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tion methods, including mean-variance optimization, naive diversification, and a BTC-only
portfolio. Empirical results show that the Choquet portfolio, which accounts for higher-
order moments and captures asset interdependencies, outperforms its counterparts in terms
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1. Introduction

The rapid rise of cryptocurrencies has attracted significant investment capital, driven
by exponential growth in market capitalization, trading volumes, and the prices of individ-
ual assets. This remarkable expansion underscores the potential for swift and substantial
changes in the cryptocurrency market. Since its introduction in 2008, Bitcoin has main-
tained its position as the cryptocurrency with the largest market capitalization (Anyfantaki
et al., 2018). As highlighted by Bowala and Singh (2022), the cryptocurrency market is
characterized by extreme volatility, a lack of regulatory oversight, and significant chal-
lenges in constructing optimal portfolios. Despite the application of advanced portfolio
optimization models, the resultant portfolios often remain highly risky, reflecting the in-
herent unpredictability and speculative nature of the market.

In the context of cryptocurrency markets, studies such as Platanakis et al. (2018) and
Brauneis and Mestel (2019) have explored portfolio optimization using a mean-variance
framework. For instance, Brauneis and Mestel (2019) found that a naive diversification
strategy outperformed more than 75% of mean-variance optimal portfolios in terms of
Sharpe ratio, while Platanakis et al. (2018) reported a small and statistically insignificant
difference between naive and mean-variance portfolios. Similarly, Arzova and Özdurak
(2021) applied the model proposed by Markowitz (1952) to portfolios comprising Bitcoin,
Ethereum, Ripple, and the BIST 30 benchmark.

While the mean-variance model is widely used for portfolio optimization due to its
simplicity (Xu et al., 2016), it has well-known limitations. These include the reliance on
variance as a risk measure, computational and statistical challenges in large portfolios,
and the assumption of Gaussian-distributed returns, which does not align with the ob-
served distribution of financial assets (Areewong et al., 2009; De Athayde and Flôres Jr,
2004). The non-normality of cryptocurrency returns has been documented extensively,
with Aljinović et al. (2021) highlighting the need for alternative risk measures and models.
Addressing the issue of non-normality, Hrytsiuk et al. (2019) demonstrated that Bitcoin,
Bitcoin Cash, Litecoin, XRP, Ethereum, and NEM follow a Cauchy distribution with rea-
sonable precision. This finding supports the use of Value-at-Risk (VaR) methods for risk
measurement but does not overcome the shortcomings of the mean-variance framework.

To expand beyond mean return and variance, Aljinović et al. (2021) proposed a multi-
criteria model that incorporates daily returns, standard deviation, VaR, Conditional Value-
at-Risk (CVaR), volume, market capitalization, and asset attractiveness. This approach
outperformed naive diversification, mean-variance optimization, maximum Sharpe ratio,
and the mean-CVaR efficient frontier. Similarly, Bowala and Singh (2022) included skew-
ness and kurtosis in the portfolio optimization problem, demonstrating superior perfor-
mance over standard deviation-based approaches.

To address estimation challenges and incorporate higher-order moments, Bassett et al.
(2004) introduced a minimum CVaR-based portfolio selection approach grounded in pes-
simistic decision-making functions. This method, by using the Choquet expected utility
theory (Gilboa, 2009), minimizes Expected Shortfall using a concave distortion function ν
and a linear utility function, offering a coherent risk measure as defined by Artzner et al.
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(1999).
The Choquet integral, as explored by Xu et al. (2016), enables a pessimistic decision

criterion by assigning greater weight to unfavorable events. By utilizing a quantile regres-
sion framework, this model simplifies numerical optimization and focuses on tail behaviors
rather than mean outcomes. Laurini (2007) demonstrated the effectiveness of this ap-
proach in outperforming the Ibovespa index and mean-variance portfolios in terms of risk
measurement criteria.

Despite its theoretical and empirical advantages (Laurini, 2007; Xu et al., 2016), the
Choquet portfolio model has not yet been applied to cryptocurrency markets. The use
of Choquet portfolios in the cryptocurrency market is particularly justified by the unique
characteristics of this asset class, including large variations in returns, extreme losses, and
heightened tail risk. Cryptocurrencies exhibit pronounced volatility and frequent devi-
ations from normality in return distributions, making traditional portfolio optimization
models, such as the mean-variance framework, less effective and potentially misleading.
The Choquet portfolio model, by incorporating a pessimistic decision criterion, allows for
a more robust handling of these variations by placing greater emphasis on unfavorable sce-
narios, which are prevalent in the cryptocurrency market. This paper addresses this gap by
constructing portfolios for leading cryptocurrencies by market capitalization—BTC, ETH,
BNB, SOL, XRP, ADA, and LTC (data sourced from coinmarketcap.com).

We extend the literature by comparing the Markowitz mean-variance model and the
Choquet portfolio, utilizing Machine Learning interpretability tools to explain differences
in portfolio weights and returns. Specifically, we apply Shapley Values (Shapley, 1953) and
Local Interpretable Model-Agnostic Explanations (LIME; Ribeiro et al., 2016) to enhance
model transparency.

Several studies have highlighted the rapid growth of machine learning models and their
diverse applications in the financial market (Leow et al., 2021; Phoon and Koh, 2018; Brigo
et al., 2021; Leo et al., 2019; Rezaei et al., 2021). A notable area within this literature, as
emphasized by Phoon and Koh (2018), pertains to Robo-Advisors (RAs). As defined by
Park et al. (2016), Robo-Advisors are artificial intelligence systems that leverage large-scale
data and algorithmic decision-making to provide trading and investment advisory services.
These systems are designed to assist in security trading and offer advisory services to
investors. The increasing adoption of RAs has been well-documented in recent literature
(Brenner and Meyll, 2020; Lam, 2016; Rossi and Utkus, 2020), with key factors driving
their popularity including the mitigation of conflicts of interest (Leow et al., 2021), low
operational costs (Brenner and Meyll, 2020), and the provision of automated financial
advice (Rossi and Utkus, 2020).

As noted by Rezaei et al. (2021), automated portfolio allocation powered by artificial
intelligence is proving increasingly valuable, with demand for such methods continuing
to grow (Park et al., 2016). Portfolio asset allocation occupies a central role in economic
decision theory, influencing both the financial sector and policymakers (Babaei et al., 2022;
Bassett et al., 2004). Consequently, testing innovative portfolio optimization methods in
different markets, while explaining their underlying mechanisms, is of critical importance.

We construct three classes of portfolios with the most influential cryptocurrencies iden-
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tified by interpretability methods: naive, Markowitz, and Choquet portfolios. Results
indicate that the Choquet portfolio consistently achieves higher cumulative returns, re-
duced tail risk, and superior replicability. By addressing the limitations of classical models
and incorporating measures that account for the inherent risks in cryptocurrencies, the
Choquet portfolio provides a more comprehensive and tailored approach to portfolio opti-
mization in this domain. Its ability to minimize tail risks and focus on extreme losses aligns
well with the risk management needs of investors in this high-volatility market. Addition-
ally, when combined with explainable machine learning methods, such as Shapley Values
and LIME, the Choquet portfolio can offer insights into the drivers of risk and return,
fostering greater transparency and trust in portfolio decisions.

This paper is structured as follows: Section 2 outlines the mean-variance and Choquet
models; Section 3 describes the dataset; Section 4 presents the empirical findings; Sections
5 and 6 detail the interpretability models and their results, respectively; and Section 7
concludes.

2. Portfolio Models

In this section, we provide a concise overview of the Markowitz model, widely regarded
as the most classic and commonly used framework for portfolio optimization, and introduce
the model proposed by Bassett et al. (2004), which is grounded in pessimistic functions
and leverages a quantile regression framework.

For portfolio construction, we adopt the approach outlined in Babaei et al. (2022),
assuming the presence of a Robo-advisor (RA) that updates portfolio weights daily based
on a rolling h-day time window. It is important to emphasize that the covariance matrix
for each portfolio is recalculated daily, incorporating data from the h days preceding the
portfolio’s rebalancing. This dynamic updating process ensures that the portfolio remains
responsive to recent market conditions.

2.1. Markowitz Model
The mean-variance model, which was the seminal model in modern portfolio theory,

was introduced by Markowitz (1952). The main objective of this method is to find a
set of portfolio weights that, while giving the minimum variance, also gives the targeted
expected return; in other words, there is a trade-off between expected return and variance
that should be taken into account. Following Constantinides and Malliaris (1995), the
investor problem can be formulated as

min
x

σ2
p,t+1 = xTVx (1)

s. t. xT1 = 1 (2)
xTR = Rp,t+1 (3)

where σ2
p,t+1 denotes the portfolio variance, x is a vector that denotes the weight of the

wealth allocated to each asset i and V denote the covariance matrix, which must be
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non-singular, symmetric, and positive definite. Therefore, the portfolio variance will be
minimized with two restrictions: the weights must have sum one and, also, the portfolio
return, xTR, must be equal to an expected return (Rp,t+1).

Ravipati (2012) points out that, for mean-variance model works properly, some as-
sumptions must be done for investors and about the market. First, the investors must
have the same expected single period investment horizon, aim to maximize the expected
return, only accept greater risk if they are compensated with a higher expected return (risk-
adverse), and take investment decisions based only on expected return and risk, which in
this model is measure using the standard deviation. Also, Ravipati (2012) highlights that
markets must be perfectly efficient, in the sense that taxes and transactions costs are not
considerate in this model.

Constantinides and Malliaris (1995) point out that the model uses the utility function
that indirectly represents the investor’s preferences in the problem. The assumption is the
existence of a utility function which is defined on the basis of the mean and variance of
the portfolio’s return, whose investor prefers a higher mean and a lower variance. As we
can note, the Markowitz model uses only the two first moments (mean and variance) as
parameters for estimated the portfolio weights, leaving aside the rest of the information
regarding the distribution. As Laurini (2007) point out, this process can be problematic,
in a sense that the minimization led to the same values for the weights if distributions
with different tail risks have the same vector of means and same variance-covariance ma-
trix. Therefore, the importance of estimating the portfolio allocation problem using all
possible distribution information, i.e., superior moments, has already been highlighted in
the literature (Areewong et al., 2009; De Athayde and Flôres Jr, 2004; Harvey et al., 2010;
Krokhmal, 2007).

2.2. Choquet portfolio construction
In order to solve the estimation problems of the classic portfolio model and also use

higher order moments to calculate the optimal weights for a cryptocurrency portfolio, in
this section we will describe the model proposed by Bassett et al. (2004), known as the
Choquet portfolio. Unlike the classic mean-variance model, which uses least squares solu-
tions, the Choquet portfolio calculates the optimal weights by solving a quantile regression
problem that allows the risk associated with a specific α-quantile to be minimized.

For compare the expected utilities, Bassett et al. (2004) consider two random variables,
X and Y , which have, respectively, F and G as distribution functions. Therefore, X will
be preferred to Y if

EFu(X) =

∫ ∞

−∞
u(x) dF (x) >

∫ ∞

−∞
u(x) dG(x) = EGu(Y ). (4)

Equation (4) is reformulated by Bassett et al. (2004), in the sense that the expected
utilities depend on the quantile functions, F−1(t) and G−1(t), for the respective random
variables X and Y . This modification is illustrated in the following equation.
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EFu(X) =

∫ 1

0

u(F−1(t)) dt >

∫ 1

0

u(G−1(t)) dt = EGu(Y ), (5)

where the events are now computed based on a uniform distribution within the range [0, 1].
As highlighted by Bassett et al. (2004), Choquet’s theory of expectations is incorporated

into the problem through a distortion function, ν, which assigns a differentiated probability
to each possible event realization. This approach transforms the expected utility derived
from the realizations of the variables F and G, as further emphasized by Laurini (2007).

Thus, the preferences in Equation (5) can be represented by a pair of functions denoted
by (µ, ν), where u transforms the outcomes in terms of utility and the distortion function,
ν, transforms the probabilities, in the sense that they are inflated or deflated, according
to the ranking order of the outcomes. Now, according to Bassett et al. (2004), X will be
preferred to Y if

Eν,Fu(X) =

∫ 1

0

u(F−1(t)) dν(t) >

∫ 1

0

u(G−1(t)) dν(t) = Eν,Gu(Y ). (6)

It is important to note that it is these distortion functions that allow the introduction
of pessimistic functions, which occur when, as pointed out by Bassett et al. (2004), instead
of giving uniform weighting in the expected utility criterion, more weight is given to less
favorable events (extreme negative returns) and less weight is given to more favorable
occurrences (positive returns).

For inflate the probabilities of α least favorable events and discount totally the 1 −
α most favorable events, Bassett et al. (2004) choose να(t) = min {t/α, 1}, where α ∈
[0, 1], which is a simple one parameter distortion function. Therefore, Equation (6) with
pessimistic functions is given by

Eναu(X) = α−1

∫ α

0

u(F−1(t)) dt. (7)

Bassett et al. (2004) note that Equation (7) can be simply interpreted as the negative
of a coherent risk measure, in terms describe by Artzner et al. (1999), known as Expected
Shortfall. The following equation gives this formulation.

ϱνα(X) = −
∫ 1

0

F−1(t) dν(t) = −α−1

∫ α

0

F−1(t) dt. (8)

Therefore, as Bassett et al. (2004) suggests, the minimization of the Expected Shortfall
subject to an expected return becomes a natural substitute for the standard deviation in
the estimation of weights in the optimal portfolio problem.
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Bassett et al. (2004) define a risk measure, ϱ, as pessimistic if, for some probability
measure φ ∈ [0, 1] we have the following form

ϱ(X) =

∫ 1

0

ϱνα(X) dφ(α). (9)

Substituting Equation (8) and using the Fubini Theorem, we have that

ϱ(X) = −
∫ 1

0

α−1

∫ α

0

F−1(t) dt dφ(α) = −
∫ α

0

F−1(t)

∫ 1

0

α−1 dφ(α) dt. (10)

In this way, according to Bassett et al. (2004), φ can be taken as a finite sum of
Dirac point masses, which are denote as dφ =

∑m
i=0 φiδτi where φi ≥ 0,

∑
φi = 1 and

0 = τ0 < τ1 < · · · < τm ≤ 1. Therefore, using
∫ 1

t
α−1δτ (α) dα = τ−1I(t < τ), we can

rewrite equation (10) as follows

ϱ(X) =

∫ 1

0

ϱνα(X) dφ(α) = −φ0F
−1(0)−

∫ 1

0

F−1(t)γ(t) dt (11)

where γ(t) =
∑m

i=1 φiτ
−1
i I(t < τi). Note that the concave distortion function, ν, can be

approximated using a linear concave function, which here is the weighted sums of Dirac. It
is important to note that, with this formulation, the probability in least favorable events
is accentuated, while the probability of most favorable events is depressed.

2.2.1. Pessimistic Allocations and Quantile Regressions
Bassett et al. (2004) suggests quantile regressions1 to solve the optimal portfolio model

describe previously. The problem can be formulated as follows

min
ξ∈R

Eρα(X − ξ), (12)

where the quantile loss function is define as ρα(u) = u(α − I(u < 0)) and the solution,
given by the value of ξ that solve this problem, is the α quantile of the random variable
X. Bassett et al. (2004) argues that find the α quantile is similar to compute the sum of
expected return and the α risk (Expected Shortfall) of X multiplied by α. Therefore, the
problem present by equation (12) can be rewrite as

min
ξ∈R

Eρα(X − ξ) = α(µ+ ϱνα(X)). (13)

1For details on quantile regression methods, we point to Koenker and Bassett Jr (1978), Koenker (2005)
or Koenker et al. (2017).
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Let {xi : i = 1, ..., n} denote a random sample on X, Bassett et al. (2004) formulated
an empirical analogue of the α-risk (Expected Shortfall) as follows

ϱ̂να(x) = (nα)−1min
ξ∈R

n∑
i=1

ρα(xi − ξ)− µ̂n (14)

where µ̂n denote the sample mean x̄n, which is used as estimator of E[X] = µ.
Due to the nature of the problem and the fact that the solution is given by minimizing

the risk subject to a restriction on the mean, Bassett et al. (2004) points out that a
Lagrangian can be used to formulate the problem as follows

min
π

ϱνα(X
Tπ)− λµ(XTπ), (15)

where XTπ denote a portfolio of assets with vector of weights π. Imposing the constrain
that portfolio weights, π, must sum to one we have that

min
π

ϱνα(X
Tπ) (16)

s. t. µ(XTπ) = µ0 (17)
1Tπ = 1. (18)

Following Bassett et al. (2004) and considering the first asset as numeraire, the final
problem can be written as follows.

min
(β,ξ)∈Rp

n∑
i=1

ρα(xi1 −
p∑

j=2

(xi1 − xij)βj − ξ) (19)

s. t. x̄Tπ(β) = µ0, (20)

where π(β) = (1 −
∑p

j=2 βj, β
T )T . Bassett et al. (2004) highlight that any concave dis-

tortion function can be approximated by a piecewise linear function, therefore, a general
formulation can be written for Equation (19) using the following weighted averages of
α-risks,

ϱν(X) =
m∑
k=1

νkϱναk
(X), (21)

where νk > 0 and
∑m

k=1 νk = 1. Therefore, the general problem of pessimistic preferences
is given by the following equation

min
(β,ξ)∈Rp+m

m∑
k=1

n∑
i=1

νkρα(xi1 −
p∑

j=2

(xi1 − xij)βj − ξk) (22)

s. t. x̄Tπ(β) = µ0. (23)

8



3. Data

In order to compare these two portfolio methods in the cryptocurrency market, we
choose a daily dataset2 starting on 2020-04-11 and ending on 2024-04-07, of the following
cryptocurrencies: Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), Solana (SOL),
Ripple (XRP), Cardano (ADA) and Litecoin (LTC).

The study period is selected to capture a comprehensive view of the cryptocurrency
market, including its recovery after COVID-19 and subsequent growth. This timeframe
encompasses various market conditions, such as bull runs (e.g., late 2020 and early 2021)
and corrections (e.g., 2022–2023), which are crucial for assessing portfolio strategies un-
der different regimes. The chosen period also includes extreme events and significant
price fluctuations, allowing the evaluation of portfolio methods during the high-growth
and contraction phases. In addition, the data for the selected cryptocurrencies (Bitcoin,
Ethereum, Binance Coin, Solana, Ripple, Cardano, and Litecoin) are reliable and consis-
tent from platforms like CoinMarketCap, making this period relevant for understanding
portfolio performance in the evolving cryptocurrency market.

Figure 1, which shows the daily evolution of returns, allows us to highlight the char-
acteristics of the cryptocurrency market, such as the substantial variation in returns and
the existence of extreme values in the distribution. The characteristics of kurtosis and
skewness, which are higher moments of the distribution of returns, can be seen in Table
1 and also in Figure 2, which plots the density of the returns of each cryptocurrency and
compares them with a normal distribution.

In Table 1 and Figure 2, we observe evidence of skewness and excess kurtosis rela-
tive to the normal distribution. To formally assess these characteristics, we applied the
Jarque-Bera test. The results indicate that, for all cryptocurrencies, the null hypothesis
of normality is rejected. This implies that higher moments beyond the mean and variance
deviate from those of a Gaussian distribution, confirming the observations in Table 1 and
Figure 2.

4. Results

We estimate optimal portfolios using rolling windows of 30, 60, 180, and 365 days to
account for time-varying dynamics in asset returns and risk. For each rolling window, the
optimal portfolio is calculated using four distinct methodologies:

• Naive Portfolio: An equal-weight portfolio where all assets receive the same allo-
cation, providing a simple benchmark for comparison.

• Markowitz Portfolio: Based on the mean-variance optimization framework, this
approach seeks to maximize the Sharpe ratio by considering the trade-off between
expected returns and portfolio risk (variance).

2Data on cryptocurrency returns was sourced from coinmarketcap.com
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Figure 1: Evolution of daily returns of the analyzed assets (2020-04-11 - 2024-04-07).

Table 1: Descriptive Statistics
BTC ETH BNB SOL XRP ADA LTC

Mean (%) 0.159 0.210 0.257 0.359 0.079 0.197 0.060
Std (%) 3.282 4.261 4.699 7.102 5.653 5.127 4.746
Skew -0.181 -0.395 0.727 -0.283 0.713 0.350 -0.704
Kurt 3.467 5.097 19.144 6.380 21.234 3.643 8.063
Min. -17.405 -31.746 -40.445 -54.958 -55.050 -30.123 -44.119
Quantile 5% -5.157 -6.508 -6.196 -9.705 -7.438 -7.630 -7.343
Median 0.079 0.166 0.155 0.053 0.054 0.070 0.144
Quantile 95% 5.367 7.014 6.792 12.051 7.238 8.931 7.395
Max. 17.182 23.070 52.922 38.718 54.855 27.944 24.843
Jarque-Bera test 738.109*** 1615.9*** 22394.021*** 2492.107*** 27514.859*** 835.929*** 4070.066***

Note: This table reports minimum, mean, median, maximum, standard deviation, skewness, excess
kurtosis (measured in relation to a normal distribution), quantile of 5% and 95% and the statistics for
Jarque-Bera test for BTC, ETH, BNB, SOL, XRP, ADA and LTC. The p-values for Jarque-Bera test are
represented for ∗∗∗p < 0.01 ∗∗p < 0.05 and ∗p < 0.10.
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Figure 2: Density of the daily assets returns (2020-04-11 - 2024-04-07).
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• Choquet Portfolios: Four different specifications of portfolios based on Choquet
integration, which generalizes the traditional mean-variance framework to account
for non-linear preferences or alternative risk measures. These specifications capture
distinct risk-return preferences, providing a flexible approach to portfolio optimiza-
tion.

• Bitcoin: The comparison benchmark is a portfolio made up of only Bitcoin.

By comparing these methodologies across different window lengths, we evaluate their
performance under varying time horizons and market conditions. This approach enables a
comprehensive analysis of portfolio dynamics and the robustness of each strategy.

For the Choquet portfolio, we follow the methodology outlined by Laurini (2007), ex-
ploring four cases of distortion functions:

1. A distortion function with two quantile parameters, where we minimize α-risk for
quantiles (0.1, 0.3) and assign weights (0.7, 0.3).

2. A distortion function with three quantile parameters, (0.01, 0.05, 0.1), and weights
(0.7, 0.2, 0.1).

3. A distortion function with three quantile parameters, (0.01, 0.05, 0.1), but with mod-
ified weights (0.85, 0.1, 0.05).

4. A distortion function with three quantile parameters, (0.01, 0.05, 0.1), and weights
(0.85, 0.5, 0.05).

By exploring these configurations, we aim to assess the flexibility and performance of
the Choquet portfolio under different risk-weighting schemes, effectively capturing both
tail risks and variations in returns.

The results presented in Table 2 provide a detailed comparison of the performance and
risk characteristics of various portfolio models, including the Bitcoin benchmark (BTC),
the Naive portfolio, the Markowitz portfolio, and multiple cases of the Choquet portfolio,
across different rolling window sizes. The table includes key metrics such as standard
deviation (SD), Sharpe Ratio, Value-at-Risk (VaR), Modified Sharpe Ratio (MSR), and
Expected Shortfall (ES), which are crucial for assessing both the risk and return profiles of
the portfolios under consideration. Modified Sharpe Ratio replaces the standard deviation
as the risk measure in the Sharpe Ratio, using the (negative) VaR(5%) as the risk measure.

The Modified Sharpe Ratio (MSR) (Gregoriou and Gueyie, 2003) extends the tradi-
tional Sharpe Ratio by addressing its limitations in capturing the risks associated with
non-normal return distributions. While the standard Sharpe Ratio evaluates investment
performance based on excess return per unit of standard deviation, the MSR incorporates
measures that account for tail risks, such as Value-at-Risk (VaR) or Expected Shortfall
(ES). This adjustment is particularly important for portfolios that include assets with
heavy-tailed distributions, such as cryptocurrencies, where extreme price movements and
higher kurtosis are prevalent.

By replacing standard deviation with a downside risk measure, the MSR provides a more
accurate assessment of portfolio efficiency in contexts where returns deviate significantly
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Table 2: Comparison of Metrics Across Window Sizes
Window Model SD Sharpe Ratio VaRq ModifiedSR ES
30 BTC 0.03081 0.06847 -0.04356 0.10318 -0.07389

Naive 0.03729 0.06628 -0.05529 0.07951 -0.09113
Markowitz 0.02423 0.07967 -0.03535 0.12527 -0.05285

Choquet - case 1 0.02699 0.06971 -0.02901 0.20786 -0.04620
Choquet - case 2 0.02911 0.06638 -0.03318 0.15227 -0.05958
Choquet - case 3 0.02987 0.06729 -0.03460 0.14099 NA
Choquet - case 4 0.03049 0.06614 -0.03435 0.14554 NA

60 BTC 0.03122 0.06004 -0.04448 0.06226 -0.07625
Naive 0.03809 0.05624 -0.05766 0.04968 -0.09419

Markowitz 0.02682 0.06273 -0.04039 0.06790 -0.06084
Choquet - case 1 0.02828 0.05793 -0.03564 0.08166 -0.05808
Choquet - case 2 0.02986 0.05574 -0.03966 0.07179 -0.06168
Choquet - case 3 0.03262 0.05239 -0.04467 0.06346 NA
Choquet - case 4 0.03330 0.05107 -0.04566 0.06091 NA

180 BTC 0.03212 0.04560 -0.04837 0.03725 -0.07782
Naive 0.03978 0.03687 -0.06100 0.02946 -0.10052

Markowitz 0.03029 0.04812 -0.04712 0.03951 -0.07075
Choquet - case 1 0.03114 0.04661 -0.04427 0.04384 -0.06961
Choquet - case 2 0.03185 0.04565 -0.04645 0.04090 -0.07983
Choquet - case 3 0.03384 0.04286 -0.05078 0.03652 -0.09515
Choquet - case 4 0.03402 0.04244 -0.05119 0.03604 -0.17497

365 BTC 0.03335 0.02974 -0.05212 0.02211 -0.08158
Naive 0.04134 0.02299 -0.06422 0.01883 -0.10779

Markowitz 0.03233 0.02956 -0.05074 0.02273 -0.07733
Choquet - case 1 0.03291 0.02909 -0.04943 0.02221 -0.07646
Choquet - case 2 0.03343 0.02862 -0.05131 0.02146 -0.09053
Choquet - case 3 0.03453 0.02766 -0.05433 0.02044 -0.11597
Choquet - case 4 0.03478 0.02771 -0.05481 0.02041 -0.16256

Note: This table reports, in average terms, the standard deviation, Sharpe Ratio, the Var(5%), Modified
Sharpe ratio and Expected Shortfall for BTC, Naive portfolio, Markowitz portfolio and for all cases of
Choquet portfolio. NA indicates that there were no VaR violations in the estimation window, preventing
the calculation of the Expected Shortfall.

from normality. For instance, when VaR is used in the calculation, the MSR evaluates the
excess return per unit of potential maximum loss at a given confidence level, such as 95%
or 99%. This focus on downside risk allows the MSR to capture the effects of skewness
and kurtosis, offering a perspective on portfolio performance that aligns with the realities
of fat-tailed distributions.

The interpretation of the MSR is consistent with its traditional counterpart: higher
values indicate a portfolio’s ability to generate greater returns per unit of risk, with risk
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defined in terms of tail losses rather than overall volatility. Consequently, portfolios with
superior MSR values are considered more efficient, as they balance return and tail risk more
effectively. This makes the MSR particularly valuable for evaluating portfolios in volatile
markets, as it provides insights into performance that are not captured by variance-based
measures alone.

In terms of standard deviation, the Markowitz portfolio consistently shows the low-
est value across all window sizes, reflecting its focus on minimizing overall volatility. In
contrast, the Choquet portfolio, particularly in Case 1, exhibits slightly higher standard
deviation values. This observation suggests that the Choquet portfolio does not prioritize
variance minimization but instead addresses tail risk, which is a critical consideration in
markets such as cryptocurrencies, where extreme price movements are common. Although
the Choquet portfolio displays a higher standard deviation, it offers more robust protection
against large negative returns, as indicated by its lower VaR and ES values compared to
the Markowitz portfolio. This characteristic is particularly valuable in environments with
high volatility and extreme price movements, such as the cryptocurrency market.

When examining the risk-adjusted performance metrics, the Sharpe Ratio of the Cho-
quet portfolio in Case 1 is comparable to that of the Markowitz portfolio, although slightly
lower in most cases. This trade-off can be understood in the context of the Choquet port-
folio’s focus on minimizing tail risk rather than overall volatility. While this results in a
lower Sharpe Ratio, it enhances the portfolio’s resilience against extreme losses, making it
more suitable for high-risk, high-volatility assets like cryptocurrencies.

The Modified Sharpe Ratio (MSR) provides further evidence of the Choquet portfolio’s
superior performance in managing risk-adjusted returns. For shorter window sizes, such as
30 and 60 days, the Choquet portfolio (Case 1) exhibits significantly higher MSR values
than the Markowitz and Naive portfolios. For instance, with a 30-day window, the MSR
for Choquet (Case 1) is 0.20786, which is notably higher than the Markowitz portfolio’s
0.12527 and the Naive portfolio’s 0.07951. This indicates that, despite a higher standard
deviation, the Choquet portfolio performs better when considering the trade-off between
return and extreme risk. As the window size increases, the MSR values for all portfolios
tend to decline, but the Choquet portfolio remains competitive, particularly in managing
tail risk.

The results demonstrate that the Choquet portfolio, by minimizing exposure to as-
sets with higher tail risk, offers superior protection in the face of extreme negative price
movements, a common occurrence in the cryptocurrency market. This strategy allows the
Choquet portfolio to outperform traditional models like the Markowitz portfolio, partic-
ularly in terms of tail risk management, as indicated by its superior MSR and lower ES
values.

While the Choquet portfolio may not minimize variance as effectively as the Markowitz
model, its superior ability to manage tail risk makes it a more appropriate choice for
cryptocurrency investors navigating highly volatile and non-normal return distributions.
Over shorter investment horizons, where tail risks are particularly pronounced, the Cho-
quet portfolio offers a more favorable balance between risk and return. However, as the
investment horizon lengthens, the disparities in risk measures between the Choquet and
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Markowitz portfolios gradually diminish. In such cases, the Markowitz model may become
more appealing to investors who prioritize variance minimization over the mitigation of
tail risk.

Choquet-case1 stands out as the best-performing portfolio model in this analysis, largely
due to its use of a distortion function with two quantile parameters, specifically designed
to minimize α-risk for quantiles at 0.1 and 0.3, with assigned weights of 0.7 and 0.3,
respectively. This approach allows the Choquet portfolio to effectively manage tail risk,
focusing on the lower quantiles of the return distribution, where extreme losses are more
likely to occur.

By minimizing the α-risk for these quantiles, Choquet-case1 prioritizes the reduction
of potential losses in the left tail of the distribution, a critical consideration in highly
volatile markets like cryptocurrencies. The choice of quantiles—0.1 and 0.3—addresses
the risk of large negative movements while maintaining a balanced approach to the overall
portfolio risk. The weighting of these quantiles (0.7 for 0.1 and 0.3 for 0.3) ensures that
the portfolio is more sensitive to the most extreme losses, thus enhancing its ability to
mitigate the impact of severe downturns in asset prices.

The success of Choquet-case1 can be attributed to this tailored risk management strat-
egy, which goes beyond traditional risk measures such as variance and Sharpe Ratio, and
instead focuses on safeguarding the portfolio from the most damaging losses. This is es-
pecially important in cryptocurrency markets, where extreme negative returns can occur
with high frequency. By concentrating on tail risk, Choquet-case1 achieves a more robust
risk-adjusted performance, demonstrated by its superior Modified Sharpe Ratio and lower
Value-at-Risk and Expected Shortfall values compared to other models.

The Choquet portfolio’s ability to achieve a high Modified Sharpe Ratio, despite higher
standard deviation, demonstrates its robustness in balancing risk and return, making it a
valuable alternative to traditional portfolio models like Markowitz, especially in markets
characterized by extreme volatility and tail risks.

Figure 3 illustrates the temporal evolution of the 5% Value-at-Risk (VaR) for the op-
timal portfolios constructed using the Choquet, Markowitz, and Naive allocation methods
using the rolling samples of size 30. It is evident that the Choquet method consistently
exhibits the lowest tail risk across all periods analyzed, thereby confirming its superior
ability to mitigate tail risk in the construction of optimal portfolios.

Figures 4 and 5 illustrate the efficient frontiers and risk measures, respectively, for
the Markowitz (1952) portfolio and the Choquet portfolio (focusing on Case 1 due to its
superior Sharpe Ratio) using a grid of log-returns in the interval [0.00170, 0.0022] for the
full sample. It is evident that, for all expected return values in this grid, the Choquet
portfolio exhibits a higher standard deviation compared to the Markowitz portfolio. This
observation aligns with the summary presented in Table 2 based on the Sharpe Ratio.

However, as noted by Laurini (2007) and Xu et al. (2016), variance is an inadequate
risk measure because it cannot distinguish between extreme negative and positive returns.
Unlike the Markowitz portfolio, which explicitly minimizes variance, the Choquet portfolio
employs a different approach. Its objective function focuses on minimizing tail risk by
incorporating a distortion function that assigns greater weight to less favorable outcomes,
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Figure 3: Value-at-Risk - Window Size 30

Note: This figure plots the VaR (5%) for Choquet portfolio (case 1), Markowitz and Naive portfolios.
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as outlined by Bassett et al. (2004). This methodology ensures a distinct risk management
approach, prioritizing the reduction of extreme negative returns rather than treating all
deviations from the mean equally.

As a result, while the Choquet portfolio may exhibit higher variance, this is not in-
dicative of greater risk in the traditional sense. Instead, its optimization framework better
accounts for the asymmetries and heavy tails characteristic of financial returns, particularly
in volatile markets like cryptocurrencies, offering a distinct advantage over the variance-
minimization approach of the Markowitz portfolio.

To explore alternative risk measures, Figure 5 illustrates the Value-at-Risk (VaR) for the
mean-variance and the α-risk for Choquet portfolios. The results reveal that the Choquet
portfolio exhibits lower risk, as measured by α-risk, compared to the classic portfolio opti-
mization model, even as expected returns increase. This highlights the Choquet portfolio’s
ability to mitigate extreme downside risks more effectively than traditional mean-variance
optimization.

Figure 6 presents the portfolio growth trajectories for BTC (benchmark), the Naive
portfolio, the Markowitz portfolio, and the Choquet portfolio (case 1), starting with an
initial capital of 100 for the full sample estimation. Although the Markowitz and Choquet
portfolios follow similar growth patterns, the Choquet portfolio consistently achieves higher
returns throughout the analyzed period, culminating in the largest accumulated portfolio
return.

For context, holding only BTC in the portfolio for the entire period would yield an
accumulated value of approximately 307.11. In contrast, a Naive portfolio with equal
weights (1/N , where N is the number of cryptocurrencies) would achieve an accumulated
return of about 369.74, the Markowitz a value of 489.71 and the Choquet portfolio a final
value of 504.98. These benchmarks underscore the competitive performance of the Choquet
portfolio.

Our findings suggest that the model proposed by Bassett et al. (2004) demonstrates
significant advantages in the cryptocurrency market, maintaining superior performance
characteristics in terms of both returns and risk measures. These results are consistent with
the findings of prior studies that applied pessimistic approaches to portfolio optimization,
reaffirming the Choquet portfolio’s ability to balance return and volatility effectively.

A key advantage of the Choquet portfolio lies in its explicit focus on minimizing port-
folio exposure to assets with higher tail risk. Unlike the mean-variance framework, which
evaluates risk using variance, a symmetric measure that treats positive and negative devi-
ations equally, the Choquet approach incorporates distortion functions to account for the
asymmetry of returns. This allows it to penalize extreme negative outcomes more heavily,
making it particularly well-suited for contexts characterized by severe tail risks, such as
the cryptocurrency market.

Cryptocurrencies are known for their pronounced volatility and susceptibility to ex-
treme negative price movements, which often occur unexpectedly and can significantly
impact portfolio performance. In this environment, minimizing exposure to tail risk be-
comes a critical component of an effective asset allocation strategy. The Choquet portfo-
lio’s superior performance, as evidenced by its higher MSR and lower ES, demonstrates
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Figure 4: Efficient frontiers
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Figure 5: Value-at-Risk and α-risk – Markowitz and Choquet
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Figure 6: Portfolio Growth - portfolio with all cryptocurrencies

Note: This figure plots the accumulated portfolio return for BTC (benchmark; yellow), Choquet portfolio
(case 1; red), Markowitz portfolio (blue) and Naive portfolio (black).
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its robustness in addressing these challenges. By systematically reducing the impact of
assets with higher downside risk, the Choquet portfolio achieves a more stable risk-return
tradeoff, even in highly volatile markets.

Moreover, this performance advantage is not merely theoretical but has practical im-
plications for investors seeking to navigate the unique risk profile of cryptocurrencies. The
Choquet portfolio offers a more resilient allocation strategy, better aligning with the needs
of risk-averse investors who prioritize downside protection without sacrificing return po-
tential.

Our findings suggest that the model proposed by Bassett et al. (2004) is not only effec-
tive but also particularly well-suited for markets characterized by extreme price movements
and heightened tail risks, such as cryptocurrencies. This reinforces the broader applicabil-
ity of pessimistic portfolio optimization approaches in environments where traditional risk
measures, like variance, fail to adequately capture the complexity of real-world risks.

5. Model Interpretability

Regarding portfolio allocation methods, an essential question for the users of RAs
(Robo-Advisors) is: “How are portfolio weights determined?” In such cases, Babaei et al.
(2022) posits that RAs can be conceptualized as models that solve the optimal portfolio
problem without providing explicit explanations for the resulting allocations. This perspec-
tive aligns RAs with black-box machine learning models, which generate outcomes based
on a variety of decision features (Redelmeier et al., 2020). However, these outcomes can
be made interpretable through appropriate explainable machine learning (ML) methods
(Babaei et al., 2022).

To address the explanatory challenges associated with these "black boxes", the second
part of this article seeks to bridge the gap in understanding portfolio models implemented
by RAs. Specifically, we compare the Markowitz model and the Choquet model as they
relate to portfolio allocation. To align with ML methodologies, we employ Z-scores as
standardized metrics that account for both volatility and return. These scores are com-
puted for individual cryptocurrencies and portfolios. The Z-score for each cryptocurrency
serves as an explanatory variable to predict the portfolio’s overall Z-score. The Z-score
for a given cryptocurrency, Zi, is defined as follows:

Zi =
Ri − E[Ri]

σi

, (24)

where Ri, E(Ri) and σi denotes, respectively, the return of cryptocurrency on the pth day,
the average return and the standard deviation of the corresponding cryptocurrency return
during the 30-day time window. Meanwhile, the Z score for each portfolio, Zp, is computed
by

Zp =
Rp − E[Rp]

σp

(25)
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where Rp corresponds to the portfolio return on the pth day, E[Rp] =
∑n

i=1 wiE[Ri] and
σp is measured as follows:

σ2
p =

n∑
i=1

w2
i σ

2
i +

n−1∑
i=1

n∑
j=i+1

wiwjcov(Ri, Rj), (26)

with cov(Ri, Rj) being the covariance between ith and jth cryptocurrency.

5.1. Interpretable Machine Learning Models
In the following subsections, we outline the interpretable ML methods utilized in this

study: the Shapley value and Local Interpretable Model-agnostic Explanations (LIME).
First, we consider the Shapley value, which is extensively referenced in the literature (Shap-
ley, 1953; Chen et al., 2018; Fréchette et al., 2016; Brigo et al., 2021; Jaeger et al., 2021).
Subsequently, we address the Local Interpretable Model-Agnostic Explanations (LIME)
proposed by Ribeiro et al. (2016), with the aim of expanding the analysis presented in
Babaei et al. (2022).

For the implementation of interpretable models, we employed a random forest model
comprising 100 trees. It is important to note that, consistent with the approach in Babaei
et al. (2022), our primary focus is not on evaluating prediction accuracy or comparing the
fit of Z-scores across ML models.

5.1.1. Shapley Values
Interpretable models for analyzing results are becoming increasingly critical as the

adoption of ML methods expands, both in terms of their application and their penetration
into new fields. According to Merrick and Taly (2020), the most prominent models in this
domain aim to assign a score to each feature, quantifying its contribution to the prediction.

Among various feature-importance models, the Shapley value model (Shapley, 1953)
has garnered significant attention in recent years (Štrumbelj and Kononenko, 2014; Datta
et al., 2016; Lundberg and Lee, 2017; Chen et al., 2018; Lundberg et al., 2019; Ancona
et al., 2019; Aas et al., 2021). Rooted in cooperative game theory, this model provides a
mathematically fair and unique method for distributing the payoff of a cooperative game
among its participants, as highlighted by Merrick and Taly (2020).

Following Merrick and Taly (2020), define a set of players as M = {1, . . . ,M} and
a set function as v : 2M → R, where the payoff is given by v(S) for each S ⊆ M and,
also v(∅) = 0. Through this construction, the Shapley values of player i, ϕi(v), can be
computed as

ϕi(v) =
1

M

∑
S⊆M\{i}

(
M − 1

|S|

)−1

(v(S ∪ {i})− v(S)), (27)

where v(S) denotes the function that maps subsets of players to the contribution of the set
S, |S| represents the number of players in the set S. Moreover, according to Redelmeier

22



et al. (2020), this payoff ϕi(v) can be seem as a weighted sum of the player’s marginal
contributions to each set S. It is worth noting that the Shapley value satisfies four axioms:
symmetry, Dummy (Null player), efficiency and linearity3.

In a ML context, the players of the game are the input features, and the payoff is
the prediction resulting of the ML model (Merrick and Taly, 2020). Therefore, following
Babaei et al. (2022), the marginal contribution of each predictor Xk, where k = 1, . . . , K,
can be computed as

ϕ(f̂(Xi)) =
∑

X′⊆C(X)\Xk

|X ′|!(K − |X ′| − 1)!

K!
[f̂(X ′ ∪Xk)i − f̂(X ′)i] (28)

5.1.2. Local Interpretable Model-agnostic Explanations (LIME)
It is important to note that, in the Shapley Value method, none of the cryptocurrencies

are excluded from the explanatory dataset, as illustrated in Figures 7 and 8. According
to Karanika et al. (2020), extracting only the features that most significantly explain a
model’s predictions can introduce challenges related to dimensionality reduction.

To enhance confidence in individual predictions generated by ML models, Ribeiro et al.
(2016) propose the Local Interpretable Model-Agnostic Explanations (LIME) method,
which relies on local approximations to interpret individual predictions. As highlighted
by Brigo et al. (2021), the LIME model constitutes an additive feature attribution ap-
proach, as it can be expressed as a linear function of binary variables, as demonstrated in
Equation (29).

g(x′) = ϕ0 +
M∑
i=1

ϕix
′
i, (29)

Here, x′ ∈ 0, 1M , ϕi ∈ R, and M represent the number of simplified inputs x′, also
referred to as interpretable inputs. These inputs are generated using a mapping function
hx, which translates a binary vector of interpretable inputs, x′, back into the original
inputs, i.e., x = hx(x

′), as noted by Brigo et al. (2021). It is important to highlight that in
Equation (29), x′ assigns a value of 1 if the input component is present and 0 otherwise.

Let f(x) denote the prediction to be explained. To calculate the interpretability effect
on the prediction, Ribeiro et al. (2016) propose minimizing a squared loss function subject
to a complexity measure associated with the explanation model g ∈ G. This optimization
problem can be expressed as follows:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g), (30)

3For more details about the axioms see Merrick and Taly (2020).
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where the explanation model g, among all possible models G, is the argument that minimize
the square loss function L for x′. The measure of proximity between x′ and x is denoted
by πx and, also Ω(g) represents a measure of complexity of the explanation model g ∈ G.

As highlighted in Ribeiro et al. (2016), this procedure approximated g(x′) using least
squares adjusted with Lasso (Tibshirani, 1996), named K-Lasso by the authors. Note that
the penalization parameter in Lasso, λ, is chosen so that you have m interpretable inputs
x′ and, in general, a low value for K is chosen to maintain an easy interpretation of the
results (Izbicki and dos Santos, 2020). Here we set K = 3, with the aim of highlighting
the three cryptocurrency that contribute most to the prediction of the portfolio’s Z-score.

6. Interpretability Results

In this section, we present and analyze the results of interpretable ML models applied
to the Markowitz portfolio model and the Choquet portfolio approach (Case 1) for the full
sample estimation, using the mean return as target return in the optimization procedures.
First, the results derived from the Shapley value method are shown in Figures 7 and
8, followed by the results of the LIME model, presented in Figure 9. To examine how
each cryptocurrency contributes to the prediction of the portfolio Z-score (Zp), Figure
7 illustrates the Shapley value decomposition for four portfolios, which were randomly
selected from all daily allocations, under the Markowitz and Choquet (Case 1) portfolio
models. The Zp values, computed using Equation (25), are displayed at the top of each
portfolio, calculated for each optimal portfolio method.

The Shapley values vary across the four randomly selected portfolios and differ between
the mean-variance and Choquet portfolio models. For instance, in Portfolio 1, cryptocur-
rencies such as ADA, BNB, and LTC, computed using the Markowitz portfolio model (a),
appear to have greater importance (in absolute terms) in predicting Zp. Conversely, the
Choquet model for the same portfolio (b) assigns higher importance to BTC, XRP, and
LTC in the Zp prediction. For Portfolio 2, Figures (c) and (d) indicate that BTC and
ADA are the two most significant features in predicting the portfolio Z-score. The im-
portance of the remaining cryptocurrencies (SOL, BNB, LTC, ETH, and XRP) is notably
reduced compared to BTC and ADA and is also relatively consistent when comparing the
two portfolio approaches.

To analyze the overall contribution of each cryptocurrency to the portfolio Z-score pre-
dictions, we employed the SHAP Feature Importance technique, which computes the aver-
age absolute Shapley values for each feature. The results, shown in Figure 8, indicate that
for both portfolio methods analyzed, the cryptocurrencies that most significantly explain
the variations in portfolio Z-scores—which are influenced by both return and risk—are, in
order, BTC, BNB, and XRP.

Figure 8 also highlights the different order of contribution for the rest of the cryp-
tocurrencies. In the Markowitz (1952) portfolio, the full order of contribution is given
by BTC, BNB, XRP, ETH, ADA, LTC and SOL. Meanwhile, the cryptocurrencies that
contribute the most to variations in portfolio allocation in the Choquet portfolio (case 1)
are BTC, BNB, XRP, LTC, ETH, SOL and ADA. These different allocation weights that
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the portfolio methods have given to other cryptocurrencies may help explain the difference
in portfolio returns shown in Figure 6.

To extend the work of Babaei et al. (2022) by incorporating another interpretable
ML method and to gather further evidence on which cryptocurrencies most contribute
to explaining portfolio Z-score predictions, we utilized the LIME model. This method
employs a LASSO-regularized linear regression, limited to K features, to approximate the
predictions. The results of the LIME model are presented in Figure 9, using the same
four randomly selected portfolios as in Figure 7. A notable result is that for all portfolios,
the K-most influential cryptocurrencies identified by LIME are BTC, BNB, and XRP,
consistent with the findings of the SHAP Feature Importance approach.

To further explore the predictive explanatory properties of these three cryptocurren-
cies in our portfolios, we constructed three additional portfolios using only the K-most
significant cryptocurrencies: the Naive K-portfolio, Markowitz K-portfolio, and Choquet
K-portfolio. These new portfolios were compared with the original portfolios in Figure
10. The results reveal that a Naive portfolio constructed with only the K-most significant
cryptocurrencies (Naive K-portfolio) replicates approximately 88.39% of a portfolio includ-
ing all cryptocurrencies analyzed (Naive portfolio). Similarly, the Markowitz K-portfolio
achieves approximately 90.07% replication of the complete Markowitz portfolio.

However, the Choquet portfolio not only exhibits the highest accumulated portfolio
return but also achieves the highest replication rate among the methods studied, approx-
imately 94.42%. These results suggest an additional property of the Bassett et al. (2004)
model: the portfolio replication property, particularly when combined with an interpretable
ML model and an RA-based portfolio construction technique.

7. Conclusions

The Choquet portfolio model, grounded in pessimistic decision-making and utilizing
the Choquet integral, has emerged as a promising approach for addressing extreme risks
and tail events. By emphasizing unfavorable outcomes, the model aligns with the unique
characteristics of cryptocurrencies, including extreme losses and heightened tail risks.

The Choquet portfolio model, with its reliance on α-risk formulation of Conditional
Value-at-Risk (CVaR) as a risk measure, is better suited for this environment. CVaR di-
rectly addresses tail risk by focusing on the worst-case outcomes in the return distribution,
providing a more realistic measure of potential losses in extreme market conditions. This
study advances the literature by applying the Choquet portfolio to cryptocurrency markets
for the first time, comparing it to the traditional Markowitz mean-variance model. Fur-
thermore, Machine Learning interpretability tools, such as Shapley Values and LIME, are
employed to elucidate differences in portfolio weights and returns, enhancing transparency
and understanding of the optimization process.

Results demonstrate that the Choquet portfolio achieves superior performance in cu-
mulative returns, tail risk mitigation, and replicability compared to traditional models,
offering a more robust framework for managing the unique risks of cryptocurrency invest-
ments. These findings underscore the importance of integrating interpretable ML tools
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Figure 7: Contribution of each explanatory variable to the Shapley’s decomposition of four generated
portfolios.

Note: This figure shows the Shapley value for four different portfolios choose randomly.
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Figure 8: Overall contribution of cryptocurrencies to the Z scores of portfolios

Note: This figure shows the average contribution of each cryptocurrencies in the predictions, i.e. the
global importance for each feature.

27



Figure 9: Contribution of each explanatory variable to the LIME decomposition of three generated port-
folios.

Note: This figure shows the contribution measured with LIME model for the same four portfolios as in
Figure 7.
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Figure 10: Portfolio replication with K = 3 (BTC, XRP and BNB)

with advanced portfolio models to provide deeper insights into the drivers of portfolio
performance, thereby fostering more informed and transparent investment decisions.

Since that the cryptocurrencies do not follow a Gaussian distribution, the method pro-
posed by Bassett et al. (2004), which incorporates highers moments into portfolio decision,
seems to be theoretically and empirical more appropriate among the portfolios optimal
methods analysed. Our results indicate that the Choquet portfolio (case 1) present higher
accumulated portfolio return and low tail risk when compared to the Markowitz (1952)‘s
model.

In addition, the second part of our article aims to explain the weights assigned by a
Robo-Advisor for Markowitz (1952)´s model and the Choquet portfolio, in certain periods.
For this, we apply the Shapley Values method, as in Babaei et al. (2022), using the z-scores
of each cryptocurrency as explanatory variables to predict the z-score of the portfolio. Fur-
thermore, in order to extend the analyses and, find out which are the K-cryptocurrencies
that most explain the predictions, the Local Interpretable Model-agnostic Explanations
(LIME) model is applied.

Through the LIME model results, we found out that, among all analysed cryptocur-
rencies (BTC, ETH, BNB, SOL, XRP, ADA and LTC), the most explainable ones are, in
order, BTC, BNB and XRP. With the aim of testing the power of these K cryptocurren-
cies in Robo-Advisor’s choice of weights for each portfolio optimization model, three more
portfolios were created only with BTC, BNB and XRP: Naive K-portfolio, Markowitz K-
portfolio and Choquet K-portfolio. The results point out that the Choquet portfolio (case
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1), beyond display the higher portfolio return accumulated, presents the lowest difference
rate between the portfolio computed with all cryptocurrencies and the K-portfolio. This
indicates that the model proposed by Bassett et al. (2004), when combined with an in-
terpretable ML model and also an RA portfolio construction technique, presents higher
performance for portfolio replication compared to conventional portfolio methods.

Our paper dialogues with the literature on dimensionality reduction and, above all,
with the literature on replication and the construction of optimal portfolios. In addition,
our results help investors understand how the these automatic process (Robo-Advisors)
chooses the weights according to an portfolio model in the cryptocurrency market, which
is known for its volatility.
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