.305

The level of efficiency also varies across markets, where emerging markets tend to be less efficient306

in terms of risk-return pricing than developed markets.307

Figure 1: Minimum of the Market Efficiency Measure (MDM) per market.

Figure 1 shows the trajectory of the least efficiency level (i.e. the least Market Deficiency308

Measure) among all stocks per country in our databse, along the rebalancing intervals. For each309

market, and for the portfolios that are rebalanced at an interval of 120 days (semi-annual). As310

a result, we notice predominance of US market in terms of efficiency, followed by Japan and,311

finally, Brazil. The Japanese market has shown a trajectory of volatile efficiency over time, in312

the same way as the Brazilian market, where the latter is the most affected in periods of high313

volatility, such as the period of the covid-19 crisis. In this period, we observe an increase in314

MDM, demonstrating a loss of efficiency for all markets, especially for Brazil.315

4.3. Optimization results316

In this section, we will address the main results obtained with the empirical procedures. After317

estimating all portfolios per market, for each of the three rebalancing windows, Table 2 presents318

the descriptive results for all efficiency based portfolios.319
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For the US market, in the 120-day (semi-annual) rebalancing strategy, we observed that320

all models, including the benchmark model (M1-B), have an accumulated return in the out-of-321

sample period that is higher than the accumulated return of the S&P500 index. In terms of322

correlation, we observe that this is slightly lower for the models with efficiency constraints (M2323

models), when compared to the benchmark model, and the correlation decreases as the efficiency324

constraint becomes more severe, i.e., for the M2-E-P35 and M2-E-1Q models, which have an325

efficiency constraint at the asset level that comprises the 35th percentile and first quartile of the326

efficiency distribution in each rebalancing, respectively (remembering that, the lower the MDM,327

more efficient is the asset).328

However, it is worth mentioning that the M2 models also show a considerable reduction in329

the number of assets that are part of the portfolio, having, on average, 119 assets in the M2-E-330

1Q model, with a more severe restriction of efficiency, compared to 474 in the benchmark model331

(M1-B). As the model requires that only more efficient assets be part of the feasible solutions332

space, we expect fewer assets to compose the portfolios of these models. As will be seen below,333

when we look at the tracking error (TE), we expect it to increase as we reduce the number of334

assets that are part of the portfolios.335

For the Japanese market, in a slightly different way from the US market, we observe a greater336

proximity of the accumulated return in the period of the models with efficiency restrictions to337

the accumulated return of the Nikkei 225 index. For example, in the case of rebalancing in an338

interval of 120 days, for the M2-E-P35 model, we have a cumulative return of 267%, while the339

Nikkei’s cumulative return was 241%, and that of the M1-B model was 335%. It is also worth340

mentioning the difference between the average number of assets that make up the portfolios of341

each model. In the 120-day rebalancing strategy, while the M2-E-P35 model uses, on average,342

75 assets, the M1-B model uses, on average, 201. Correlation of returns with the return of the343

index presents, in the same way as the US market, a downward trend as the models demand344

more efficient assets in their composition.345

For the Brazilian market, we noticed some differences from the other markets analyzed, pre-346

cisely because of the difference in efficiency and volatility standards existing between developed347

and emerging markets. In Brazil, dealing with an emerging market and with higher volatility348

patterns, we have lower correlations between the returns of the Ibovespa index and the models,349

including for the benchmark model (M1-B). The correlation of the model returns with the in-350

dex return also decreases as the number of assets decreases, i.e., moving from the M1-B model351

(unrestricted model) to the M2-E-1Q model (with severe efficiency restriction).352

TABLE 2 HERE

Table 3 shows the cumulative tracking error per year for each of the three countries (Brazil,353

Japan, and United States). The TE described in the table is defined in equation 13. For the US354
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market, we observed that the best average TE is always the M1-B model, which presents, for355

all rebalancing strategies, a lower TE than the models with efficiency constraints. The results356

show that, as the efficiency constraint becomes more severe in the model, i.e., we require more357

efficient assets, the average number of assets that are part of the portfolios decreases, and the358

TE increases slightly. For example, considering the semiannual rebalancing strategy in the US359

market, the benchmark model (M1-B) has an average number of assets of 474, and an average360

TE of 0.10% over the entire period. On the other hand, the model with efficiency constraint on361

the median of the Market Deficiency Measure (MDM) distribution, the M2-E-M, has an average362

number of assets in the period of 237, about half the number used by the M1-B model, with363

an average TE of 0.16%. Thus, the M2-E-M model demonstrates that the cost of reducing the364

average amount of assets by 50% is a 0.06% increment in the average tracking error.365

Also, comparing the same two models, and looking at the year 2020, period of the covid-19366

shock in the markets, we notice that the two models have the same TE. This means that, in this367

specific case, portfolios formed by the M2-E-M model showed the same level of vulnerability to368

crisis, in terms of TE, as the portfolios formed by the M1-B model.369

For the Japanese market, we also see the same movement in terms of the average number370

of assets and TE. The efficiency constraint helps to reduce the average number of assets that371

are part of the portfolios, making them more manageable than larger portfolios, however, this372

reduction comes with a cost, which is the TE. In the 120-day rebalancing strategy, for example,373

the average TE for the entire out-of-sample period (projection period) was 0.18%, 0.26%, 0.31%374

and 0.35%, for the M1-B, M2-E-M, M2-E-P35 and M2-E-1Q models, respectively, while the375

average number of assets was 201, 108, 75 and 54, respectively. A highlight for the volatility of376

the models with efficiency restriction, which does not present a substantial increase in relation377

to the benchmark model and the Nikkei 225.378

Regarding the Brazilian market, which is the emerging market in our set of analyzed markets,379

we observed a general level of tracking error (TE) higher than the other markets, precisely380

because of the difference in terms of volatility and structure in these markets. Looking at the381

120-day (semi-annual) rebalancing strategy, the Brazilian market has an average TE for all382

models of 0.74%, compared to 0.17% for the US market and 0.28% for the Japanese market. As383

evidenced by several studies, as in Sant’Anna et al. (2017), high volatility environments make384

tracking strategies difficult, increasing the tracking error of models more severely than in more385

developed markets, where the level of volatility tends to be lower. In the same way as for the386

US and Japanese markets, we observed a lower TE for the unrestricted model in all rebalancing387

strategies, which is expected, given that it has an average number of assets considerably higher388

than the efficiency-constrained models. Looking specifically at the 120-day rebalancing strategy,389

the average TE of the benchmark model (M1-B) is 0.62% in the period, with an average number390

of assets of 70. Meanwhile, the model with the most severe efficiency constraint (M2-E-1Q),391

has an average TE of 0.84%, with an average of 18 assets. As an example, Figure 2 illustrates392
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the trajectory of the value of portfolios formed in the US market with the M1-B and M2-E-M393

models, with the semiannual update strategy, and with the S&P500 index.394

TABLE 3 HERE

Figure 2: Minimum of the Market Efficiency Measure (MDM) per market.

4.4. Method comparison395

As we mentioned in the Introduction, the nature of the index tracking problem is to replicate a396

market index with a limited number of assets. The mathematical formulation of this problem is397

often treated as an mixed-integer quadratic programming problem (MIQP), making it an NP-398

hard problem as mentioned in Section 3 (Coleman et al., 2006). Thus, in order to find a solution399

to the problem in a reasonable time, several methods have been formulated, however, many end400

up with high computational complexity. Sant’Anna et al. (2017) uses a hybrid approach with401

a genetic algorithm and nonlinear mathematical programming, obtaining good tracking results402

for the Brazilian market with a very small number of assets – 5 and 10 assets, out of a set of 67403

assets, and also for developed markets (USA, UK and Germany). These results are achieved in404

less than 10 minutes of computational processing.405

In order to compare the performance of models with efficiency constraint with some method406

already used in the literature, we selected the study by Sant’Anna et al. (2017) for this purpose.407

To have an adequate basis for comparison, we need to use the same number of assets in the408

portfolios obtained by Sant’Anna et al. (2017). Then, we raise the model’s efficiency constraint409

until the number of assets in that study is reached, i.e., 5 and 10 assets. The portfolio projection410

range (out-of-sample) starts in January 2010 and runs until July 2012, using daily returns from411

the 67 assets that make up the Ibovespa index (target index), during the same period. This412

study made use of rebalancing strategies of 20, 60, 120 and 240 trading days (monthly, quarterly,413

semiannually and annually, respectively).414
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Therefore, to make the comparison with the aforementioned study, first, we performed the415

efficiency estimations of each of the 67 assets that are part of the assets set, using a year to416

estimate the Market Deficiency Measure (MDM) immediately prior to the initial date of portfolio417

projection. As for the portfolios designed and analyzed in the 4.3 section, we use a dynamic418

efficiency approach, measuring the MDM at each rebalancing, in order to have an updated419

measure to be used in the optimization process.420

To obtain the same number of assets as the portfolios obtained by Sant’Anna et al. (2017),421

we analyze, at each rebalancing, the distribution of the MDM of the assets, in order to place422

an efficiency constraint that limits the space of feasible solutions to just the number of assets423

from the compared portfolios, i.e., 5 and 10 assets. Thus, we have extremely severe efficiency424

constraints in this approach, limiting the solution space to the 5 and 10 most efficient assets in425

each rebalancing interval.426

We list the comparison of the results obtained by the hybrid approach of Sant’Anna et al.427

(2017), which makes use of a genetic algorithm and nonlinear mathematical programming, with428

the results of the efficiency-constrained models addressed in the present study. Table 4 shows429

the results obtained by the study of Sant’Anna et al. (2017), the results obtained by the models430

with efficiency restrictions, and the difference between the average TE obtained between the431

aforementioned study and the model formulated in the present research.432

The results demonstrate a slight superiority of the hybrid approach between genetic algo-433

rithm and nonlinear mathematical programming, in terms of average tracking error (TE), where434

the hybrid solution approach has a slightly lower average TE than the model with efficiency con-435

straints. However, as mentioned, this approach has a high computational complexity, and its436

results, despite taking a low computational processing time (less than 10 minutes), are not in-437

stantaneous. Although the efficiency constrained model presents a slightly worse result in terms438

of average TE, this problem is simply formulated through quadratic programming (QP), where439

the efficiency constraints present a cardinality constraint function, limiting the number of assets440

that are part of the set of feasible solutions as the efficiency requirement becomes more severe.441

Since this is a QP problem, the efficiency constrained approach presents an instantaneous result442

and relatively low computational complexity. Thus, we obtained similar results, in terms of av-443

erage TE, employing a relatively simpler approach, through a QP formulation, when comparing444

the results of a more laborious method, which involves high computational complexity and does445

not provide an instant solution, despite get results in less than 10 minutes of processing.446

TABLE 4 HERE

It is worth noting that when we limit the space of feasible solutions to only extremely efficient447

assets, as in the case of 5 assets, for example, we are not necessarily choosing the assets with the448

best relation to the index over time, but rather limiting our set of solutions to the most efficient449
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assets in the period. Thus, the benefit of considering efficiency constraints (reduction in the450

number of assets) for cases of severe constraints, may end up being the main disadvantage in451

terms of TE, thus showing the trade-off between efficiency and tracking error.452

5. Conclusions453

In general, given the results presented in the previous subsections, we argue for the relevance454

of considering efficiency constraints in the formation of tracking portfolios. As mentioned, the455

index tracking (IT) problem consists of replicating the returns of a market index with a limited456

amount of assets. Normally, it is formulated through a problem of minimizing the quadratic457

difference between the return of the portfolio and the index in a given time interval. And,458

to limit the amount of assets, integer constraints are normally used, having, finally, a mixed-459

integer quadratic programming problem (MIQP), which has high computational complexity, and460

normally requires considerable processing time, also being characterized as an NP-hard problem.461

In this study, we used an alternative formulation to solve the index tracking (IT) problem,462

reducing the level of computational complexity and obtaining instant solutions to the optimiza-463

tion problem. In particular, we explore the Market Deficiency Measure (MDM), measured by464

the Multifractal-detrended Fluctuation Analysis (MF-DFA), as a measure for stock efficiency,465

so that we can perform the selection of the portfolio components based on their efficiency levels.466

We project portfolios with efficiency constraints comparing the results with an unrestricted467

model (benchmark) in three markets with different structures: US (developed), Japanese (de-468

veloped) and Brazilian (emerging), from January 2012 to December 2021, comprising 10 years469

of projection. The results demonstrate the existence of a trade-off between tracking error (TE)470

and the average number of assets in the portfolios: insofar as we demand more efficient assets471

to compose the portfolios, and, consequently, we generate portfolios with a smaller number of472

assets, the TE increases. We demonstrate that this effect is greater in markets with lower levels473

of efficiency, such as the Brazilian market (emerging market in our set). For more efficient474

markets, the cost of increasing TE for a more severe constraint on efficiency, and reducing the475

number of assets, becomes lower, as demonstrated by the tracking error cost (TE Cost).476

We compared our results with a method already used in the literature, which uses a hybrid477

approach with genetic algorithm and nonlinear mathematical programming. We demonstrate478

that, although our results are not absolutely better, they are very close to those obtained479

with the aforementioned method, which is substantially more complex from a computational480

point of view, and does not provide an instant solution, despite taking less than 10 minutes of481

computational processing time. Thus, with efficiency constraints, we achieve good results and482

instant solution, with a problem of low computational complexity.483

We also note that efficiency restrictions have a greater impact on the tracking error (TE) of484

portfolios in emerging markets, which tend to have lower levels of efficiency than developed mar-485
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kets, where the inclusion of restrictions penalizes TE more severely than in developed markets486

with high levels of efficiency. Thus, the use of efficiency constraints appears to be an interesting487

alternative to reduce the size of tracking portfolios with a lower cost in terms of tracking error488

(TE cost).489
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Table 1: FTSE Equity Country Classification – September 2022.

Developed Advanced Emerging Secondary Emerging Frontier

Australia Brazil Chile Bahrain
Austria Czech Republic China Bangladesh

Belgium/Luxemburg Greece Colombia Botswana
Canada Hungary Egypt Bulgaria

Denmark Malaysia Icenland Côte d’Ivoire
Finland Mexico India Croatia
France South Africa Indonesia Cyprus

Germany Taiwan Kuwait Estonia
Hong Kong Thailand Pakistan Ghana

Ireland Turkey Phillipines Jordan
Israel Watar Kazakhstan
Italy Romania Kenya

Japan Saudi Arabia Latvia
Netherlands United Arab Emirates Lithuania
New Zeland Malta

Norway Mauritius
Poland Morocco

Portugal Nigeria
Singapore Oman

South Korea Palestine
Spain Peru

Sweden Macedonia
Switzerland Serbia

UK Slovak Republic
USA Slovenia

Sri Lanka
Tanzania
Vietnam
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Table 2: Descriptive results for efficiency based portfolios per country

Portfolio rebalancing frequency

Country Index 120 days (6 months) 240 days (1 year) 480 days (2 years)

Brazil Ibovespa M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q
Min -14.78% -14.75% -14.72% -16.03% -14.07% -14.75% -14.72% -16.03% -14.07% -15.27% -14.92% -16.32% -14.07%
Max 13.91% 14.40% 14.44% 15.19% 12.93% 14.40% 14.44% 15.19% 12.93% 14.82% 14.55% 15.35% 12.93%
Annual Volatility 25.24% 22.04% 22.48% 23.10% 22.93% 22.49% 23.33% 24.20% 24.40% 23.15% 24.06% 25.23% 24.85%
Cumulative Return 85% 120% 223% 169% 76% 326% 496% 407% 177% 373% 410% 375% 164%
Correlation 1.000 0.887 0.870 0.851 0.829 0.895 0.878 0.857 0.832 0.905 0.885 0.879 0.852
Avg. Number of Assets - 70.19 35.52 25.00 17.76 71.55 35.91 25.27 17.82 73.50 36.83 25.67 17.67
Monthly Avg. Turnover - 9.02% 12.12% 12.71% 13.29% 4.79% 6.95% 7.64% 7.53% 2.55% 3.56% 3.84% 4.08%

Japan Nikkei 225 M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q
Min -7.92% -7.99% -7.90% -8.30% -8.07% -8.25% -7.94% -7.93% -7.93% -8.27% -8.19% -7.93% -7.93%
Max 8.04% 7.87% 7.99% 7.49% 7.69% 8.07% 8.06% 7.31% 7.16% 8.28% 8.06% 7.31% 7.16%
Annual Volatility 20.66% 20.68% 20.61% 20.67% 20.73% 20.84% 20.74% 20.81% 21.02% 21.31% 21.29% 21.37% 21.39%
Cumulative Return 241% 335% 279% 267% 231% 330% 338% 316% 245% 348% 262% 212% 212%
Correlation 1.000 0.989 0.977 0.969 0.961 0.987 0.977 0.968 0.955 0.988 0.977 0.966 0.949
Avg. Number of Assets - 201.19 107.57 75.43 54.05 204.36 109.18 76.45 55.00 209.17 111.50 78.33 56.00
Monthly Avg. Turnover - 8.83% 12.21% 13.08% 13.95% 9.33% 12.81% 13.97% 14.58% 2.22% 3.28% 3.62% 3.76%

United States S&P500 M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q
Min -11.98% -11.78% -12.16% -12.11% -13.50% -11.74% -13.05% -12.89% -13.08% -11.75% -13.05% -12.89% -13.08%
Max 9.38% 10.37% 10.99% 11.34% 11.81% 9.98% 12.13% 11.43% 11.27% 9.99% 12.13% 11.43% 11.27%
Annual Volatility 16.35% 16.35% 16.53% 16.72% 17.09% 16.32% 17.01% 17.05% 17.16% 16.36% 16.98% 17.03% 17.34%
Cumulative Return 280% 397% 379% 344% 406% 430% 416% 375% 454% 451% 465% 415% 451%
Correlation 1.000 0.994 0.987 0.981 0.976 0.994 0.981 0.976 0.973 0.990 0.975 0.968 0.964
Avg. Number of Assets - 474.19 237.24 166.29 118.90 476.27 237.64 166.64 118.91 478.67 238.33 167.17 119.67
Monthly Avg. Turnover - 3.53% 6.80% 6.97% 7.24% 3.45% 6.95% 7.21% 7.59% 1.73% 3.53% 3.61% 3.80%
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Table 3: Tracking error per year and country

Portfolio rebalancing frequency

Country 120 days (6 months) 240 days (1 year) 480 days (2 years)

Brazil M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q
2012 0.96% 0.95% 1.07% 1.20% 0.57% 0.64% 0.70% 0.80% 0.62% 0.64% 0.69% 0.79%
2013 0.97% 0.87% 0.94% 0.89% 0.86% 0.80% 0.89% 0.88% 0.64% 0.72% 0.72% 0.74%
2014 1.00% 1.07% 1.07% 1.08% 1.05% 1.07% 0.99% 0.91% 0.99% 1.04% 0.95% 0.90%
2015 1.07% 1.14% 1.28% 1.34% 1.10% 1.21% 1.46% 1.58% 0.98% 1.07% 1.06% 1.13%
2016 1.04% 1.12% 1.11% 1.15% 1.06% 1.13% 1.12% 1.24% 1.08% 1.17% 1.18% 1.29%
2017 0.44% 0.45% 0.46% 0.53% 0.64% 0.63% 0.63% 0.70% 0.68% 0.73% 0.74% 0.85%
2018 0.15% 0.43% 0.46% 0.61% 0.16% 0.31% 0.46% 0.64% 0.16% 0.29% 0.48% 0.64%
2019 0.11% 0.38% 0.41% 0.50% 0.13% 0.43% 0.44% 0.63% 0.15% 0.28% 0.40% 0.63%
2020 0.22% 0.41% 0.58% 0.57% 0.25% 0.42% 0.61% 0.67% 0.30% 0.47% 0.68% 0.72%
2021 0.19% 0.31% 0.37% 0.56% 0.17% 0.28% 0.39% 0.50% 0.26% 0.40% 0.56% 0.63%

Average 0.62% 0.71% 0.77% 0.84% 0.60% 0.69% 0.77% 0.85% 0.59% 0.68% 0.75% 0.83%

Japan M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q
2012 0.18% 0.28% 0.34% 0.36% 0.17% 0.25% 0.36% 0.39% 0.18% 0.27% 0.39% 0.44%
2013 0.20% 0.38% 0.41% 0.44% 0.21% 0.38% 0.42% 0.47% 0.19% 0.27% 0.41% 0.47%
2014 0.12% 0.17% 0.19% 0.26% 0.12% 0.18% 0.19% 0.28% 0.12% 0.18% 0.22% 0.28%
2015 0.13% 0.18% 0.26% 0.31% 0.14% 0.21% 0.31% 0.37% 0.15% 0.27% 0.31% 0.34%
2016 0.40% 0.44% 0.49% 0.49% 0.44% 0.45% 0.50% 0.49% 0.43% 0.46% 0.50% 0.48%
2017 0.18% 0.24% 0.26% 0.29% 0.24% 0.25% 0.26% 0.28% 0.12% 0.19% 0.22% 0.24%
2018 0.14% 0.20% 0.27% 0.30% 0.14% 0.24% 0.26% 0.31% 0.14% 0.27% 0.26% 0.34%
2019 0.15% 0.18% 0.25% 0.26% 0.14% 0.19% 0.30% 0.32% 0.15% 0.28% 0.31% 0.36%
2020 0.18% 0.32% 0.35% 0.46% 0.21% 0.27% 0.34% 0.58% 0.26% 0.31% 0.39% 0.66%
2021 0.13% 0.24% 0.30% 0.38% 0.15% 0.23% 0.28% 0.37% 0.19% 0.30% 0.36% 0.49%

Average 0.18% 0.26% 0.31% 0.35% 0.20% 0.27% 0.32% 0.38% 0.19% 0.28% 0.34% 0.41%

United States M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q
2012 0.08% 0.13% 0.14% 0.20% 0.08% 0.14% 0.13% 0.20% 0.08% 0.14% 0.13% 0.19%
2013 0.07% 0.13% 0.15% 0.18% 0.07% 0.13% 0.16% 0.19% 0.07% 0.15% 0.16% 0.21%
2014 0.07% 0.14% 0.16% 0.17% 0.07% 0.13% 0.14% 0.15% 0.07% 0.13% 0.14% 0.16%
2015 0.08% 0.15% 0.17% 0.18% 0.09% 0.14% 0.16% 0.17% 0.09% 0.16% 0.18% 0.18%
2016 0.09% 0.16% 0.19% 0.20% 0.11% 0.16% 0.20% 0.21% 0.12% 0.17% 0.20% 0.20%
2017 0.07% 0.14% 0.16% 0.17% 0.07% 0.15% 0.17% 0.18% 0.08% 0.14% 0.18% 0.19%
2018 0.10% 0.17% 0.21% 0.22% 0.12% 0.16% 0.20% 0.22% 0.14% 0.17% 0.23% 0.23%
2019 0.07% 0.17% 0.20% 0.19% 0.07% 0.16% 0.17% 0.19% 0.09% 0.14% 0.17% 0.18%
2020 0.26% 0.26% 0.34% 0.42% 0.25% 0.48% 0.50% 0.53% 0.33% 0.55% 0.60% 0.65%
2021 0.11% 0.19% 0.26% 0.28% 0.13% 0.18% 0.25% 0.25% 0.17% 0.28% 0.34% 0.36%

Average 0.10% 0.16% 0.20% 0.22% 0.11% 0.18% 0.21% 0.23% 0.12% 0.20% 0.23% 0.25%
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Table 4: Comparison of the hybrid approach used in Sant’Anna et al. (2017) and the efficiency-constrained models.

10-asset portfolios 5-asset portfolios

Portfolio rebalancing frequency 20 days 60 days 120 days 240 days 20 days 60 days 120 days 240 days

Sant’Anna et al. (2017)
Average 0.055% 0.032% 0.024% 0.017% 0.078% 0.049% 0.034% 0.023%
Minimum 0.037% 0.025% 0.014% 0.015% 0.046% 0.036% 0.025% 0.022%
Maximum 0.088% 0.045% 0.037% 0.021% 0.131% 0.071% 0.052% 0.027%
SD 0.014% 0.006% 0.007% 0.003% 0.023% 0.010% 0.009% 0.003%

Efficiency based portfolios
Average 0.111% 0.065% 0.040% 0.028% 0.149% 0.079% 0.049% 0.033%
Minimum 0.003% 0.042% 0.029% 0.025% 0.001% 0.060% 0.031% 0.030%
Maximum 0.189% 0.093% 0.055% 0.030% 0.294% 0.122% 0.064% 0.039%
SD 0.042% 0.016% 0.011% 0.002% 0.059% 0.018% 0.010% 0.004%

Difference in Average TE
(Performance Gain/Loss)

0.056% 0.033% 0.016% 0.011% 0.071% 0.030% 0.015% 0.010%

Difference in Average tracking error (TE) comprises the difference between the average TE of the portfolios generated by
the model with efficiency constraints and the average TE of the portfolios formed by the hybrid approach of Sant’Anna et al.
(2017).
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