

Economia Circular nas Práticas de Ensino de Química

Camilly R. Santos*(G); Marcelo G. Rosmaninho(PQ); Louise A. Mendes(PQ); Marcelo G. Speziali(PQ).

Universidade Federal de Ouro Preto; Instituto de Ciências Exatas e Biológicas; Departamento de Química; Campus Morro do Cruzeiro s/n – Bauxita, Ouro Preto, Minas Gerais.

*camilly.santos@aluno.ufop.edu.br

RESUMO

Este trabalho visa transformar práticas de laboratórios de ensino da graduação por meio de uma abordagem inovadora e sustentável, alinhada à Economia Circular, aos ODS e aos OQDS. Propõe-se reorganizar os experimentos com reaproveitamento de reagentes e resíduos, formando um modelo de "química circular" que reduz o uso de recursos e o descarte, promovendo consciência ambiental nos estudantes. As práticas estão sendo adaptadas para maximizar o aproveitamento de materiais e estimular o pensamento crítico sobre o papel da Química no desenvolvimento sustentável. O projeto aborda os ODS 4, 12 e 13, e incorpora os princípios dos OQDS, como segurança e redução de desperdícios. Foi realizado um Estudo de Viabilidade Técnica, Econômica, Comercial, Ambiental e Social (EVTECIAS) para avaliar as práticas, reduzindo custos. Espera-se criar um ambiente educacional comprometido com a sustentabilidade, capacitando estudantes a atuar de forma ética e responsável na interface entre ciência, tecnologia, meio ambiente e sociedade.

Palavras-chave: ODS, EVTECIAS, Química Circular, Ensino.

Introdução

A economia circular é um modelo de desenvolvimento sustentável que visa reduzir o consumo de recursos e a geração de resíduos, reintegrando-os no ciclo produtivo, em contraste com o modelo linear de "extrair, produzir, descartar". A química circular aplica esses princípios à ciência, tratando resíduos e subprodutos como insumos para novas aplicações, promovendo a sustentabilidade ambiental e econômica.^{2,3}

A química é fundamental para os Objetivos de Desenvolvimento Sustentável (ODS) da ONU, que abordam questões globais como pobreza, saúde e sustentabilidade ambiental. Os Objetivos da Química para o Desenvolvimento Sustentável (OQDS) orientam a química a adotar práticas mais seguras e eficientes, focando na inovação para minimizar impactos ambientais e maximizar benefícios sociais e econômicos.

O Movimento Química Pós 2022, iniciativa da Sociedade Brasileira de Química (SBQ) descrita por Silva *et al.* (2022)⁴, busca impulsionar a sustentabilidade e a soberania do Brasil através da química. Estruturado nos OQDS, o plano de ação foca na promoção da sustentabilidade na educação química e no desenvolvimento de ciência, tecnologia e inovação (CT&I) em universidades e indústrias, com metas para 2030 e 2050.⁵

O presente trabalho alinha-se ao OQDS 2 (Promover a sustentabilidade através de CT&I em química na indústria e na universidade) – Eixo 6 (Formação de uma nova geração de químicos para a sustentabilidade). Para avaliar a viabilidade das práticas propostas, serão utilizados Estudos de Viabilidade Técnica, Econômica, Comercial, de Impacto Ambiental e Social (EVTECIAS).^{6,7} Essa análise abrangente considerará aspectos técnicos, econômicos, comerciais, ambientais e sociais, mensurando a exequibilidade das práticas e seus custos, com foco na sustentabilidade e na química circular.

Experimental

Processo de recuperação da prata proveniente de titulações usando os métodos de Mohr e Volhardt.

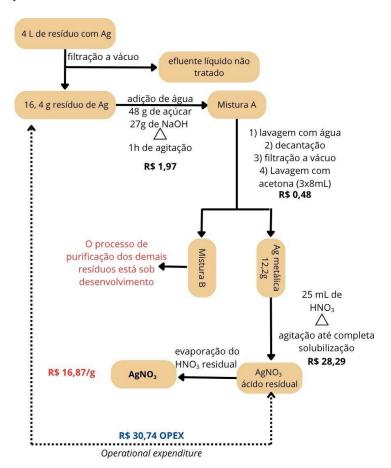
Inicialmente, cerca de 4L do resíduo contendo prata (provenientes de práticas de titulação usando os métodos de Mohr e de Volhardt) foram filtrados. O sólido filtrado foi suspendido em 40 mL de água da torneira, em um béquer de 250 mL. Em seguida, adicionaram-se aproximadamente 48 g de sacarose e 27 g de hidróxido de sódio à solução. A mistura foi aquecida por aproximadamente 1 hora, com agitação esporádica e reposição contínua da água evaporada, de modo a manter constante o volume inicial.

Após o término da reação, a prata metálica formada foi lavada com água da torneira, previamente aquecida, até a remoção completa do excesso da solução alcalina espessa. A prata foi então filtrada a vácuo e lavada com 3 x 8 mL porções de acetona.

O papel de filtro contendo a prata foi transferido para o vidro de relógio e colocado em estufa para secagem. Após a secagem, o conjunto foi pesado. A quantidade de prata recuperada foi calculada com base na diferença de massas e obteve-se 12,8 g de prata metálica.

Para conversão da prata metálica obtida em nitrato de prata (AgNO₃), adicionou-se 25 mL de ácido nítrico concentrado (HNO₃). A reação foi conduzida sob leve aquecimento em capela. Após a completa dissolução da prata, a solução foi resfriada e um pequeno cristal de AgNO₃ foi adicionado para induzir a cristalização, conduzida em ambiente escuro e fechado. Os cristais formados foram secos ao ar, protegidos da luz, pesados e a massa registrada. Rendimento de 7,2 g de AgNO₃.

Vale ressaltar que o resíduo utilizado no presente trabalho é constituído de: nitrato de prata (AgNO₃), cloreto de sódio (NaCl),



carbonato de cálcio (CaCO₃), cromato de potássio (K₂CrO₄), tiocianato de potássio (KSCN) e cloreto férrico (FeCl₃).

O valor de todos os insumos foi obtido por cotação no portal de compras do governo federal com finalidade da execução de um dos eixos de um EVTECIAS

Resultados e Discussão

Um resumo do processo executado, bem como a OPEX (operational expenditure) parcial de cada etapa se encontra na Figura 1. Para que o processo seja viável, pelos cálculos parciais da OPEX, um rendimento mínimo de 3 g de AgNO3 é desejável. Ainda estão sendo desenvolvidos os processos de purificação do efluente "líquido tratado", contendo cromo dissolvido e da "Mistura B", que dentre tantos outros subprodutos indesejados, ainda resta o cromo residual do processo. Vale ressaltar que para um EVTECIAS mais completo, outros parâmetros financeiros ainda serão adicionados ao OPEX, considerando todas operações unitárias envolvidas no processo.

Figura 1. Diagrama de blocos contendo insumos, procedimentos e valores de cada espécie química envolvida no processo de recuperação da prata.

Conclusões

A obtenção de 7,2 g de AgNO₃, tendo o valor base de R\$ 16,87 por grama, o que equivale a dizer um total de R\$ 121,46. Sendo o OPEX calculado de R\$ 30,74, o saldo da reação é de R\$ 90,72.

Tomando por base esses valores, demonstrou-se uma reação suficientemente viável para justificar economicamente o procedimento no âmbito da análise EVTECIAS.

Do ponto de vista econômico, a aplicação de princípios da economia circular nas práticas envolvendo o reaproveitamento de AgNO₃ mostra-se pertinente. Sob a perspectiva técnica, os resultados obtidos em escala laboratorial confirmam a eficiência do processo. No que se refere aos aspectos ambientais, os parâmetros relacionados à presença de cromo residual, bem como outros componentes do resíduo ainda estão em fase de desenvolvimento e quantificação.

Agradecimentos

À PROPPI-UFOP pela bolsa concedida, aos técnicos de laboratório, pela cessão dos resíduos.

Referências

- 1) ELLEN MACARTHUR FOUNDATION. Towards the Circular Economy: Economic and Business Rationale for an Accelerated Transition. Ellen MacArthur Foundation, 2013. Disponível em: https://www.ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an. Acesso em: 15 jun. 2025.
- 2) JENCK, Jean F.; AGTERBERG, Frank; DROESCHER, Michael J. *Products and processes for a sustainable chemical industry: a review of achievements and prospects.* Green Chemistry, Cambridge, v. 6, n. 11, p. 544–556, 2004. DOI: https://doi.org/10.1039/B406854H.
- 3) SMITH, R. Chemical Process Design and Integration. 2. ed. Nova York: John Wiley & Sons, 2005. Disponível em https://nitsri.ac.in/Department/Chemical%20Engineering/PEDB1.p df. Acesso em 10 de nov. de 2025.
- 4) SILVA, Ingrid F.; NASCIMENTO, Pedro H. P.; LAGO, Rochel M.; RAMOS, Mozart N.; GALEMBECK, Fernando; ROCHA FILHO, Romeu C.; TEIXEIRA, Ana Paula C. Movimento Química Pós 2022: construção de um plano de ação para que a química e seus atores impactem a sustentabilidade e soberania no Brasil. *Química Nova*, v. 45, n. 4, p. 497-505, 2022. Disponível em: http://dx.doi.org/10.21577/0100-4042.20170898.
- 6) IPEA Instituto de Pesquisa Econômica Aplicada. Guia de Análise de Viabilidade de Projetos de Investimento Público. Brasília: IPEA, 2008. Disponível em https://www.ppi.gov.br/wp-content/uploads

/2023/01/Guia-ACB.pdf. Acesso em 15 de jul. 2025

- 5) ONU (ORGANIZAÇÃO DAS NAÇÕES UNIDAS). Transformando Nosso Mundo: A Agenda 2030 para o Desenvolvimento Sustentável. Nova York: ONU, 2015. Disponível em: https://sustainabledevelopment.un.org/post2015/transformingourworld. Acesso em: 10 jun. 2025.
- 6) UNIDO (UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION). Manual for the Preparation of Industrial Feasibility Studies. 2. ed. Viena: UNIDO, 1991. Disponível em https://www.unido.org/sites/default/files/files/2021-02/manual_for_the-preparation-of-industrial feasibility studies.pdf. Acesso em 25 de jun. de 2025.