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Abstract: The present work shows a guitar tuner prototype. With the use of a mi-
crophone and a microprocessor system was identified and showed in a display the
fundamental vibration frequency of a determined string when played. Thus, was possi-
ble to know which was the musical note played and how far it was from the key tuning.
In order to achieve this, digital signal processing techniques have been used, such as:
Fast Fourier Transform (FFT), windowing and interpolation.
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1. INTRODUCTION

A reference system for musical notes, such as a scale, is crucial for composition,
execution and reproduction of chords and notes in a musical piece. To tune a musi-
cal instrument, it is necessary to match the notes emitted by the instrument with this
reference system.

Methods used for tuning such as determining the reference off one’s memory or us-
ing a tuning fork depend on perception of the person carrying out the task and his or her
ability to establish a true reference for the former and to track correctly the reference
with the auditory system for the latter. Both methods are prone to errors, which could
propagate to different instruments on a same tuning session. When employing elec-
tronic devices, the risk of failure in the task of tuning reduces, because the reference is
clear to the user on a display.

2. THEORETICAL BACKGROUND

2.1 Music Theory

Human perception of different musical notes in string instruments is due to the
fundamental frequency generated in their strings’ vibration, as in the case of playing
different notes in one musical scale or even having one musical note emitted in an
octave interval. The western musical scale consists of twelve different notes:

• The natural notes, identified as C, D, E, F, G, A and B. This sequence repeats in
a circular way, so that B is adjacent to C.

• The accidents, which happen between two consecutive notes, except for the in-
terval between E and F and B and C. They are C# (D[), D# (E[), F#(G[), G# (A[)
and A# (B[).

In terms of frequency, equation 1 provides a way to obtain the ones for each musical
note:

Fn+a = Fn
12
√

2a (1)

where Fn+a is the frequency of the desired note, Fn the frequency of a reference note
and a ∈ N, a = 1, 2, . . . , 12. This way, a set of 12 consecutive notes forms an octave,
and it can be seen that the same note in two consecutive octaves have frequencies
separated by a factor of 2.
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The usual reference value is the 440 Hz A, referred to as A4. Musical notes in the
range C-B around A4 also gain this index, and moving up or down on octaves increases
or decreases this index, being a way to identify the musical notes frequency-wise.

2.2 Frequency Analysis

The Fourier Transform (FT, equation 2) is a mathematical method suitable for fre-
quency analysis of vibrating strings signals.

X(ω) =

∫ +∞

−∞
x(t)e−j2πωtdt (2)

where X(ω) is the signal representation in frequency domain and x(t) is the signal
representation in time domain. Although well defined theoretically in continuous time
domain, since the operations in the current problem are executed by microprocessor
systems, an alternative for discrete time domain is needed. The discrete counterpart
of the FT is the Discrete Fourier Transform (DFT, equation 3).

X[m] =
N−1∑
n=0

x[n]e−j2π
mn
N (3)

where N is the total amount of points in the discrete-time signal x[n], X[m] is the
frequency content and m ∈ N,m = 0, 1, 2, . . . , N − 1.

The DFT bears a great computational cost to algorithms running it, due to the com-
plex exponential multiplications. An algorithm focused on eliminating redundancies
present in the DFT, called Fast Fourier Transform (FFT), is usually employed in digital
signal processing units dedicated to calculation of frequency content. The results are
the same as the DFT, with no approximations [1].

In order to avoid misinterpretation of the results, the frequency analysis of a dis-
crete signal mus be executed according to Nyquist’s theorem, which states that the
maximum frequency on the signal must be at most half the sample frequency Fs [1].
The frequency indexes of X[m] can be obtained with

X[f ] = X[m∆f ] (4)

and

∆f =
Fs
N

(5)

where ∆f is referred to as spectral resolution.
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If x[n] is a periodic signal with an integer number of complete periods, then the
frequency related to this period is multiple of ∆f . Since most systems work with fixed
Fs, is virtually not possible to have the spectral resolution matching the fundamental
frequency of every note emitted by a musical instrument. This constraint result in an
undesired effect in FFT result called spectral leakage, which leads to presence of spec-
tral content on components that don’t actually exist in the signal. Another consequence
of the mismatch between fundamental frequency and spectral resolution is the fact that
the former is not seen in the frequency indexes of X[f ].

In order to overcome the difficulty of not having the frequency of interest repre-
sented in X[f ], interpolation methods can be used. These methods estimate content
not present in the DFT output by evaluating neighbour elements in the output vector.
One example of such algorithm suitable for the present work is the one proposed by
Grandke [2], which estimates the position of the highest magnitude content of a DFT
output.

Figure 1 shows the frequency spectrum of a string vibrating in G4, obtained with
FFT. There is a high magnitude component at 195.3 Hz and a neighbour compo-
nent with slightly less magnitude at 203.1 Hz. For the spectrum shown in Figure 1,
Grandke’s method estimates the frequency of higher amplitude as being 199.4485 Hz,
which is a better guess then the other values (G4 frequency is 197.7 Hz)

Figure 1- Frequency spectrum of G string
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3. METHODOLOGY

Figure 2 shows the methodology employed in the tuner realization.

Figure 2- Project diagram

3.1 Components

All circuits were built in printed circuit boards (PCBs). For the signal conditioning
stage, 4 operational amplifiers on single package of integrated circuit TLC274. The first
amplifier acts as a voltage buffer, since audio transducers have medium to high output
impedance. The second amplifier adds voltage level and positive gain to the signal to
meet the microcontroller’s requirements. The remaining 2 are used to implement the
anti-aliasing filter shown in section 3.2.

The chosen microcontroller is Microchip’s dsPIC33EP128MC204 [3]. Its hardware
includes relevant peripherals to the problem, such as ADC, DMA (Direct Memory Ac-
cess) and native support to FFT operations, with instructions such as MAC (Multiply
and Accumulate).

3.2 Signal Acquisition and Conditioning

The electrical signal output obtained by a microphone or pickup is in continuous
time domain in its nature. In order to have the microcontroller to process it, it must be
converted to digital domain using the analog-to-digital converter (ADC) unit, and also
shifted to a proper voltage level. The constraint imposed by Nyquist’s theorem means
that prior to sample and conversion, a low-pass filter must be used. This filter is often
called anti-aliasing filter due to the effects (aliasing) caused in calculated spectrum by
disregarding Nyquist’s theorem [1].

Several approximation functions can be employed in filter realization, such as But-
terworth, Bessel and Chebyshev. In this work, Butterworth realization was chosen
since it doesn’t produce ripple in pass band, resulting in flat response for the desired
frequencies [4].

The resulting filter is shown in equation 6. It is of 4th order, with a -3 dB cutoff
frequency in 360 Hz and stopband attenuation around -58 dB starting at 2 kHz. Its
frequency response is shown in figure 3.

H(s) =
1

4.057× 10−14s4 + 2.383× 10−10s3 + 6.876× 10−7s2 + 1.161× 10−3s + 1
(6)
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Figure 3- Frequency response of the anti-aliasing filter

The filter was implemented using operational amplifiers, as shown in figure 4.

3.3 Digital Signal Processing

The algorithm for signal processing is depicted in figure 5. After startup configu-
rations at the microcontroller, the sampling stage takes place. A total amount of 512
12-bit samples are acquired during the sampling and conversion step, at a sampling
rate of 2 kHz. The DMA plays an important role in storing the samples into memory
without requesting the CPU, granting efficiency to the process. The ping-pong buffer
method in [5] was used in DMA operations.

Prior to FFT execution,the sample vector is downscaled by a factor of 2 to avoid
saturation (following the manufacturer’s recommended procedure), then multiplied in
time domain by an window function (Hanning window) to reduce the effects of spectral
leakage. Finally, zeros are added to the sample vector (zero-padding) to increase the
spectral resolution, making a sample vector with N = 1024 points, resulting in spectral
resolution of 1.95 Hz.

The search for the fundamental frequency is conducted by looking for the frequency
content with higher magnitude. Grandke’s method is applied to the magnitude spec-
trum of the sample vector. The frequency pointed by the interpolation method is elected
as the actual note being played at the instrument. Once the frequency of the note is
known, the system provides information at a display on how distant the current fre-
quency is to a known musical note within the musical scale between C2 and B4.
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Figure 4- Anti-aliasing filter

4. RESULTS AND DISCUSSION

The results for the tests are shown in table 1. The table shows musical notes
often used as reference tuning in guitars. For each reference note, five samples were
taken with frequency estimated for each of them and some statistical measures were
generated compared with the reference frequency.

By inspecting table 1, it can be seen that the maximum relative error between the
average estimated frequency and the reference note is of 1.13%. Considering the dif-
ference between 2 consecutive notes in the musical scale being the factor 12

√
2 ' 1.059,

it means that the maximum error is less than a quarter the difference between 2 con-
secutive notes (around 6%).

5. CONCLUSION

This work presented a system that identifies a note being played by a string-based
musical instrument. The system was built using analog electronics together with a
microcontroller unit programmed with digital signal processing logic. The results show
a good precision in the detection method, where the detection error was considerably
less than the interval between consecutive notes on the musical scale.
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Figure 5- Signal processing flowchart.

Table 1- Musical notes sampled on the guitar
E2 (Hz) A2 (Hz) D3 (Hz) G3 (Hz) B3 (Hz) E4 (Hz)

1st sample 81.7096 109.8698 147.4800 196.3036 249.0349 329.1102
2nd sample 81.7096 108.4248 149.4300 196.3036 247.0819 329.1102
3rd sample 81.7096 109.7034 147.4800 196.3036 249.0349 329.1102
4th sample 81.7096 110.3775 149.6328 196.3036 252.9410 329.1102
5th sample 81.7096 110.3775 148.4900 196.3036 247.0819 331.0633
Reference 82.41 110.01 146.84 196.01 246.96 329.65
Average 81.7096 109.7506 148.5026 196.3036 249.0349 329.5008

Difference
between average

and reference
0.7004 0.2594 -1.6626 -0.2936 -2.0749 0.1492

Relative error 0.85% 0.24% -1.13% -0.15% -0.84% 0.05%
Standard
Deviation 0 0.8000 1.0282 0 2.3920 0.8735
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