

Investigação da influência entre campos magnéticos e reações eletroquímicas

Fabiana L. Santos^{1*} (PG), Anelisse B. Silva² (PG), Caue R. de Oliveira^{3*} (PQ)

¹Fabiana Lesse dos Santos: Laboratório Nacional de Nanotecnologia Aplicada (LNNA), EMBRAPA Instrumentação, CP, São Carlos, SP 13560-970, Brasil, Universidade Federal de São Carlos, Departamento de Química, Rod. Washington Luiz, Km 235, 13565-905, São Carlos, SP, Brazil, fabianalesse14@gmail.com

²Anelisse Brunca da Silva: Laboratório Nacional de Nanotecnologia Aplicada (LNNA), EMBRAPA Instrumentação, CP, São Carlos, SP 13560-970, Brasil, ane.brunca@gmail.com

³Cauê Ribeiro de Oliveira: Laboratório Nacional de Nanotecnologia Aplicada (LNNA), EMBRAPA Instrumentação, CP, São Carlos, SP 13560-970, Brasil, caue.ribeiro@embrapa.br

RESUMO

A aplicação de campos magnéticos em sistemas eletroquímicos tem sido explorada como estratégia para melhorar a eficiência de reações redox e reduzir as limitações de transporte de massa. Neste trabalho, avaliou-se o efeito de um campo magnético de 0,2 T sobre eletrodos de Cu, Ni e Ag durante a produção de H₂ e a eletrorredução de CO₂ em solução de KHCO₃ 0,1 M. As análises mostraram que o campo promoveu aumento na densidade de corrente com destaque para o eletrodo de Ni foam, cuja alta porosidade favoreceu a remoção de bolhas. Em contraste, os eletrodos de Cu e Ag apresentaram respostas menos significativas. Os resultados reforçam o potencial do uso de campos magnéticos em configurações eletrocatalíticas tridimensionais. Dentre os produtos gasosos, o H₂ foi predominante.

Palavras-chave: Campo magnético; Eletrocatálise; Eletrorreducão de CO₂, Hidrogênio, Eletrodos porosos

Introdução

A aplicação de campos magnéticos em sistemas eletroquímicos tem despertado crescente interesse devido ao seu potencial em influenciar reações redox por meio de efeitos como magnetoconvecção e interações spin-spin (1). Esses efeitos podem contribuir para otimizar o transporte de massa, a remoção de bolhas de hidrogênio (H₂) e, consequentemente, a eficiência dos processos eletrocatalíticos (2). No entanto, ainda há poucos estudos sistemáticos sobre aplicação em reações de eletrorredução de CO₂ e desprendimento de H₂ que avaliem essas influências sob diferentes condições operacionais e com diferentes eletrodos, entretanto, algumas pesquisas estão em andamento (3-5).

Neste contexto, este trabalho apresenta uma investigação preliminar sobre a influência de um campo magnético externo na resposta eletroquímica de eletrodos porosos aplicados à eletrocatálise, com foco na formação de H2 e na eletrorredução de CO_2 .

Experimental

1) Sistema eletrolítico

Os experimentos foram conduzidos em uma célula eletroquímica tipo H, com três eletrodos: eletrodo de trabalho (cobre mesh, níquel foam e prata mesh), eletrodo de referência Ag/AgCl e eletrodo auxiliar de platina. As câmaras foram separadas por membrana de Nafion ©.

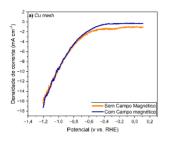
2) Condições operacionais

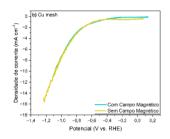
A eletrólise foi realizada em solução de KHCO₃ 0,1 M, saturada com CO2 ou N2, após purga por 20 minutos. Os ensaios iniciaram-se com Voltametria de Varredura linear (LSV) entre 0,1 a -1,0 V vs Ag/AgCl, seguida de eletrólise a potencial constante por 30 minutos. Um campo magnético de 0,2 T foi aplicado posicionando a célula entre dois ímãs, com o objetivo de avaliar seus efeitos sobre o desempenho eletroquímico.

3) Caracterização de produtos

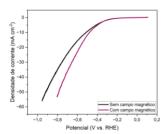
A análise dos produtos foi feita por cromatografia gasosa (GC) para a fase gasosa e por ressonância magnética nuclear (RMN) para a fase líquida.

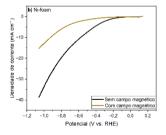
Resultados e Discussão


Pesquisas avaliam como campos magnéticos podem melhorar o desempenho de reações redox, especialmente por efeitos de spin e magnetoconvecção (1). Nesse contexto, curvas de LSV foram analisadas sob atmosferas saturadas de N₂ e CO₂, com e sem aplicação do campo magnético. Nos experimentos com eletrodo de Cu sob atmosfera de N₂, a aplicação do campo magnético resultou em um leve aumento da densidade de corrente, que pode estar associada à melhora no transporte de massa ocasionada pela força de Lorentz. Porém, sob atmosfera de CO₂, não houve diferença significativa, sugerindo que a redução de CO₂ utilizando Cu pode

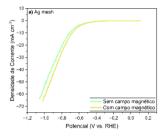


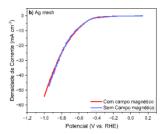
estar limitada por etapas químicas ou de adsorção pouco influenciadas pelo campo magnético nas condições testadas.


Figura 1. Curvas de LSV obtidas em Cu mesh sob atmosferas de (a) N₂ e (b) CO₂.



Para o eletrodo Ni foam, observou-se que a aplicação do campo magnético influenciou de forma distinta. Em atmosfera de N_2 houve um aumento expressivo na densidade de corrente ao aplicar de campo magnético. Isso é particularmente relevante considerando que a intensidade do campo utilizado é relativamente baixa (1). A maior porosidade e área superficial do Ni foam possivelmente favorecem a ação do campo na remoção de bolhas de gás e na otimização do transporte de espécies reativas, contribuindo para uma cinética eletroquímica mais eficiente (6). Por outro lado, em CO_2 , observou-se uma redução da corrente, indicando que o campo magnético possivelmente interfere na adsorção de espécies reativas ou na formação de produtos intermediários.


Figura 2. Curvas de LSV obtidas em Ni foam sob atmosferas de (a) N_2 e (b) CO_2 .



Por fim, os ensaios com o eletrodo de Ag mesh sob atmosfera de N_2 , observa-se um ligeiro aumento da densidade de corrente com o campo magnético, que pode ser relacionada a melhora no transporte de cargas ou na cinética superficial. Em atmosfera de CO_2 , a sobreposição quase completa das curvas com e sem campo indica que não houve efeito significativo do campo magnético, sugerindo que, sob essas condições, o campo não influencia a reação eletroquímica de forma relevante.

Figura 3. Curvas de LSV obtidas em Ag mesh sob atmosferas de (a) N_2 e (b) CO_2 .

Conclusões

Os resultados indicam que a aplicação de campo magnético pode intensificar reações eletrolíticas, especialmente em eletrodos tridimensionais como o Ni foam, sob atmosfera inerte. A formação predominante de $\rm H_2$ indica alta eficiência faradaica para esse produto. Estudos complementares serão realizados para compreender melhor os mecanismos envolvidos, consolidando esta abordagem como uma rota alternativa para potencializar a eletrocatálise de $\rm CO_2$ e a eletrolise da água.

Agradecimentos

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001. Os autores também agradecem à Shell e destacam a importância estratégica do apoio fornecido pela ANP (Agência Nacional do Petróleo, Gás Natural e Biocombustíveis) por meio da regulamentação da cláusula de investimentos em P&D. À Universidade Federal de São Carlos (UFSCar).

Referências

- 1. Pan H., Jiang X., Wang X., Wang Q., Wang M., Shen Y. *J. Phys. Chem. Lett.* **2020**, 11, 48–53.
- 2. Zhang Y., Liang C., Wu J., Liu H., Zhang B., Jiang Z., et al. *ACS Appl. Energy Mater.* **2020**, 3, 10303–10316.
- 3. Bhargava S. S., Azmoodeh D., Chen X., Cofell E. R., Esposito A. M., Verma S., et al. *ACS Energy Lett.* **2021**, 6, 2427–2433.
- 4. Elias L., Chitharanjan H. A. Electrocatalysis. 2017, 8, 375–382.
- 5. Song J., He D., Ma X., Liu P., Guo W., Sun R., et al. *J. Am. Chem. Soc.* **2025**, 147, 16198–16206.
- 6. Lin M. Y., Hourng L. W., Kuo C. W. *International Journal of Hydrogen Energy*. **2012**, 37, 1311–1320.