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Abstract

This study has the objective of search and study materials with well-suited properties in material science and
engineering on the subject of adsorption, focusing on the storage of new combustibles like hydrogen. As a result of the
compatibility and the needs of this task zeolite structures were chosen to be the material of study because of their high
adsorption capacity, chemical and thermal stability. The research of the best structures among the zeolites was made by
the use of machine learning, substituting the need of experimental tests, using as algorithm parameters data of energy
histograms created by calculating the potential energies of the intermolecular interactions of a hydrogen molecule in 1e5
random points inside the zeolite structures. To make this research 42 zeolite structures of IZA database were chosen
randomly to make the energy histograms and feed the machine learning algorithm, resulting in two trained models with
great capacity to evaluate the performance of the structures in H2 storage.
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1. Introduction

In materials science, zeolites play a crucial role
due to their unique properties, such as high
adsorption capacity and selectivity in separation
processes. The analysis and characterization of
these crystalline structures have traditionally been
performed using experimental methods, which has
proven to be a slow and costly process with the
need to explore new technologies, such as
materials for storage of new fuels like hydrogen,
which is becoming increasingly sought due to the
need for new promising energy sources. Thus, with
the advancement of data science and artificial
intelligence, new approaches are being explored to
optimize and accelerate the study of these
substances.

One emerging method is the use of energy
histograms as input parameters for machine
learning algorithms [1]. Energy histograms, which
represent the distribution of energies associated

with different states or interactions within a
structure, provide detailed information about the
energy configuration of the system. This approach
allows the characteristics of zeolites to be
systematically quantified and transformed into data
that can be processed by algorithms.

In this context, energy histograms stand out as
powerful tools for capturing patterns and
relationships that may be difficult to discern using
traditional methods. Integrating these energy
representations into machine learning algorithms
can facilitate the classification, prediction, and
even discovery of new zeolites with desired
properties. The combination of these innovative
methods promises not only to accelerate the
research process but also to provide a deep
perception into the structure and behavior of
zeolites, significantly expanding the possibilities
for application in various fields of materials
science and engineering.



2. Methodology

2.1. Energy histograms using IZA Database

The energy histograms, used as inputs
(descriptors) for machine learning calculations,
were generated by the energy interactions from a
unitary hydrogen molecule and zeolite structures,
using a python automatic routine. The calculations
systems were formed by a hydrogen molecular
model, a Lennard-Jones center from
Michels-Degraaff-Tenseldam [2], zeolites,
obtained from Database of Zeolite Structures [3],
and a set of forcefield parameters applied,
Universal Forcefield (UFF) [4] with energetics
parameters refined according to Gomes et al. [5].
The zeolite structures, obtained from the database,
were replicated in the directions A, B and C until
the dimension of every direction was bigger or
equal to 30 Å, size superior to double the utilized
cutoff (12,8 Å). The periodic contour condition
was applied on the three directions to simulate the
structure continuity.

We used a methodology to determinate
histograms based on the works of Bucior et al. [1]
e Shi et al. [6] for MOFs. Each zeolite was
researched by one hydrogen molecule inserted in
1e5 random positions, tests with 1e6 random
insertions and net positioning with 1,0 Å of
distancing did not generate meaningful
improvements on the histograms. The energy
interaction from zeolite-hydrogen was calculated
considering only the LJ interactions, using the mix
ruling of Lorentz-Berthelot defining the cross
intermolecular interactions, employing the
Lennard-Jones 12-6 equation (1) being theϵ
cross-well depth, the crossed Van der Waalsσ
radius and the interatomic distance of the atoms:𝑟
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The interaction energies obtained were sorted

according to their values and the quantity of energy
points from each level was normalized by their
frequency, obtaining histograms characterizing the

energy distribution of zeolites. The first energetic
level is formed with all positive potentials and the
other levels formed with negative potentials with
intervals of 1,0 kJ/mol (the second level, for
example, covers the potentials with energetic
values between 0,0 and -1,0 kJ/mol, and
successively).

2.2. Machine Learning

ML models have been constantly being used to
predict physical properties based on the algorithm
feed. In this work we proposed the use of energy
histograms as a descriptor, according to the energy
potentials range [KJ/mol], to predict isotherms of
adsorption of H2 in zeolites.

Table 1. Used descriptors
Descriptor Description
E [KJ/mol] 10 Energy potential ranges
P [KPa] Pressure

Every descriptor passed by a normalization step
Min-Max [7], to maintain the inputs in the same
scale (0.1 to 0.9), according to the equation (2).

α
𝑛

= 0. 8
α−α

𝑚𝑖𝑛

α
𝑚𝑎𝑥

−α
𝑚𝑖𝑛

( ) + 0. 1 (2)

Which is a normalized variable, is aα
𝑛

α 

variable to be normalized and the subscripts 𝑚𝑖𝑛
and are respectively the minimum and𝑚𝑎𝑥
maximum values of the descriptors in question.

Four distinct ML models associated with the
libraries Scikit-learn, XGBoost e Tensorflow were
evaluated by the programming language Python 3.
Two of the models were based in mathematical
functions: Polynomial Regression (PR) and
Artificial Neural Network (ANN); and the other
two were based in decision trees: Random Forest
(RF) and Xtreme Gradient Boost (XGB).



3. Results and discussion

To generate the zeolite adsorption isotherms to
compose the ML dataset, we previously made the
forcefield refine to be used on the simulations.
Validation was made in basis of the accord of
simulated results and the experimental hydrogen
isotherms on 298 K and well-known zeolites, just
as NaX and an LSX-Li, both zeolite structures of
FAU, an all-silica MFI and an LTA-Na.

The experimental isotherms reproducibility was
observed when the energy parameters of Si and Al
corresponded to 50% of the integral value of UFF,
displayed by the Figure 1 example. This reduction
can be justified by the lower interaction of
adsorbate and bigger pore zeolites, have in mind
the bigger the diameter of the larger sphere that
can diffuse along a structure the lower is the
interaction between adsorbate and adsorbent (as
example, the diameter of the bigger sphere that can
diffuse along LTA-Na is 4.2 Å, while the FAU
zeolite this parameter is 7.35 Å.

Fig. 1. Forcefield validation

The graphic results from the python routine
consist of an energy frequency histogram and a 2D
energy colorimetric map with Z lengths as layers,
just as shown in Figures 2 and 3.

Fig. 2. Energy frequency histogram

Fig. 3. 2D energy colorimetric map

To train these four models with energy
histograms, we checked the accuracy by the
accumulated frequency percentage of absolute
relative error of the test data (Figure 4). The three
models with best performance observed: RF, XGB
and ANN, having emphasis in the XGBoost model
in accord to the decision tree, with around 90% of
the predicted data displaying relative error absolute
inferior to 15%.

A diagram of equality was plotted between the
simulated data and the predicts by the XGBoost
algorithm, was possible to verify low dispersion
points around the bissetrix, with determination
parameter (R2) equal to 0.985 on the test group
(Figure 5).



Fig 4. Accumulated frequency – test data.

Fig 5. Prediction results for the XGB model.

4. Conclusion

On the analysis of the energy histograms
made for 42 zeolites structures of the IZA
database was noticed that the structures of
LTAS3 and NaX showed a higher frequency
on their energy distribution.

The models ANN and XGB were displayed
satisfactory statically to predict the adsorption
isotherms on zeolites. Therefore, the trained
model has the capacity to evaluate the
performance of the structures on the IZA
database to store H2, significantly reducing the

costs of time and resources on the choice of
the better material.
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