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Abstract

We propose a bias correction for the average of a set of individual inflation expectations
considering the possibility that intercept and slope biases may vary over time. We pro-
ceed in two ways. Firstly, we consider estimations based on rolling windows. Secondly,
we employ a state-space model to obtain time-varying intercept and slope biases using
the recursiveness of the Kalman filter. The latter approach has the advantage of circum-
venting the choice of the rolling window size. We also proceed with estimations based
on expanding windows, a procedure that is close to what has been done in the literature.
We achieve good forecast performance for models based on small rolling windows for
shorter and intermediate forecast horizons. In turn, a state-space model that includes
corrections for intercept and slope biases varying over time tends to perform slightly
worse than procedures based on rolling windows.
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1 Introduction

It is unlikely that some individual forecasting model will consistently outperform all oth-
ers over time and in different economic conditions since models likely present inaccuracies
in their specifications (Elliott and Timmermann, 2016). The aim of combining forecasts is to
reduce uncertainty and increase the accuracy of the last forecast. Bates and Granger (1969)
show that the combination of unbiased forecasts could yield lower mean-squared error than
either of the original forecasts. More specifically, they demonstrate that two unbiased fore-
casts can be optimally combined to obtain a variance no greater than the smaller of the two
individual variances. Reid (1969) extends this approach by proposing the combination of
more than two unbiased forecasts, and Newbold and Granger (1974) achieve good results
by applying this procedure. Granger and Ramanathan (1984) add an intercept in a linear
model that combines potentially biased individual forecasts. However, there is a challenge
when we deal with a large number of individual forecasts and few time observations. The
estimation uncertainty could compromise the results, or we might not even be able to esti-
mate the model if we have more individual forecasts than observations.

A solution adopted in the literature to combine multiple potentially biased forecasts
avoiding over-parameterization has been to use the average forecast directly. After de-
composing individual forecast errors into time-fixed forecast bias, time-varying aggregate
uncertainty of the forecasts, and idiosyncratic terms, Palm and Zellner (1992) average equa-
tions over cross-sectional dimension and obtains a combination that corrects for additive
(intercept) bias. Using panel-data sequential asymptotics, Issler and Lima (2009) show that
a bias-correction average forecast (BCAF) obtained via average forecast error is equivalent
to the conditional expectation and has an optimal limiting mean-squared error. However, if
there is not only additive but also multiplicative (slope) bias, the correction only for intercept
bias (BCAF) is no longer optimal. Capistrán and Timmermann (2009) considers both addi-
tive and multiplicative bias for bias-adjusting the equal-weighted forecast. Gaglianone and
Issler (2023) propose an extended bias-corrected average forecast (EBCAF), which also con-
siders the correction for both types of biases. Additionally, they highlight the implications
of the existence of public and private information for the combination of forecasts.

We propose time-varying (extended) bias-corrected average forecast models (TV-BCAF
and TV-EBCAF), which account for intercept and slope biases varying over time. Initially,
we consider some time variation by means of OLS estimation based on rolling windows. We
apply the procedure to different sets of individual forecasts for Brazilian inflation, including
the median of available inflation expectations from the Focus survey (the Focus consen-
sus) and forecasts generated by models discussed in Boaretto and Medeiros (2023). We find
that rolling-window-based models perform well, particularly for short windows when fore-
casting inflation at shorter and intermediate horizons (one to six months ahead). We then
propose a state-space model that uses the recursiveness of the Kalman filter to obtain time-
varying intercept and slope biases. This approach avoids the need for a discretionary choice
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of the rolling window size. Overall, models based on the Kalman filter including both types
of biases perform slightly worse than some rolling window-based procedures. However,
we encourage exploring variations in the specification of the state-space models and finding
alternatives for reducing the variance of the estimated time-varying biases.

Outline. This paper comprises four additional sections following this Introduction. Sec-
tion 2 outlines some extant procedures in the literature for correcting biases and presents
their results. Section 3 describes models considering time-varying bias correction for both
intercept and slope. In Section 4, we present and analyze the forecast performances of mod-
els that incorporate time-varying bias, while comparing them to traditional combination
methods. Section 5 brings the final considerations of this paper. Appendix A provides a
brief description of the Kalman filter while Appendix B contains figures displaying the tem-
poral evolution of intercept bias estimated via different approaches.

2 Methodologies for combining forecasts

For a given period T and a forecast horizon of h months ahead, consider a set of N infla-
tion forecasts designated by {π̂i, T+h | T : i = 1, . . . , N}. Each individual forecast is generated
by a model or comes from a survey of experts, for example. For simplicity, we will treat
all original forecasts as coming from an unknown model. For a survey of forecasts, this is
natural. For projections originating from estimated models, this is a strong simplification.
However, it does away with the difficulties inherent in considering a combination of models
rather than a combination of forecasts whose generating process is unknown. Furthermore,
the practitioner wants to know whether a combination of forecasts generates empirically
satisfactory results.

2.1 Average forecast

The simplest way to combine forecasts is to compute the average of the available fore-
casts. Thus, we compute

π̂ av
T+h | T =

1
N

N

∑
i=1

π̂i, T+h | T. (1)

The main advantage of this approach is that it does not require the estimation of weights
for available forecasts, which would require training-sample observations. In this setup, the
big challenge would be to obtain stable weights over time since we have a small sample of
individual forecasts. On the other hand, in the average forecast, the weights assigned to
individual forecasts are equal to 1

N . However, one of the main drawbacks of the average
forecast is that assigning the same weight to inaccurate individual forecasts can lead to a
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sub-optimal combined forecast. That might be true if the set of individual forecasts includes
biased forecasts.

2.2 A bias-corrected average forecast (BCAF)

We can make a modification to achieve an unbiased combined forecast, which is partic-
ularly useful when we potentially consider biased forecasts within the pool of individual
forecasts. As in Issler and Lima (2009), consider Et−h(πt) = E(πt | Ft−h), the expectation of
πt conditional to a information set available at t − h, Ft−h, is an optimal device. Then, the
econometrician’s aim is to approximate this function.

Two-way decomposition or error-component decomposition. Let us consider that an in-
dividual forecast π̂i,t | t−h aims to approximate Et−h(πt). Thus, we can define the approxi-
mation error as

Et−h(πt)− π̂i,t | t−h = δh
i + εh

i,t, i = 1, . . . , N, (2)

where δh
i is the individual model time-invariant bias considering the forecast horizon h, and

εh
i,t is the individual model error term in approximating Et−h(πt) with E(ε̃h

i,t) = 0 for all i, t,
and h. In turn, consider the error for conditional expectation Et−h(πt) given by

πt − Et−h(πt) = θh
t (3)

where θh
t is an unpredictable time-component with Et−h(θ

h
t ) = 0 for all t and h. Finally,

combining (2) and (3), we obtain the forecast error

πt − π̂i,t | t−h = δh
i + θh

t + εh
i,t. (4)

The term δh
i captures a fixed long-term effect on the forecast generated by a model or sur-

vey respondent. The term θh
t captures time effects arising from the lack of future information

between t − h and t, which equally affects all models or respondents. Finally, the term εh
i,t

captures idiosyncratic errors that affect individuals differently over time (Issler and Lima,
2009).

Issler and Lima’s bias-corrected average forecast. Consider the following assumptions:

(i) δh
i , θh

t , and εh
i,t are independent of each other for all i and t;

(ii) δh
i is an identically distributed random variable in the cross-sectional dimensional i

with mean δh and variance σ2
δ ;

(iii) θh
t is a stationary and ergodic MA process of order at most h − 1 with zero mean and

finite variance;

(iv) limited degree of cross-sectional dependence of erros, εh
i,t.
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Under these assumptions, Issler and Lima (2009) show that a bias-corrected average forecast
(BCAF) given by

π̂BCAF
T+h | T = δ̂h + π̂ av

T+h | T, (5)

where

δ̂h =
1
N

N

∑
i=1

δ̂h
i , with δ̂h

i =
1
T

T

∑
t=1

πt −
1
T

T

∑
t=1

π̂i, t−h | t, i = 1, . . . , N.

is an optimal forecasting device. Notice that π̂ av
T+h | T is the average forecast defined in (1).

For the sake of convenience, we define the forecast error in the usual way, i.e., as y − ŷ,
where y is the actual variable and ŷ is a forecast for y. Note that Issler and Lima (2009)
proceed in an inverse way, as is usual in the literature on error-component decomposition
(e.g. Palm and Zellner, 1992). For the model just presented, this difference is not relevant.
The relevant difference, which appears in the presentation of the results in Subsection 2.3, is
that we employ rolling windows of different sizes (including very short ones) to obtain the
intercept bias. The procedure suggested by Issler and Lima (2009) assumes that both N and
T diverge, which is not compatible with limiting ourselves to using only part of the sample
to obtain the bias. However, we also obtain the intercept bias using data in an extended
window, that is, considering all available information, which is closer to Issler and Lima’s
procedure.

Extended error-component decomposition. Now, consider an extended error-component
decomposition in which besides intercept bias, we consider the possibility that there is a
slope bias as well. Therefore, the model is able to capture both additive and multiplicative
biases. In this setup, a decomposition can be written as

Et−h(πt)− βh π̂i,t | t−h = δh
i + εh

i,t, i = 1, . . . , N (6)

πt − Et−h(πt) = θh
t . (7)

By combining the Equations (6) and (7), we obtain a forecast error given by

πt − βh π̂i,t | t−h = δh
i + θh

t + εh
i,t, i = 1, . . . , N. (8)

Averaging (8) over the cross-sectional dimension i and solving for πt yields

πt = δh + βh π̂ av
t | t−h + uh

t , (9)

where uh
t = θh

t + εh
t .

Model (9) is exactly a model estimated in Capistrán and Timmermann (2009), basically
a bias adjustment of the equal-weight forecast. We can also interpret it as an aggregated
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version of the Mincer and Zarnowitz’s (1969) equation used as a first step to test the ratio-
nality of a forecast. In this case, rationality is corroborated under δh = 0 and βh = 1, for
all h. Thus, we can proceed with a test for the hypothesis of the rationality of expectations.
Several papers point to violating the rationality hypothesis. Then, a procedure that adjusts
both intercept and slope bias can be very useful for obtaining an unbiased final forecast. In
this line, for each horizon forecast h, an extended bias-corrected average forecast (EBCAF)
is given by

π̂ EBCAF
T+h | T = δ̂h + β̂h π̂ av

T+h | T, (10)

where δ̂h and β̂h are OLS estimates.

The approach to intercept and slope bias-correction presented here differs from that sug-
gested by Gaglianone and Issler (2023). They also assume that forecasts obey a factor model
with an affine structure and derive a model in which the slope coefficient appears by mul-
tiplying the conditional expectation of πt rather than the average forecast. Suggested by
Issler and Lima (2009), this approach is used in Gaglianone, Issler, and Matos (2017) that,
as recommended by Gaglianone and Issler (2023), stacking the models along the different
forecast horizons to proceed with the estimation using GMM, which can lead to efficiency
gains. Another advance of Gaglianone and Issler (2023) in relation to Issler and Lima (2009)
is to show that the procedure is consistent with T diverging and N being kept fixed. Fi-
nally, due to the possibility of the existence of private information, Gaglianone and Issler
show that the average forecast will be correlated with the error term, so that the aggregate
Mincer-Zarnowitz regression should be estimated using instrumental variables. However,
since in this essay we use the median of the available Focus and forecasts based on public
information, this limits the possibility of endogeneity through the channel raised by the au-
thors. Along these lines, the main theoretical problem with our approach remains the fact
that we know the generating process of model-based forecasts.

2.3 Results of a pseudo-out-of-sample forecast exercise

Setup. We set January 2015 as the starting point for generating combined forecasts to en-
sure we have at least 25 time periods available when we use a bias-corrected average forecast
(BCAF) based on extending windows since individual forecasts began in January 20121 (see
Boaretto and Medeiros, 2023). We explore BCAF models implemented with rolling windows
of different lengths: 3, 6, 7, 8, 9, 10, 12, and 24 months. However, to avoid redundancy, be-
sides the average forecast, and BCAF and EBCAF models based on expanding windows, we
report results for BCAF based on rolling windows of 3, 6, 8, 9, and 12 months. We choose
the root mean squared error (RMSE) as the metric to evaluate the accuracy of forecasting

1 Initially, there are a total of 25 periods available for h = 12 since the 12-month-ahead forecast for Jan/2015
is calculated in Feb/2014. On the other hand, note that there are 36 available periods for h = 0.
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results. All out-of-sample RMSE are normalized with respect to the median of the available
Focus survey’s inflation expectations. We also report the RMSE ratio of the median of the
ex-post Focus survey’s inflation expectations.

Forecast performance. Table 1 presents results for the period from January 2015 to June
2022. Forecast performance varies depending on the forecast horizon and the rolling win-
dow length. For nowcasting (h = 0), no forecast combination outperforms the median of
ex-post Focus’ inflation expectations (Panel A). For longer horizons (h ⩾ 6), the average
forecast (Panel B) exhibits the best performances. For intermediate horizons (1 ⩽ h ⩽ 7),
the BCAF models based on rolling windows of 6, 8, 9, and 12 months (Panels D to G) regis-
ter good predictive performances. Notably, for this subset of horizons and rolling window
sizes, the predictive accuracy for shorter horizons improves as the rolling window size in-
creases.

However, choosing the rolling window size can be challenging for the econometrician.
In addition, it is important to note that, despite being numerically superior for some hori-
zons, most of the bias-correction-based combinations results are not statistically significant
compared to the predictive performance of the median of available Focus’ expectations, ac-
cording to Diebold-Mariano tests. These forecasts would also not be statistically superior to
the average forecast without bias correction. Despite this, the results highlight the impor-
tance of considering the possibility of bias in the average forecast for short and intermediate
horizons, as well as the possibility that this bias varies over time. The lack of statistical
significance may be associated with estimation uncertainty, which is enlarged when consid-
ering fewer observations, which suggests a trade-off in defining the rolling window size: a
smaller window can better capture variations in time but can increase the estimation insta-
bility.

Regarding the set of individual forecasts employed, the set comprising forecasts specif-
ically generated for aggregate inflation, which includes the median of Focus’ expectations
(displayed in the initial rows of Panels B to I in Table 1), yields the most favorable fore-
cast outcomes compared to alternative sets of individual forecasts. In certain instances, the
use of indirect forecasts formed through the aggregation of forecasts for BCB disaggregates
(namely, administered, tradable, and non-tradable items) produces combined forecasts ex-
hibiting predictive performance that closely approximates those obtained when utilizing the
set of direct forecasts to compute the combinations.
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Table 1: Out-of-sample RMSE ratio for average forecast and BCAF and EBCAF models with
respect to the available Focus: Jan/2015 to Jun/2022

Method/Forecasts h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10 h = 11

A. Survey

Focus (available) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Focus (ex-post) 0.931 ∗∗∗ 0.972 ∗∗∗ 0.993 ∗∗∗ 1.001 1.000 1.000 1.000 0.999 0.999 ∗ 1.000 1.001 1.001

B. Average forecast

Aggregates & Focus 1.215 0.989 0.953 ∗∗ 0.971 ∗ 0.982 0.970 0.939 ∗∗ 0.928 ∗∗∗ 0.930 ∗∗ 0.935 ∗∗ 0.968 ∗ 0.986
BCB & Focus 1.208 1.004 0.967 0.989 0.994 0.977 0.945 ∗∗ 0.951 ∗ 0.948 ∗∗ 0.950 ∗∗ 0.973 0.985
Groups & Focus 1.341 1.049 0.971 0.991 0.984 0.968 0.968 0.950 ∗ 0.953 ∗ 0.976 0.975 0.992
Subgroups & Focus 1.514 1.110 1.026 1.031 1.019 0.998 0.973 0.960 0.977 0.996 1.016 1.026
All & Focus 1.317 1.033 0.974 0.991 0.990 0.972 0.949 ∗∗ 0.940 ∗∗ 0.945 ∗ 0.957 ∗ 0.977 0.993

C. Bias-corrected average forecast (BCAF) with rolling windows of 3 months

Aggregates & Focus 1.340 1.116 1.087 1.096 1.083 1.041 0.982 0.972 0.995 1.047 1.122 1.183
BCB & Focus 1.378 1.132 1.077 1.100 1.067 1.028 0.967 0.967 0.993 1.045 1.118 1.146
Groups & Focus 1.499 1.198 1.106 1.138 1.093 1.049 1.012 0.977 0.984 1.068 1.130 1.163
Subgroups & Focus 1.627 1.240 1.152 1.142 1.097 1.055 1.010 0.979 1.008 1.079 1.161 1.206
All & Focus 1.463 1.175 1.107 1.121 1.084 1.041 0.989 0.972 0.994 1.058 1.130 1.173

D. Bias-corrected average forecast (BCAF) with rolling windows of 6 months

Aggregates & Focus 1.261 1.029 0.979 0.969 0.957 0.943 0.932 0.961 0.994 1.040 1.096 1.135
BCB & Focus 1.283 1.056 0.974 0.977 0.953 0.936 0.931 0.977 1.009 1.049 1.106 1.116
Groups & Focus 1.407 1.108 1.001 1.006 0.968 0.938 0.944 0.969 1.008 1.091 1.121 1.136
Subgroups & Focus 1.562 1.157 1.045 1.021 0.983 0.957 0.951 0.974 1.035 1.103 1.157 1.183
All & Focus 1.380 1.091 1.000 0.992 0.962 0.939 0.935 0.968 1.010 1.069 1.118 1.142

E. Bias-corrected average forecast (BCAF) with rolling windows of 8 months

Aggregates & Focus 1.235 0.980 0.914 ∗ 0.924 0.942 0.950 0.944 0.958 0.991 1.035 1.089 1.128
BCB & Focus 1.266 1.003 0.913 ∗ 0.935 0.946 0.955 0.952 0.983 1.012 1.050 1.100 1.114
Groups & Focus 1.380 1.053 0.937 0.958 0.947 0.942 0.961 0.975 1.016 1.094 1.117 1.139
Subgroups & Focus 1.531 1.098 0.982 0.975 0.965 0.965 0.963 0.976 1.043 1.108 1.157 1.186
All & Focus 1.354 1.035 0.935 0.946 0.946 0.949 0.951 0.971 1.014 1.070 1.114 1.141

F. Bias-corrected average forecast (BCAF) with rolling windows of 9 months

Aggregates & Focus 1.209 0.958 0.904 ∗ 0.924 0.955 0.958 0.945 0.964 0.993 1.039 1.093 1.127
BCB & Focus 1.239 0.979 0.907 ∗ 0.936 0.961 0.966 0.955 0.991 1.015 1.052 1.103 1.116
Groups & Focus 1.355 1.030 0.925 0.955 0.954 0.949 0.961 0.983 1.019 1.097 1.120 1.140
Subgroups & Focus 1.500 1.074 0.972 0.973 0.973 0.972 0.963 0.985 1.047 1.113 1.163 1.185
All & Focus 1.327 1.011 0.925 0.945 0.957 0.958 0.951 0.978 1.016 1.074 1.118 1.141

G. Bias-corrected average forecast (BCAF) with rolling windows of 12 months

Aggregates & Focus 1.194 0.976 0.933 0.957 0.983 0.979 0.968 0.988 1.019 1.058 1.109 1.144
BCB & Focus 1.215 0.995 0.935 0.967 0.991 0.992 0.981 1.016 1.040 1.071 1.122 1.137
Groups & Focus 1.331 1.043 0.953 0.976 0.973 0.967 0.986 1.009 1.044 1.113 1.137 1.158
Subgroups & Focus 1.468 1.084 0.998 0.996 0.994 0.993 0.991 1.012 1.074 1.133 1.179 1.196
All & Focus 1.303 1.025 0.954 0.972 0.982 0.980 0.977 1.004 1.042 1.092 1.135 1.158

H. Bias-corrected average forecast (BCAF) with expanding windows

Aggregates & Focus 1.217 0.987 0.954 ∗ 0.972 0.986 0.976 0.953 ∗ 0.948 ∗ 0.957 0.969 1.005 1.025
BCB & Focus 1.216 1.008 0.974 1.001 1.010 0.996 0.971 0.982 0.981 0.986 1.012 1.024
Groups & Focus 1.350 1.057 0.979 1.005 1.002 0.990 0.995 0.982 0.992 1.020 1.020 1.034
Subgroups & Focus 1.520 1.112 1.033 1.045 1.041 1.024 1.003 0.996 1.018 1.045 1.070 1.079
All & Focus 1.324 1.038 0.981 1.003 1.007 0.993 0.975 0.972 0.982 1.000 1.023 1.038

I. Extended bias-corrected average forecast (EBCAF) with expanding windows

Aggregates & Focus 1.074 0.967 0.967 0.987 1.013 1.009 0.996 0.998 1.016 1.028 1.039 1.090
BCB & Focus 1.139 0.990 0.986 1.013 1.026 1.007 0.984 0.998 0.997 0.996 1.017 1.046
Groups & Focus 1.208 1.046 0.987 1.019 1.019 1.005 1.009 1.005 1.009 1.028 1.025 1.034
Subgroups & Focus 1.302 1.120 1.049 1.045 1.043 1.030 1.002 0.996 1.011 1.031 1.069 1.056
All & Focus 1.153 1.023 0.995 1.017 1.027 1.013 0.998 1.004 1.011 1.026 1.046 1.069

Notes: ∗∗∗, ∗∗, and ∗ indicate that for a specific forecast horizon, a forecast combination “comb” performed
statistically better than the median of the available Focus at 1, 5, and 10% significance levels in a one-tailed
Diebold-Mariano test with H0 : MSE

(
π̂comb

t+h | t

)
= MSE

(
πFocus

t+h | t

)
versus H1 : MSE

(
π̂comb

t+h | t

)
< MSE

(
πFocus

t+h | t

)
.

The two values highlighted in bold blue indicate the best and second-best methods for each horizon in terms
of out-of-sample RMSE, while the six values in blue italics indicate the third- to eighth-best methods. All sets
of individual forecasts included the median of the Focus survey’s inflation expectations.
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3 Time-varying bias correction for the average forecast

Analyzing the Brazilian Focus survey of forecasts for inflation, Carvalho and Minella
(2012) note that there is empirical evidence for the existence of common forecast errors pre-
vailing over idiosyncratic components among respondents. Moreover, they highlight the
influence exerted by top-performing forecasters on other respondents, indicating a contam-
ination phenomenon known as the epidemiology of the survey forecasts. Beyond that, the
results of the preceding section reveal performance disparities in the bias-corrected average
forecast when considering different sizes of rolling windows for bias estimation, as well as
variations across forecast horizons. This prompts the hypothesis that biases vary over time,
potentially possessing a certain degree of predictability. To verify this proposition, we in-
troduce time-varying terms into the decomposition of individual forecasts. For the sake of
simplicity and in line with Carvalho and Minella (2012), we assume that this term, which
engenders temporal variations in biases, is common to all respondents and models. In prac-
tice, since we focus on the average forecast, questioning the adequacy of this hypothesis
becomes a secondary concern.

3.1 Including a time-varying intercept bias
Error-component decomposition with time-varying intercept bias. Consider a new de-
composition given by

Et−h(πt)− π̂i,t | t−h = δh
i + µh

t + εh
i,t, i = 1, . . . , N (11)

µh
t = µh

t−h + νh
t (12)

πt − Et−h(πt) = θh
t (13)

where we add a time-varying term µt common to all respondents or models in the individ-
ual forecast decomposition (Equation 11). Equation (12) indicates that this common term
follows a random walk process – a common assumption in the literature on time-varying
parameters –, and error term νh

t independent and identically distributed with zero mean.
Lastly, notice that the decomposition of the conditional expectation using information avail-
able up to t − h (Equation 13) is identical to the former (Equation 3). By combining the
Equations (11) and (13), we obtain a forecast error given by

πt − π̂i,t | t−h = δh
i + µh

t + θh
t + εh

i,t, i = 1, . . . , N. (14)

State-space representation. Averaging Equation (14) over i, we obtain a forecast error
given by

πt − π̂ av
t | t−h = δh + µh

t + θh
t + εh

t , (15)
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where π̂ av
t | t−h = 1

N ∑N
i=1 π̂i,t | t−h, such as defined in Equation (1), δh = 1

N ∑N
i=1 δh

i , and εh
t =

1
N ∑N

i=1 εh
i,t. By defining αh

t = δh + µh
t and uh

t = θh
t + εh

t , and isolating πt, we can rewrite
Equations (15) and (12) in a state-space representation given by

πt = αh
t + π̂ av

t | t−h + uh
t (16)

αh
t = αh

t−h + νh
t (17)

Notice that αh
t is a time-varying average intercept bias, and uh

t and νh
t are error terms.

For identification purposes, we complete the state-space representation assuming the fol-
lowing distribution for disturbances uh

t and νh
t :(

uh
t

νh
t

)
∼ N

(
0, diag

(
σ2

u, σ2
ν

))
, (18)

where we omitted the indication of the forecast horizon h in the variances.

Time-varying BCAF (TV-BCAF). Considering a sample with T temporal observations, we
can estimate the system composed by the Equations (16), (17), and (18) by maximum like-
lihood using the Kalman filter recursion. A time-varying bias-corrected average forecast is
given by

π̂ TV-BCAF
T+h | T = α̂h

T+h | T + π̂ av
T+h | T,

where α̂h
T+h | T is a predict value for state variable αh

T+h, recovered using the Kalman filter.

3.2 Adding a time-varying slope bias

Extended error-component decomposition with time-varying intercept and slope bias.
Lastly, consider a full error-component decomposition in which besides time-varying inter-
cept bias, we consider the possibility that there is a time-varying slope bias as well. There-
fore, the model is able to capture both additive and multiplicative bias. In this setup, the
decomposition system is

Et−h(πt)− βh
t π̂i,t | t−h = δh

i + µh
t + εh

i,t, i = 1, . . . , N (19)

µh
t = µh

t−h + νt (20)

βh
t = βh

t−h + ηt (21)

πt − Et−h(πt) = θh
t (22)

where νt and ηt are independent error terms. Notice that we already assume, by parsimony,
that both time-varying intercept and slope bias follow random walk processes.
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By combining the Equations (19) and (22), we obtain a forecast error

πt − βh
t π̂i,t | t−h = δh

i + µh
t + θh

t + εh
i,t, i = 1, . . . , N. (23)

State-space representation. Averaging Equation (23) over the cross-sectional dimension i
and solving for πt yields

πt = δh + µh
t + βh

t π̂ av
t | t−h + θh

t + εh
t , (24)

By defining αh
t = δh + µh

t and uh
t = θh

t + εh
t , for t = 1, . . . , T, we can write a state-space model

given by

πt = αh
t + βh

t π̂ av
t | t−h + uh

t

αh
t = αh

t−h + νh
t

βh
t = βh

t−h + ηh
tuh

t

νh
t

ηh
t

 ∼ N
(

0, diag
(
σ2

u, σ2
ν , σ2

η

))
,

where, likewise as before, we assume a multivariate normal distribution for (independent)
disturbances uh

t , νh
t , and ηh

t .

Time-varying EBCAF (TV-EBCAF). Just like before, considering a sample for t = 1, . . . , T,
we estimate {αh

t , βh
t }t by maximum likelihood using the Kalman filter recursion. Thus, a

version of time-varying extended bias-corrected average forecast is given by

π̂ TV-EBCAF
T+h | T = α̂h

T+h | T + β̂h
T+h | T π̂ av

T+h | T,

where α̂h
T+h | T and β̂h

T+h | T are predict values for state variables αh
T+h and βh

T+h, respectively,
both recovered using the Kalman filter.

3.3 Estimation

Just like before, we set January 2015 as the starting point for generating combined fore-
casts for all horizons. The sample for estimation begins in January 2012. To ensure the
positivity of the error term variances, we impose an exponential form given by σ2 = exp(τ),
where τ is a parameter to be estimated by maximum likelihood. In the TV-BCAF and TV-
EBCAF models, there are two and three parameters to assess, respectively. To initialize the
maximum likelihood estimator, we consider the OLS estimates generated from linear mod-
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els with time-fixed parameters and the first 36 available observations, when applicable.2

Thus, the initial values of the time-varying parameters (TPVs) are the OLS estimates for the
coefficients of this initial stage. The starting variance-covariance matrix of TVPs corresponds
to the conventional estimator for the variance-covariance matrix of parameters in the initial
model. For the variance of error terms of the measurement equation, we use the variance
of residuals from the initial model estimated by OLS. Finally, we set the initial variance of
a state equation error to be 0.22 = 0.04. We employ a quasi-Newton method (BFGS) as the
optimization algorithm.

4 Results and discussion

Table 2 exhibits results of survey-based expectations, average forecast, BCAF based on
both 9-month rolling windows and expanding windows, EBCAF based on expanding win-
dows, and TV-BCAF and TV-EBCAF models for the period from January 2015 to June 2022.
Figure 1 shows the evolution over time and by forecast horizon of actual inflation and fore-
casts resulting from some combination of forecasts considering the set of individual fore-
casts for the aggregate inflation (direct forecasting approach), including the available Focus
consensus.

Firstly, it can be observed that the TV-BCAF models, which only include time-varying
intercept bias (no slope bias), do not perform well with respect to their counterparts based
on 9-month rolling windows or expanding windows and average forecast: almost all RMSE
ratios are higher across forecast horizons and individual forecast sets addressed. Looking at
the evolution of the forecasts obtained by the TV-BCAF, these models basically extrapolate
the present forecast error into the future. The forecast error tends to propagate farther into
the future as the forecast horizon extends.

For shorter and intermediate horizons, the inclusion of the time-varying slope bias cor-
rection (TV-EBCAF model) produces improvements compared to the model that solely in-
corporates a time-varying intercept bias. Although the TV-EBCAF model’s numerical per-
formance falls slightly behind the model that corrects only for intercept bias using a 9-month
estimation window, there are marginal improvements when compared to the EBCAF model
based on extended windows. This outcome suggests that a full correction for time-varying
biases can be advantageous for inflation forecasting. When comparing the forecasts gener-
ated by TV-BCAF and TV-EBCAF models, we observe that the latter carries fewer ex-post
errors forward, except for a noticeable overprediction of inflation in 2016 and 2017. It is
worth noting that for more distant horizons, the prominent positive bias, in early 2019, and
negative bias, in early 2020, are mitigated to some extent in the case of the TV-EBCAF model

2As explained in the Footnote 1, for early periods, we may have fewer than 36 observations for some hori-
zons. For example, in Jan/2015, only 25 stayed available for horizon h = 12. However, starting from Jan/2016,
there are 36 starting observations available for all horizons.
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Table 2: Out-of-sample RMSE ratio for average forecast and time-varying BCAF and
EBCAF models with respect to available Focus: Jan/2015 to Jun/2022

Method/Forecasts h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10 h = 11

A. Survey

Focus (available) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Focus (ex-post) 0.931 ∗∗∗ 0.972 ∗∗∗ 0.993 ∗∗∗ 1.001 1.000 1.000 1.000 0.999 0.999 ∗ 1.000 1.001 1.001

B. Average forecast

Aggregates & Focus 1.215 0.989 0.953 ∗∗ 0.971 ∗ 0.982 0.970 0.939 ∗∗ 0.928 ∗∗∗ 0.930 ∗∗ 0.935 ∗∗ 0.968 ∗ 0.986
BCB & Focus 1.208 1.004 0.967 0.989 0.994 0.977 0.945 ∗∗ 0.951 ∗ 0.948 ∗∗ 0.950 ∗∗ 0.973 0.985
Groups & Focus 1.341 1.049 0.971 0.991 0.984 0.968 0.968 0.950 ∗ 0.953 ∗ 0.976 0.975 0.992
Subgroups & Focus 1.514 1.110 1.026 1.031 1.019 0.998 0.973 0.960 0.977 0.996 1.016 1.026
All & Focus 1.317 1.033 0.974 0.991 0.990 0.972 0.949 ∗∗ 0.940 ∗∗ 0.945 ∗ 0.957 ∗ 0.977 0.993

C. Bias-corrected average forecast (BCAF) with rolling windows of 9 months

Aggregates & Focus 1.209 0.958 0.904 ∗ 0.924 0.955 0.958 0.945 0.964 0.993 1.039 1.093 1.127
BCB & Focus 1.239 0.979 0.907 ∗ 0.936 0.961 0.966 0.955 0.991 1.015 1.052 1.103 1.116
Groups & Focus 1.355 1.030 0.925 0.955 0.954 0.949 0.961 0.983 1.019 1.097 1.120 1.140
Subgroups & Focus 1.500 1.074 0.972 0.973 0.973 0.972 0.963 0.985 1.047 1.113 1.163 1.185
All & Focus 1.327 1.011 0.925 0.945 0.957 0.958 0.951 0.978 1.016 1.074 1.118 1.141

D. Bias-corrected average forecast (BCAF) with expanding windows

Aggregates & Focus 1.217 0.987 0.954 ∗ 0.972 0.986 0.976 0.953 ∗ 0.948 ∗ 0.957 0.969 1.005 1.025
BCB & Focus 1.216 1.008 0.974 1.001 1.010 0.996 0.971 0.982 0.981 0.986 1.012 1.024
Groups & Focus 1.350 1.057 0.979 1.005 1.002 0.990 0.995 0.982 0.992 1.020 1.020 1.034
Subgroups & Focus 1.520 1.112 1.033 1.045 1.041 1.024 1.003 0.996 1.018 1.045 1.070 1.079
All & Focus 1.324 1.038 0.981 1.003 1.007 0.993 0.975 0.972 0.982 1.000 1.023 1.038

E. Extended bias-corrected average forecast (EBCAF) with expanding windows

Aggregates & Focus 1.074 0.967 0.967 0.987 1.013 1.009 0.996 0.998 1.016 1.028 1.039 1.090
BCB & Focus 1.139 0.990 0.986 1.013 1.026 1.007 0.984 0.998 0.997 0.996 1.017 1.046
Groups & Focus 1.208 1.046 0.987 1.019 1.019 1.005 1.009 1.005 1.009 1.028 1.025 1.034
Subgroups & Focus 1.302 1.120 1.049 1.045 1.043 1.030 1.002 0.996 1.011 1.031 1.069 1.056
All & Focus 1.153 1.023 0.995 1.017 1.027 1.013 0.998 1.004 1.011 1.026 1.046 1.069

F. Time-varying bias-corrected average forecast (TV-BCAF)

Aggregates & Focus 1.233 1.005 1.018 1.040 1.070 1.049 0.995 0.989 1.001 1.052 1.121 1.184
BCB & Focus 1.226 1.026 1.005 1.034 1.040 1.018 0.953 0.959 0.975 1.030 1.104 1.134
Groups & Focus 1.364 1.103 1.044 1.079 1.067 1.019 1.004 0.991 0.975 1.056 1.110 1.149
Subgroups & Focus 1.512 1.157 1.122 1.114 1.096 1.025 0.993 0.993 0.996 1.068 1.142 1.194
All & Focus 1.336 1.079 1.062 1.072 1.071 1.026 0.987 0.987 0.986 1.049 1.120 1.166

G. Time-varying extended bias-corrected average forecast (TV-EBCAF)

Aggregates & Focus 1.087 0.998 0.948 0.973 1.009 0.977 0.957 0.970 1.016 1.053 1.084 1.146
BCB & Focus 1.145 1.000 0.972 0.984 1.018 1.013 0.947 0.960 0.981 1.019 1.099 1.123
Groups & Focus 1.211 1.086 0.985 1.024 0.993 0.964 0.970 0.968 0.969 1.018 1.088 1.133
Subgroups & Focus 1.330 1.135 1.044 1.087 1.066 0.952 0.997 1.000 0.964 1.013 1.100 1.145
All & Focus 1.156 1.046 0.986 0.989 0.979 0.971 0.956 0.973 0.988 1.037 1.089 1.163

Notes: see Table 1.

compared to the TV-BCAF model. This highlights the importance of incorporating a slope
bias in the time-varying bias-correction approach.

By assuming a random walk process for the time-varying bias, we expect the forward
loading of ex-post forecast errors. In this regard, we are investigating alternative specifica-
tions that incorporate an autoregressive (AR) model with a non-zero intercept and an AR
term smaller than one for the states. However, the results obtained so far are not satisfac-
tory. We are considering specifications that deviate from the traditional local-level model
or assumptions regarding the random walk process for latent variables. It is important to
preserve parsimony in specifying a state-space model since the estimation of these models
may suffer from severe instabilities, along with difficulties associated with identification.

Finally, an important finding of our essay is the lack of statistical superiority of most
forecasts generated by bias correction models. Although, on average, some models present

13



Figure 1: Forecasts generated by selected combinations considering the set of individual
forecasts for aggregate directly, by horizon
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a lower RMSE ratio than the average forecast, traditional models with fixed biases or models
based on time-varying bias hardly demonstrate statistically superior performance compared
to the Focus consensus. This outcome may be attributed to various factors. Firstly, the
improved performance of bias-corrected procedures may be closely linked to the period of
the COVID-19 pandemic, characterized by higher and more volatile inflation. Secondly, the
uncertainty associated with parameter estimation in the less parsimonious corrected-bias
models could offer another potential explanation. More specifically, models incorporating
time-varying bias display a notable divergence of estimators for these latent variables, as
evidenced by the variance-covariance matrix of the states. In practical terms, this instability
in estimation over time leads to the occurrence of atypical forecasts, thereby hindering the
achievement of statistical significance.

5 Final considerations

In this essay, we introduce a model for correcting the bias in the average forecast, which
allows both intercept and slope biases to vary over time. Initially, we proceed with an es-
timation based on rolling windows of different lengths. Such models allow the parameters
to oscillate over time to a greater degree than the variation that occurs in a procedure based
on extended windows. Applying the procedure to different sets of individual inflation fore-
casts, we find good predictive results for these rolling-window-based models, particularly
for windows ranging from 6 to 12 months in the case of intermediate forecast horizons (one
to six months ahead). Based on this result, we suggest a state-space model that allows for
obtaining time-varying bias components using all available information, that is, without the
need to define ad-hoc a window size. Overall, the model that includes corrections for inter-
cept and slope bias varying over time tends to perform slightly worse than rolling-window-
based procedures. However, it is worth investigating other specifications for the state-space
model and alternatives for reducing the variance of the estimated time-varying biases.
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Appendix A Kalman filter

Following Hamilton (1994, Chapter 13) and Elliott and Timmermann (2016, Appendix
A), let yt be a n-dimensional vector of (observable) variable observed at period t, and ξ

be a r-dimensional vector of state (unobservable) variables. Consider a generic state-space
model consisting of a measurement equation, a state equation, and a perturbation equation
as follows:

yt = H ξt + εt

ξt = F ξt−h + νt(
εt

νt

)
∼ N

(
0,

[
Q 0
0 P

])
,

where H and F are matrices of parameters, Q and P are covariance matrices, and εt and νt

are independent vectors of white noise. Given starting values ξ̂h | 0 and Ph | 0, we recursively
compute the following values until we get to ξ̂t+h | t and Pt+h | t, and then compute ŷt+h | t. We
estimate the parameters in the matrices F, H, Q, and P employing the maximum likelihood
estimator combined with the recursiveness of the Kalman filter.
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Appendix B Forecast error and estimated intercept bias

Figure B.1: Forecast error and estimate intercept bias over time: from h = 0 to h = 3, by set of forecasts
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Figure B.2: Forecast error and estimate intercept bias over time: from h = 4 to h = 7, by set of forecasts
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Figure B.3: Forecast error and estimate intercept bias over time: from h = 8 to h = 11, by set of forecasts
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