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Abstract. This study investigates the practice of experts aggregating forecasts before informing a

decision-maker. The significance of this subject extends to various contexts where experts inform

their assessments to a decision-maker following discussions with peers. My findings show that,

irrespective of the information structure, aggregation rules introduce no bias to decision-making in

expected terms. Nevertheless, the concern revolves around variance. In situations where experts

are equally precise, and pair-wise correlation of forecasts is the same across all pairs of experts, the

network structure plays a pivotal role in decision-making variance. For classical structures, I show

that star networks exhibit the highest variance, contrasting with d-regular networks that achieve

zero variance, emphasizing their efficiency. Additionally, by employing the Poisson random graph

model under the assumptions of a large network size and a small connection probability, the results

indicate that both the expected Network Bias and its variance converge to zero as the network size

becomes sufficiently large. These insights enhance the understanding of decision-making under

different information, network structures and aggregation rules. They enrich the literature on

combining forecasts by exploring the effects of prior network communication on decision-making.
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1. Introduction

The practice of combining forecasts is adopted to enhance forecast accuracy by aggregating

information from diverse sources. Even simple combination methods have demonstrated efficacy

comparable to more intricate approaches under specific circumstances (Wang, Hyndman, Li, and

Kang, 2023; Timmermann, 2006). The foundational work of Bates and Granger (1969) played a

pivotal role in popularizing the concept of forecast combinations, initiating a rich strand of research
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that has spanned over half a century. Their seminal contribution firmly established the value of

forecast combinations. However, the practice of combining forecasts presents several challenges,

including situations characterized by consensus among forecasts, substantial divergence, forecast

dependence, uncertainties regarding forecast characteristics, instability in the forecasting process,

concerns about robustness, and group interaction.

Within the realm of group interaction, important drawbacks emerge, such as the susceptibility

of the group to unwarranted influence from dominant agents. This exposure could undermine the

collaborative benefits of combining forecasts. According to Winkler (1989), valuable insights can

be gained by comparing the outcomes of group processes, mechanically combined forecasts, and

sequential processes that integrate both mechanical combination and group interaction at different

stages. Despite the extensive body of research, the current scholarship does not conclusively

delineate the ultimate consequences of forecast pooling practices under the possibility of prior experts

interaction. Thus, this study examines the effects on decision-making when experts engage in non-

strategic pooling of forecasts before presenting them to the decision-maker. Particular emphasis

is placed on scenarios where two classical pooling methods–Linear and Bayesian–are employed

by experts and the decision-maker.

Consider the following introductory example, as depicted in Figure 1. Suppose we have three

experts, each providing point forecasts to a decision-maker (external to and unaware of the

network) in three different cases. The nodes in white represent the experts’ forecasts without

network communication, while the nodes in gray represent the experts’ updated forecasts under

network communication, where the updating process is a simple average.

In all cases, if the experts decide not to communicate with other experts, they will provide

their original forecasts (i.e., numbers in the white nodes) to the decision-maker. Conversely,

if they communicate and employ local simple averages of forecasts within their reach before

communicating them to the decision-maker, they will first update their original forecasts (numbers

in gray nodes), and then communicate these updated forecasts to the decision-maker.

For instance, consider Case 1, in which the experts whose forecasts are 1 and 3 (peripheral

nodes) only have access to the expert whose forecast is 5, while the expert with the forecast of 5

(central node) has access to both other experts. If the experts employ simple averages to update

their forecasts, the expert with the initial forecast of 1 will update its forecast to 3 ((1 + 5)/2), the

expert with the initial forecast of 5 will update its forecast to 3 ((1 + 5 + 3)/3), and the expert

with the initial forecast of 3 will update its forecast to 4 ((5 + 3)/2).

Without expert communication, the decision-maker would receive the numbers in the white

nodes, whereas with expert communication, the decision-maker would receive the numbers in
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the gray nodes. If the decision-maker also employs a simple average to aggregate the experts’

forecasts, the final numbers would be different, with or without network communication, i.e.,

(1 + 5 + 3)/3 = 3 (white) and (3 + 3 + 4)/3 = 10/3 ≈ 3.33 (gray). However, Cases 2 and 3,

following the same protocol, illustrate that this difference, which I may refer to Network Bias later,

may vary: 0 in Case 2 and −1/3 in Case 3.

1 5 3

3 3 4

(a) Case 1: diff.: 10/3− 3 = +1/3

1 3 5

2 3 4

(b) Case 2: diff.: 3− 3 = 0

3 1 5

2 3 3

(c) Case 3: diff.: 8/3− 3 = −1/3

Figure 1. Example of when all agents employ a simple average aggregation

White nodes: no network communication (original forecasts).

Gray nodes: with network communication (updated forecasts using simple average)

This specific introductory example illustrates that both network structure and the realization

of forecasts may influence this difference. This paper aims to explain these dynamics in a more

general setting where forecasts and network structure can be random.

The relevance of this topic extends to various contexts where experts provide their assessments

to decision-makers after consulting with peers. For instance, in the field of health, experts play

a crucial role in decisions related to the adoption of new technologies and determining staffing

requirements for medical centers. In this context, experts may exchange information regarding

their estimates before sharing them with medical centers. In law, expert knowledge serves as

evidence in civil proceedings, and experts may establish communication with other experts before

releasing their final statements to the judge. In economics, experts influence both key decisions of

central banks through their insights into inflation expectations and budgetary decisions through

their economic forecasts. In this context, professional forecasters may exchange their forecasts

prior to informing central banks and governments. Finally, the relevance of this study is also

evident in broader contexts, such as general reviews on platforms like Google and Yelp, where

customers may exchange information with other customers before announcing their reviews on

these platforms.

The results indicate that, in expected terms and under the same information structure as-

sumption, prior network communication does not introduce bias into decision-making. However,

variance remains a central concern. When experts are equally precise and the pair-wise correlation

of forecasts is the same, any combination of aggregation rules simplifies to simple averages. In

this case, the network structure becomes a crucial factor influencing decision-making variance.
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Star networks exhibit the highest variance, which increases with the number of experts consulted,

while d-regular networks achieve zero variance, making them particularly efficient structures.

From a random graph perspective, sufficiently large networks mitigate both the bias and vari-

ance problems, regardless of the expected degree of experts, as long as experts’ degrees become

independent as the network size increases. These insights provide a deeper understanding of

the dynamics associated with different information and network structures, as well as various

aggregation rules.

2. Literature review and contribution

The method introduced by Bates and Granger (1969) aimed to determine optimal weights by

minimizing the variance of the combined forecast error, focusing primarily on combinations of

pairs of forecasts. Subsequently, Newbold and Granger (1974) extended this approach to encompass

combinations of more than two forecasts. The optimal weight vector was defined as the one that

minimizes the variance of the combined forecast error, with weights being indirectly proportional

to these variances. In practical applications, the elements of the variance-covariance matrix are

typically unknown, requiring estimation. In this context, the simple average of forecasts based on

equal weights stands out as a popular and robust combination rule (Makridakis, Andersen, Carbone,

Fildes, Hibon, Lewandowski, Newton, Parzen, and Winkler, 1982; Clemen, 1989; Timmermann,

2006; Hsiao and Wan, 2014; Wang et al., 2023; Makridakis, Spiliotis, and Assimakopoulos, 2020).

Attention has also been given to other pooling strategies, including the median, mode, and trimmed

and winsorized means (Genre, Kenny, Meyler, and Timmermann, 2013; Jose, Grushka-Cockayne,

and Lichtendahl Jr, 2014; Grushka-Cockayne, Jose, and Lichtendahl Jr, 2017).

The objective behind combining multiple individual forecasts is to enhance accuracy by aggre-

gating information from different sources and to reduce data, parameter, and model uncertainties.

A substantial body of literature has developed over the years concerning the combination of

individual point forecasts. For a comprehensive review of this literature, refer to Genest and Zidek

(1986); Granger (1989); Clemen (1989); Jacobs (1995); Timmermann (2006); Mancuso and Werner

(2013); Gneiting and Katzfuss (2014); Wallis (2014); Wang et al. (2023). Forecast combinations

have found applications in a wide range of fields, including energy (Xie and Hong, 2016; Nielsen,

Nielsen, Madsen, Pindado, and Marti, 2007), retail (Ma and Fildes, 2021), tourism (Andrawis, Atiya,

and El-Shishiny, 2011), inflation forecasting (Mitchell and Hall, 2005), epidemiology, particularly

in the context of COVID-19 (Ray, Brooks, Bien, Biggerstaff, Bosse, Bracher, Cramer, Funk, Gerding,

Johansson et al., 2023), health (Lipscomb, Parmigiani, and Hasselblad, 1998), weather (Gneiting
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and Raftery, 2005), environmental studies (Westerlund, Urbain, and Bonilla, 2014), and economics

(Aastveit, Mitchell, Ravazzolo, and Van Dijk, 2018).

An important aspect of combining information from various sources is the potential presence

of stochastic dependence among them. Initial efforts focused on Bayesian approaches for up-

dating forecast combination weights in light of new information from various sources under

conditions of statistical dependence. Assuming that the vector of forecast errors follows a normal

distribution, Winkler (1981) and Clemen and Winkler (1986) developed a Bayesian approach

using the conjugate prior for the variance-covariance matrix, represented by an inverted Wishart

distribution. Subsequent work by Diebold and Pauly (1990) allowed for the incorporation of the

standard normal-gamma conjugate prior, considering a normal regression-based combination

method. More recently, efforts have been devoted to understanding situations where there is

uncertainty about the correlation between sources and how aggregation procedures can be robust

to this uncertainty (Arieli, Babichenko, and Smorodinsky (2018), Levy and Razin (2021), Levy and

Razin (2022)).

While the forecast combination literature emphasizes optimal weight determination to minimize

forecast errors and mitigate uncertainties, social learning studies focus on the mechanisms driving

opinion (or forecast) formation within networks. Social networks act as conduits for information

transmission, encompassing observations of other agents’ decisions and engaging in conversations.

Consequently, individuals assimilate information from their social environments, influencing

their beliefs and, consequently, their forecasts. This field of research aims to explore questions

related to the impact of initial opinions, the timing of agents’ conformity, and the role of network

structure in shaping final opinions.

An early branch of the social learning literature aimed at explaining herd behavior (Banerjee,

1992; Bikhchandani, Hirshleifer, and Welch, 1992; Smith and Sørensen, 2000). In these works, agents

take single sequential actions after observing previous actions and signals. More recently, some

works adapted the classical herding models to a network structure to allow partial observation of

the history (Çelen and Kariv, 2004; Eyster and Rabin, 2010; Acemoglu, Dahleh, Lobel, and Ozdaglar,

2011; Lobel and Sadler, 2015). While sequential learning models provide valuable insights, they

do not encompass the richness of network structures, where influence from peers flows in all

directions.

In the context of repeated interactions in social learning, the focus is on understanding how

network structure and initial opinions contribute to consensus, biases or misinformation, and

disagreement or polarization. Early works in the repeated social learning literature aimed to

explain consensus formation (DeGroot, 1974; Chatterjee and Seneta, 1977; Friedkin and Johnsen,
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1999; DeMarzo, Vayanos, and Zwiebel, 2003; Golub and Jackson, 2010) or its absence (Hegselmann

and Krause, 2002; Yildiz, Ozdaglar, Acemoglu, Saberi, and Scaglione, 2013; Acemoglu, Como,

Fagnani, and Ozdaglar, 2013). Comprehensive assessments of this extensive literature are provided

by Golub and Sadler (2017) and Grabisch and Rusinowska (2020). More recent research has adapted

classical models of repeated interactions to incorporate Bayesian features, biases, conformism, and

selective sharing in the opinion update process (Jadbabaie, Molavi, Sandroni, and Tahbaz-Salehi,

2012; Buechel, Hellmann, and Klößner, 2015; Li and Tan, 2020; Azzimonti and Fernandes, 2023;

Fernandes, 2023; Buechel, Klößner, Meng, and Nassar, 2023; Bowen, Dmitriev, and Galperti, 2023).

This study links these two research strands by employing social learning within networks to

examine the results of forecast pooling practices in situations where experts may interact before

informing a decision-maker.

3. Model

3.1. Basic notation. In terms of notation, Mi∗ (or [M ]i∗) represents the row i of any matrix

M of size n× n, whereas M∗i (or [M ]∗i) represents the column i of the same matrix. Both the

decision-maker and experts are denoted by indices i or j. In particular, i = 0 (or j = 0) represents

the decision-maker, while experts are indexed by i (or j) ∈ N = {1, 2, . . . , n}.

3.2. Primitives.
Agents’ prior assessments and point forecasts. Let θ be the random variable of interest,

representing either a future observation or a parameter of a statistical model. Distributions for θ

are evaluated by n experts, and for convenience, it is assumed that θ is real-valued and unbounded,

and all n distribution functions are continuous. The prior density function for expert i is denoted

by gi, and . Thus, g1, g2, . . . , gn are densities over R representing the judgments of these n experts

about θ. Consistent with the approaches in Winkler (1981), Clemen and Winkler (1985), and

Clemen and Winkler (1986), I define the mean of expert i’s distribution as

xi =

∫ +∞

−∞
θgi(θ)dθ, (1)

and interpret it as a point forecast for θ.
1

The forecast error for expert i is expressed as

ϵi = xi − θ. (2)

In this work, I assume that the forecast errors ϵi for each expert follow a normal distribution,

specifically ϵi ∼ N (0, σ2
i ). Potential statistical dependence among these errors is represented

1
Here, I adopt a standard quadratic loss function. For further reference on forecast combinations under more general

loss functions, refer to Elliott and Timmermann (2004), Timmermann (2006), Patton and Timmermann (2007).
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by a variance-covariance matrix Σ. This matrix consists of variances σ2
i for all i ∈ N , as well as

covariances ρijσiσj for all i, j ∈ N , where i ̸= j. In this context, ρij represents the correlation

between any pair of forecast errors ϵi and ϵj . Finally, expert i’s precision, denoted as τi, is defined

as the inverse of the variance, i.e., τi = 1/σ2
i .

Experts’ network: a random graph approach. A group of experts N = {1, . . . , n} is allowed

to share forecasts before communicating it to the decision-maker. In order to generalize the

information exchange process and results, I consider the classical Poisson random graph model in

which each distinct pair of experts (nodes) meet with independent probability p. This Poisson

random graph model on n experts with meeting probability p is denoted byG(n, p). The probability

of being connected to d nodes is

P (d) =

(
n− 1

d

)
pd(1− p)n−1−d. (3)

As the network structure is random, the expected degree of any node in G(n, p) is ⟨d⟩ = E[d] =∑
d P (d)d = (n − 1)p and, if we let the number of nodes grow large

2

, the distribution of the

degree of a neighboring node is

P̃ (d) =
P (d)d

⟨d⟩
. (4)

If we fix the number of experts and some probability p of link formation, then every conceivable

network has some positive probability of emerging. Any realized network, denoted by G(N,A),

consists of the group of experts, N , and a binary n× n adjacency matrix A, indicating whether

agents i and j are participating in forecast exchange (Aij = 1) or not (Aij = 0). The network

is considered undirected, ensuring that A = A′
, i.e. all links are reciprocal. The neighborhood

of expert i, defined as Ni, comprises the set of experts to which expert i is directly connected,

i.e. Ni = {j ∈ N : Aij = 1}. Furthermore, the degree of expert i, denoted as di, indicates

the number of neighboring experts, i.e., di =
∑

j Aij . Thus, the degree matrix, defined as

D = diag(d1, d2, . . . , dn), is an n× n matrix with the degree of each expert in its main diagonal.

3.3. Classical Methods for Combining Forecasts. In the early development of mathematical

aggregation of forecasts, probabilities, probability distributions, and opinions, the predominant

focus was on formulating axiom-based aggregation rules. These studies employed a systematic

approach, postulating essential properties for aggregation rules, which ultimately led to the

derivation of functional forms for each method. In this work, the primary emphasis is not on

examining these aggregation rules in detail. Instead, I take them as given and focus on two

2
This is the case since the degrees of two neighbors are approximately independently distributed for large networks

provided the largest nodes are not too large.
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important cases: Linear and Bayesian, which are recognized in the academic literature as polar

opposites.

3.3.1. Linear Pooling. For any agent i and any initial point forecast vector x = (x1, . . . , xn), the

linear pool of point forecasts is represented by a linear pooling operator Li defined as

Li (x) =
n∑

j=1

wijxj, (5)

where wij ∈ R represent the weight that agent i assigns to the forecast truthfully informed by

agent j. The simple average pooling has been found to yield accurate forecasts (Clemen (1989),

Hsiao and Wan (2014), Wang et al. (2023)) and it is widely assumed in the social learning literature

(DeGroot (1974), Golub and Jackson (2010), Golub and Sadler (2017), Grabisch and Rusinowska

(2020)). In this particular case of linear pooling, w0j = 1/n for every j for the decision-maker, and

wij = 1/di for any i, j ∈ N , and Equation (5) becomes

Si (x;A) =


x̄i =

1

n

n∑
j=1

xj = (1′1)−11′x , if i = 0 (DM),

x̄i =
1

di(A)

∑
j∈Ni(A)

xj = [D−1A]i∗x , if i ∈ N (Experts).

(6)

3.3.2. Bayesian Pooling. The information from experts can also be used in a Bayesian fashion

to revise all agents’ distributions for θ. If an arbitrary agent i consults an arbitrary number k

of experts, then fi(ϵ1, . . . , ϵk) can be taken as the likelihood function. In this case, the posterior

distribution of θ for any agent i is

gi(θ |xi) ∝


fi (ϵi | θ) , if i = 0,

gi(θ)fi (ϵi | θ) , if i ∈ N,

(7)

where ϵ0 = ϵ = {ϵ1, ϵ2, . . . , ϵn} and x0 = x, whereas ϵi = {ϵj | j ∈ Ni \ {i}} and xi =

{xj | j ∈ Ni \ {i}} for any i ∈ N . Thus, equation (7) implies that the decision-maker holds

an improper diffuse prior density, while experts hold an initial prior density gi, as previously

described. Additionally, it specifies that experts will exclusively manage the forecasts shared by

their direct neighbors.

The assumption of normality is often reasonable and highly tractable. Consequently, expert

i’s distribution gi(θ) is a normal distribution with a mean θ and a variance σ2
i . This implies that

experts are calibrated (or unbiased) and differ solely in terms of sharpness (or precision). When

σ2
i < σ2

j , expert i is more precise than expert j.
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Following equation (7), assuming normality, the posterior density of agent i for θ is

gi(θ |x, A,Σ) ∼ N (Bi (x;A,Σ) , Vi (Σ, A)) ,

with

Bi (x;A,Σ) =


x̃i =

1′Σ−1x

1′Σ−11
, if i = 0, (DM)

x̃i =
Ai∗Σ

−1x(i)

Ai∗Σ−1A∗i
, if i ∈ N, (Experts)

(8)

where x(i) = A∗i ⊙ x is a n× 1 vector resulting of an entry-wise product of the n× 1 vectors

A∗i and x,
3

and

Vi (Σ, A) =


σ̃2
i = (1′Σ−11)

−1
, if i = 0,

σ̃2
i = (Ai∗Σ

−1A∗i)
−1

, if i ∈ N.

(9)

3.4. Combined Forecasts and Combining Combined Forecasts. In the study of forecast

combinations, understanding the impact of network structures and expert interactions is instru-

mental to determine the consequences on decision-making. This subsection analyzes the intricate

dynamics of combined forecasts and the subsequent process of combining these combined fore-

casts. Initially, I define combined forecasts within a networked context, where each expert selects

a specific pooling rule. This approach enables an examination of how individual forecasts are

aggregated within a network of experts.

Definition 1 (Combined Forecasts). For any given network G(N,A) and variance-covariance

matrix Σ, let every expert i ∈ N choose a pooling rule Ri, with the property that, for every vector x

of forecasts,

Ri(x) ∈ {Si(x;A), Bi(x;A,Σ)}.

The sequence {Ri}ni=1 is one particular combination of pooling rules. The set of all possible sequences

of pooling rules to be employed by experts is denoted by R, where each element r ∈ R corresponds to

one possible combination of pooling rules. Thus, a vector of combined forecasts, denoted by xr, is a

vector of updated forecasts following a given combination of pooling rules r.

Building on this foundation, the analysis is extended to incorporate the decision-maker’s role

in combining the forecasts provided by the experts. This introduces the concept of combining

combined forecasts, an essential definition for understanding forecast aggregation in networked

environments.

3
Thus, by construction, xj(i) = xj if j ∈ Ni and xj(i) = 0 if j /∈ Ni.
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Definition 2 (Combining Combined Forecasts). For any given network G(N,A) and variance-

covariance matrix Σ, let the decision-maker (i = 0) choose a pooling rule R0, with the property that,

for any vector of forecasts x informed by experts,

R0(x) ∈ {S0(x;A), B0(x;A,Σ)}.

We say the decision-maker is combining combined forecasts if the vector of forecasts informed

by experts is the vector of combined forecasts xr, for any given sequence of pooling rules r, i.e.,

R0(x
r).

Finally, a key definition is the notion of Network Bias. This metric quantifies the impact of the

prior network communication on decision-making relative to the baseline case of no experts’

communication.

Definition 3 (Network Bias). For any given network G(N,A), variance covariance matrix Σ, and

sequence of pooling rules r, we define the Network Bias in decision-making arising from experts

communicating forecasts x by

B (x;A,Σ, r) = R0 (x
r)−R0 (x) ,

where R0(·) represents the pooling rule adopted by the decision-maker, and xr is the vector of

combined forecasts obtained by updating x using the sequence of pooling rules r.

Thus, Network Bias is the difference between the decision-maker’s ultimate pooled forecast

under experts networked communication and the decision-maker’s pooled forecast when such

communication is absent. Four particular pooling rules combinations in R and their Network

Biases are

(1) All agents use S: B (x) = S0(x̄)− S0(x).

(2) DM uses B and Experts use S: B (x) = B0(x̄)−B0(x).

(3) DM uses S and Experts use B: B (x) = S0(x̃)− S0(x).

(4) When all agents use B: B (x) = B0(x̃)−B0(x).
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4. Main Results

4.1. Common positive correlation and common variance. Under common correlation (ρij =

ρ, for all ij ∈ N ) and common variance (σ2
i = σ2

, for every i ∈ N ), the precision matrix Σ−1
is

[
Σ−1

]
ij
=


1 + (n− 2)ρ

(1− ρ) [1 + (n− 1)ρ]σ2
, if i = j,

−ρ

(1− ρ) [1 + (n− 1)ρ]σ2
, if i ̸= j,

(10)

according to Equation (13) in Appendix A. In this setting, I show that regardless of the update

rule, all sequences in R reduce to simple average rules because the experts’ precision is equal.

This is established in the following lemma.

Lemma 1 (Equivalence of rules). Under the assumptions of common positive correlation and common

variance, the Bayesian pooling rule becomes a Simple Average pooling rule.

Proof. By Lemma 2,

1′Σ−1x =

(
1 + (n− 2)ρ− (n− 1)ρ

(1− ρ) [1 + (n− 1)ρ]σ2

)
1′x,

and,

1′Σ−11 =

(
1 + (n− 2)ρ− (n− 1)ρ

(1− ρ) [1 + (n− 1)ρ]σ2

)
1′1.

Similarly,

Ai∗Σ
−1x(i) =

(1 + (n− 2)ρ− (di − 1)ρ)
∑

j∈Ni
xj(i)− diρ

∑
j /∈Ni

xj(i)

(1− ρ) [1 + (n− 1)ρ]σ2

=
(1 + (n− 2)ρ− (di − 1)ρ)

∑
j∈Ni

xj(i)

(1− ρ) [1 + (n− 1)ρ]σ2

=
(1 + (n− 2)ρ− (di − 1)ρ)

∑
j∈Ni

xj

(1− ρ) [1 + (n− 1)ρ]σ2

and,

Ai∗Σ
−1A∗i =

di (1 + (n− 2)ρ− (di − 1)ρ)

(1− ρ) [1 + (n− 1)ρ]σ2
.

Thus, Equation (8) can be written as

BN
i (x) =


x̃i =

1′Σ−1x

1′Σ−11
= (1′1)−11′x = x̄i , if i = 0,

x̃i =
Ai∗Σ

−1x(i)

Ai∗Σ−1A∗i
=

1

di

∑
j∈Ni

xj = x̄i , if i ∈ N.
(11)

Therefore, BN
i (x) = LS

i (x) for any i and x. ■
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Although the experts are symmetric in terms of forecast precision, meaning their forecast

errors have the same variance and pair-wise correlation, they may differ in terms of their network

location. This difference is captured by the Attention Centrality of each expert for any given

network G(N,A), defined below.
4

Definition 4 (Attention Centrality). Under the assumptions of common positive correlation and

common variance, the Attention Centrality of an expert i ∈ N within any network G(N,A) is

denoted by αi(A) and defined as

αi(A) =
∑

j∈Ni(A)

1

dj
− 1. (12)

In other words, the Attention Centrality of any agent i quantifies the net collective emphasis

placed on its individual forecast xi. With these definitions in hand, the following proposition

demonstrates that, for any given network G(N,A), the expected– in the sense that forecasts may

be placed randomly over nodes– Network Bias is zero. However, the variance of the Network

Bias is dependent on the network structure, and more specifically, it is a function of the Attention

Centrality of the experts.

Example 1 (Attention Centrality). Consider the network explored in the introductory example,

now represented in Figure 2. Suppose we have three experts, labeled A, B, and C, with degree

centralities of 2, 3, and 2, respectively (self-loops omitted in the drawing). Experts A and C each

retain 1/2 of their attention for themselves and devote the remaining 1/2 to expert B. In turn,

expert B keeps 1/3 of the attention for herself and allocates 1/3 of her attention to each peripheral

expert. Consequently, compared to the scenario in which they retain 100% of their attention for

themselves (i.e., no network, represented by the −1 in the calculation), B experiences a net gain of

2/6 in the overall attention placed on her forecast, while A and C experience a net loss of attention

of 1/6.

A B C

dA = 2 dB = 3 dC = 2

αA = 1
2
+ 1

3
− 1 αB = 1

2
+ 1

3
+ 1

2
− 1 αC = 1

2
+ 1

3
− 1

αA = −1
6

αB = +2
6

αC = −1
6

Figure 2. Attention Centrality in a star network of size 3 (self-loops omitted).

4
Further properties of this new centrality measure can be found in Appendix B.
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Having established the necessary definitions, I now show in the next proposition how the

expectation and variance of the Network Bias are influenced by a given network structure G(N,A).

Proposition 1. Under the assumptions of common positive correlation and common variance,

Eϵ[B(x)|A] = 0,

and

Var [B(x)|A] = σ2

n

(
1

n

n∑
i=1

α2
i (A) +

2ρ

n

n∑
i=1

∑
j:j>i

αi(A)αj(A)

)
,

for any given network G(N,A).

Proof. First,

Eϵ[B(x)] = Eϵ

[
1

n

n∑
i=1

αi(A)ϵi

]

=
1

n

n∑
i=1

αi(A)Eϵ [ϵi]

= 0.

Second,

Var[B(x)] = Var

[
1

n

n∑
i=1

αi(A)ϵi

]

=
1

n2

(
n∑

i=1

α2
i (A)Var [ϵi] + 2

n∑
i=1

∑
j:j>i

αi(A)αj(A)Cov (ϵi, ϵj)

)

=
1

n2

(
σ2

n∑
i=1

α2
i (A) + 2ρσ2

n∑
i=1

∑
j:j>i

αi(A)αj(A)

)

=
σ2

n

(
1

n

n∑
i=1

α2
i (A) +

2ρ

n

n∑
i=1

∑
j:j>i

αi(A)αj(A)

)
■

4.1.1. Fixed Networks: Classical Network Structures. To understand the effect of network structure

on the variance of Network Bias, I will focus on classical network structures. By examining these

classical networks, I aim to elucidate the fundamental impact of network structure on decision-

making, which is captured by the Network Bias. This analysis sets the stage for a subsequent

examination based on a random graph approach, which will generalize some of the findings.
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Corollary 1 (from Proposition 1). Under the assumptions of common positive correlation and

common variance, if the network G(N,A) is a star with size n ≥ 3, then

Var [B(x)|Astar] =
σ2

4n3
(n− 2)2(n− 1)(1− ρ).

Proof. For a star with (n− 1) peripheral nodes, the attentions scores are

αp =

(
1

2
+

1

n

)
− 1 =

2− n

2n

for any peripheral node p, and

αc =

(
1

n
+ (n− 1)

1

2

)
− 1 =

(n− 2)(n− 1)

2n

for the center node c. Thus,

n∑
i=1

∑
j:j>i

αiαj = (n− 1)
(n− 2)(n− 1)

2n

(2− n)

2n
+

(n− 1)(n− 2)

2

(
2− n

2n

)2

=
(n− 1)(n− 2)

4n2

(2− n)n

2
,

and

n∑
i=1

α2
i =

(n− 2)2(n− 1)2

4n2
+ (n− 1)

(
2− n

2n

)2

=
(n− 2)2(n− 1)n

4n2
.

Therefore,

Var [B(m(x))] =
σ2

n

1

n

(
(n− 2)2(n− 1)n

4n2
+ 2ρ

(n− 1)(n− 2)

4n2

(2− n)n

2

)
=

σ2

4n4
(n− 2)(n− 1)n

(
(n− 2) + 2ρ

(2− n)

2

)
=

σ2

4n3
(n− 2)2(n− 1)(1− ρ).

■

Remark 1. If network G(N,A) is a star with size n ≥ 3, then

d

dn
Var [B(x)|Astar] > 0,

and

lim
n→∞

Var [B(x)|Astar] =
σ2

4
(1− ρ).
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Corollary 2 (from Proposition 1). Under the assumptions of common positive correlation and

common variance, if network G(N,A) is a line with size n ≥ 4, then

Var [B(x)|Aline] =
σ2

9n2
(1− ρ).

Proof. For any line of size n ≥ 4, we have three "types" of nodes: 2 peripheral nodes (subscript p),

2 peripheral nodes’ neighbors (subscript n), and (n− 4) middle-nodes (subscript m).

Thus, the attention scores of each of these three types are

αp =

(
1

2
+

1

3

)
− 1 = −1

6

for any peripheral node,

αn =

(
1

2
+

1

3
+

1

3

)
− 1 =

1

6

for any peripheral node’s neighbor, and

αm =

(
1

3
+

1

3
+

1

3

)
− 1 = 0

for any middle node.

Thus, α2
p = α2

n = 1
62

, α2
m = 0, and

∑n
i=1 α

2
i = 2α2

p + 2α2
n + (n− 4)α2

m = 4
62

, and

n∑
i=1

∑
j:j>i

αiαj = 4αpαn + 2(n− 4)αpαm + 2(n− 4)αnαm + α2
n + α2

p +
(n− 4)(n− 5)

2
α2
m

= − 4

62
− 2(n− 4)

1

6
0 + 2(n− 4)

1

6
0 +

1

62
+

(
−1

6

)2

+
(n− 4)(n− 5)

2
0

= − 4

62
+ 2

1

62

= − 2

62
.

Therefore,

Var [B(x)] = σ2

n

1

n

(
4

62
− 2ρ

2

62

)
=

σ2

9n2
(1− ρ).

■

Remark 2. If network G(N,A) is a line with size n ≥ 4, then

d

dn
Var [B(x)|Aline] < 0,

and

lim
n→∞

Var [B(x)|Aline] = 0.



16 COMBINING COMBINED FORECASTS: A NETWORK APPROACH

Proposition 2. Under the assumptions of common correlation and common variance, the Attention

Centrality is zero for all experts i ∈ N (i.e. αi = 0 for all i) if, and only if, G(N,A) is a d-regular

network of any size n ≥ 2. Therefore, for any vector of forecasts x, d-regular networks are the most

efficient structure.

Proof. If : If the network G(N,A) is d-regular, then di = |Ni(A)| = d for every node i. Thus,

following Definition 4,

αi(A) =
∑

j∈Ni(A)

1

dj
− 1

= d
1

d
− 1

= 0

for every i, and E [B(x)] = Var[B(x)] = 0 for any vector of forecasts x. Only if: proof under

review. ■

4.1.2. Random Networks: Poisson random graph model. In this subsection, I extend the analysis

to random networks using the Poisson random graph model, assuming a large network size n

and a small connection probability p. This approach provides more general results by allowing

both forecasts and network structure to be random. It illustrates that, under these assumptions,

the Network Bias is zero and its variance converges to zero as n becomes sufficiently large. The

intuition behind this result is that the network will either be too sparse (for a low expected degree),

approximating the case of no network communication, or too dense (for a high expected degree),

approximating the case of a complete network, which is a specific case of a d-regular network.

Proposition 3. Under the Poisson random graph model G(n, p(n)), such that n is large and

p(n) - a decreasing function of n - is small, and the assumptions of common positive correlation and

common variance,

Ed[Eϵ[B(x)|A]] = 0,

and

Ed [Var [B(x)|A]] → 0,

as n → ∞, both when ⟨d⟩ → 1 and ⟨d⟩ → ∞.
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Proof.

Ed[Eϵ[B(x)|A]] = Ed

[
Eϵ

[
1

n

n∑
i=1

αi(A)ϵi|A

]]

=
1

n

n∑
i=1

Ed [αi(A)]Eϵ [ϵi]

= 0

For the variance term, we have

E [Var [B(x)|A]] = E

[
σ2

n

(
1

n

n∑
i=1

α2
i (A) +

2ρ

n

n∑
i=1

∑
j:j>i

αi(A)αj(A)

)]

=
σ2

n

(
1

n

n∑
i=1

E
[
α2
i (A)

]
+

2ρ

n

n∑
i=1

∑
j:j>i

E [αi(A)] E [αj(A)]

)
(by degree indep.)

=
σ2

n

(
1

n

n∑
i=1

E
[
α2
i (A)

])
(by Lemma 8)

=
σ2

n

(
1

n

n∑
i=1

E

[∑
j∈Ni

1

d2j
+ 2

∑
j∈Ni

∑
k∈Ni:k>j

1

dj

1

dk
− 2

∑
j∈Ni

1

dj
+ 1

])

≈ σ2

n

(
1

n

n∑
i=1

(
⟨d⟩K(⟨d⟩)

⟨d⟩
+ 2

⟨d⟩2

2

K(⟨d⟩)
⟨d⟩

− 2⟨d⟩ 1

⟨d⟩
+ 1

))
(**)

=
σ2

n
(K(⟨d⟩) [1 + ⟨d⟩]− 1) ,

where

K(⟨d⟩) ≈ e−⟨d⟩

1− e−⟨d⟩ [Ei(⟨d⟩)− ln(⟨d⟩)− γ] ,

according to Lemma 5, with γ ≈ 0.57721 being the Euler–Mascheroni’s constant, and

Ei(⟨d⟩) =
∫ ⟨d⟩

−∞

et

t
dt

is the Exponential Integral function. Therefore, according to Lemma 6

lim
n→∞
⟨d⟩→1

E [Var [B(x)|A]] = 0,

and

lim
n→∞
⟨d⟩→∞

E [Var [B(x)|A]] = 0.

(**) by Lemma 5, Wald’s Identity, and the assumption of n large, and small p. ■
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Figure 3 shows a simulation of the Poisson random graph model for different network sizes with

a fixed connection probability. The example demonstrates that, while the expectation remains

zero, the variance of the Network Bias converges to zero as the network size increases.

0

20

40

60

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
Network bias

D
en

si
ty

nodes

25

100

500

1000

2500

Figure 3. Poisson random graph: θ = 3, σ2 = 1.2, ρ = 0, ⟨d⟩ = 5, p =
⟨d⟩

n− 1

5. Conclusion

In conclusion, this study contributes to the forecast combination literature by examining the

implications of expert interaction within networks on decision-making processes. While the

practice of combining forecasts has long been acknowledged for its potential to enhance accuracy,

this work elucidates the interplay between network structure and pooling strategies, adding a

nuanced perspective to this established field. In the context of non-strategic pooling of forecasts,

this study highlights the potential impact on decision-making when employing two classical

pooling methods: simple average pooling and Bayesian pooling.

Preliminary results reveal that, although the expected Network Bias remains unaffected by

pooling rules and their mixtures, decision-making variance becomes a central concern. The

structure of the network emerges as a crucial factor, with star networks exhibiting higher variance

and d-regular networks achieving zero variance, demonstrating their efficiency. Furthermore,

using the Poisson random graph model, it is shown that under the assumptions of a large network
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size and a small connection probability, both the expected Network Bias and its variance converge

to zero as the network size becomes sufficiently large. This occurs because the network becomes

either too sparse, approximating no network communication, or too dense, approximating a

complete network.

In the broader context of the forecast combination literature, this work also aligns with the

social learning mechanisms within networks. By linking these two research strands, this study

offers a novel perspective on decision-making processes influenced by both individual forecast

precision and network structures.

As with any study, limitations exist, and future research opportunities abound. First, inves-

tigating the impact of experts’ strategic interactions under different network structures and

conditions can provide deeper insights into decision-making dynamics. Second, exploring the

application of this work’s findings in specific domains such as health, law, and economics can

offer context-specific recommendations for practitioners. Finally, considering additional factors

such as decision-maker preferences and the timing of expert interactions can further enhance

applicability in real-world scenarios.

In summary, this study advances the understanding of forecast combination by incorporating

social learning within networks prior to informing the decision-maker. These insights contribute to

both academic scholarship and practical decision-making processes, paving the way for continued

exploration and refinement in this evolving field.
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Appendix A. Auxiliary Lemmas

Lemma 2. Under common correlation and different variances, the inverse of the variance covariance

matrix Σ is

[
Σ−1

]
ij
=


1 + (n− 2)ρ

(1− ρ) [1 + (n− 1)ρ]σ2
i

, if i = j,

−ρ

(1− ρ) [1 + (n− 1)ρ]σiσj

, if i ̸= j.

(13)

Proof. The proof is relatively straightforward. For further details, the reader may refer to Equations

5, 6 and 7 in Clemen and Winkler (1985). ■

Lemma 3. Under the assumptions of common positive correlation and common variance, the precision

of the decision-maker’s posterior distribution for θ, when updated in a Bayesian fashion, is bounded

above by 1
σ2ρ

as the number of consulted experts n grows large.

Proof. Following equations (9) and (10), the variance of the decision-maker’s posterior distribution

for θ is

σ̃2
0 =

σ2

n
(1 + (n− 1)ρ) ,

thus, limn→∞ τ̃0 = limn→∞
1

σ̃2
0

=
1

σ2ρ
.

■

The intuition is that positive statistical dependence reduces the information content of a set or

a subset of experts’ estimate. Moreover, as there are no repeated interactions, the precision of the

decision-maker’s posterior distribution for θ is not dependent of the experts’ network.

Lemma 4. If the experts’ network is formed according to a Poisson random graph Model, denoted as

G(n, p), then E
[(

d
2

)]
≈ ⟨d⟩2

2
as n → ∞, since the degree of an expert, denoted by d, is a binomial

random variable distributed according to P (d) defined in Equation (3).
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Proof.

E
[(

d

2

)]
= E

[
d!

2!(d− 2)!

]
= E

[
d(d− 1)

2

]
=

1

2

∑
d

P (d)
(
d2 − d

)
=

1

2

(
n(n− 1)p2 + np− (n− 1)p

)
=

1

2
(np(n− 1)p+ np− (n− 1)p)

≈ 1

2

(
⟨d⟩2 + ⟨d⟩ − ⟨d⟩

)
(as n → ∞)

=
⟨d⟩2

2
.

■

Lemma 5. If the experts’ network is formed according to a Poisson random graph Model, denoted as

G(n, p) with large n and small p, then for any expert i ∈ N , the expected value of the reciprocal of

the degree of any neighboring expert j ∈ Ni is

Ed

[
1

dj

]
=

1

⟨d⟩
,

and the expected value of the reciprocal of the degree squared of any neighboring expert j ∈ Ni is

Ed

[
1

d2j

]
=

K(⟨d⟩)
⟨d⟩

,

where

K(⟨d⟩) ≈ e−⟨d⟩

1− e−⟨d⟩ [Ei (⟨d⟩)− ln(⟨d⟩) + γ] ,

Ei(⟨d⟩) =
∫ ⟨d⟩

−∞

et

t
dt

is the Exponential Integral function, and γ ≈ 0.57721 is the Euler-Mascheroni’s constant.
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Proof. The distribution of the degree of a neighboring node is P̃ (dj), as defined in Equation (4),

therefore

Ed

[
1

dj

]
=
∑
dj

P̃ (dj)
1

dj

=
∑
dj

P (dj)dj
⟨d⟩

1

dj

=
1

⟨d⟩
.

Second, for large n and small p, the degree of any expert, di > 0, is a random variable with Poisson

distribution with parameter λ = (n− 1)p = ⟨d⟩. Thus, as per Equations (3.15) and (3.16) in Chao

and Strawderman (1972), we have

Ed

[
1

di

∣∣ di > 0

]
=

e−⟨d⟩

1− e−⟨d⟩ [Ei(⟨d⟩)− ln (⟨d⟩)− γ]

Ed

[
1

d2j

]
=
∑
dj

P̃ (dj)
1

d2j

=
1

⟨d⟩
∑
dj

P (dj)
1

dj

=
K(⟨d⟩)
⟨d⟩

■

Lemma 6. The expression K(⟨d⟩) [1 + ⟨d⟩] tends to 0.7668 as ⟨d⟩ → 1, and to 1 as ⟨d⟩ → ∞.

Proof. Following equation 5.1.53 in Abramowitz and Stegun (1968)
5

, we can approximate the

Exponential Integral function for large ⟨d⟩ as

Ei(⟨d⟩) ≈ e⟨d⟩

⟨d⟩
.

In this case,

K(⟨d⟩)[1 + ⟨d⟩] ≈ e−⟨d⟩
[
e⟨d⟩

⟨d⟩
− ln(⟨d⟩)

]
[1 + ⟨d⟩].

This expression simplifies to

1 + ⟨d⟩
⟨d⟩

− e−⟨d⟩ ln(⟨d⟩)[1 + ⟨d⟩].

5
Equation 5.1.53 shows that E1(x) ≈ e−x

x for large positive x. Since Ei(x) = −E1(−x) for large negative x, we can

use the asymptotic form of E1(−x) for large positive x. For large positive x, the asymptotic behavior of Ei(x) is
ex

x .
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The first term simplifies to 1 + 1
⟨d⟩ , and converges to 1 as ⟨d⟩ → ∞. The second term decays

exponentially, making it negligible for large ⟨d⟩, thus

lim
⟨d⟩→∞

e−⟨d⟩ ln(⟨d⟩)[1 + ⟨d⟩] → 0.

Therefore, lim⟨d⟩→∞ K(⟨d⟩) [1 + ⟨d⟩] = 1.

Following equation 5.1.10 in Abramowitz and Stegun (1968), we can also approximate the

Exponential Integral function for ⟨d⟩ > 0 as

Ei(⟨d⟩) ≈ γ + ln(⟨d⟩) +
∞∑
k=1

⟨d⟩k

kk!
.

In this case,

K(⟨d⟩) [1 + ⟨d⟩] ≈ e−⟨d⟩

1− e−⟨d⟩

[
∞∑
k=1

⟨d⟩k

kk!

]
[1 + ⟨d⟩] ,

and

lim
⟨d⟩→1

K(⟨d⟩) [1 + ⟨d⟩] = e−1

1− e−1

[
∞∑
k=1

1k

kk!

]
[1 + 1]

≈ 1.163954

[
7∑

k=1

1

kk!
+ o(?)

]
≈ 0.766853.

■

Appendix B. Attention Centrality: Properties

B.1. Same variance and covariance.

Lemma 7. For any given network G(N,A),
∑n

i=1 αi(A) = 0.

Proof.

n∑
i=1

αi(A) =
n∑

i=1

 ∑
j∈Ni(A)

1

dj
− 1


=

n∑
i=1

∑
j∈Ni(A)

1

dj
−

n∑
i=1

1

=
n∑

i=1

di
1

di
− n

= n− n = 0.

■
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Lemma 8. If the network is formed following a Poisson random graph ModelG(n, p), thenEd [αi(A)] =

0 for any n and p.

Proof.

Ed [αi(A)] = Ed

 ∑
j∈Ni(A)

1

dj
− 1


= Ed

 ∑
j∈Ni(A)

1

dj

− 1

= Ed [di]Ed

[
1

dj

]
− 1 (by Wald’s Idendity)

= ⟨d⟩

∑
dj

P̃ (dj)
1

dj

− 1

= ⟨d⟩

∑
dj

P (dj)dj
⟨d⟩

1

dj

− 1

= ⟨d⟩ 1

⟨d⟩
∑
dj

P (dj)− 1 = 0

■
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