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Abstract

Difference-in-Differences (DiD) is a popular method used to evaluate the effect of a

treatment. In its most simple version a control group remains untreated at two peri-

ods, whereas the treatment group becomes fully treated at the second period. However,

it is not uncommon in applications of the method that the treatment rate only increases

more in the treatment group. This article presents identification results for the marginal

treatment effect (MTE) in such fuzzy designs. We show that we can modify the stan-

dard identifying assumptions in DiD designs with covariates to identify the MTE in

models with essential heterogeneity. We propose two different procedures for the esti-

mation of the MTE that rely on different assumptions regarding the potential outcomes

model and prove their asymptotical normality. Furthermore, we derive a doubly-robust

estimator for the local average treatment effect (LATE) which augments the two-way

fixed effects regression model with a control function and unit-specific weights that rise

from the propensity score. We assert the desirable finite-sample properties through

simulation studies of a linear MTE model. Finally, we use our results to investigate

heterogeneity on the returns to primary school attendance in Indonesia.
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1 Introduction

Difference-in-Differences (DiD) is a popular method to estimate the effect of a treatment

using observational data. In its canonical form, referred to as the ”sharp” 2× 2 DiD design,

a control group remains untreated through two periods of time, whereas a treatment group

becomes fully treated in the second period. Under the parallel trends assumption, the DiD

estimand identifies the average effect of treatment on the treated (ATT).

However, it is not uncommon in applications of the method that the treatment rate

increases more in one group than the other, but no group becomes fully treated and no

group remains fully untreated, characterizing what we call ”fuzzy” DiD settings, or DiD

settings with imperfect compliance.

An emblematic example of a ”fuzzy” DiD design in the applied economics literature

is Duflo (2001) on the returns of education in Indonesia following a nationwide primary

school construction program. Years of schooling increased considerably in the control group

considered, while remaining unaltered for a share of the treatment group after the treatment

took place.

Another example is Field (2007), in which the author investigates the effects of property

rights on labour supply using a national urban titling program in Peru as a natural exper-

iment in a DiD design. Illegal settlers are defined as the treatment group and the period

after the program is defined as the post-treatment group. Imperfect compliance in this set-

ting arises from the fact that despite being eligible for the program, not all urban squatters

acquired property rights.

Fuzzy designs could also arise from settings in which there are no control and treatment

groups readily available in the data that satisfy the parallel trends assumption. In such

cases, identification can be achieved by creating groups for which the assumption holds. Im-

perfect compliance comes from the fact that there might be untreated units in the estimated

treatment groups and treated units in the control group. An example is Gentzkow et al.

(2011), which investigates the effect of newspaper on electoral participation in the US.

De Chaisemartin and D’Haultefoeuille (2018) were the first to explore treatment effect

identification and estimation in such ”fuzzy” DiD designs. The authors find that the standard

methods used to estimate treatment effects in DiD settings with imperfect compliance fail

to recover relevant parameters under the usual assumptions and propose new estimators to

recover the local average treatment effect (LATE), which is the average treatment effect for

the individuals in the treatment group that become treated in the second period, hereafter

referred to as the control group ”switchers”. The authors show how to obtain consistent

estimates for the LATE as long as the exposure to treatment in the control group remains
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constant over time.

The identification of LATE in ”fuzzy” DiD settings paves the way for the identification

of other heterogeneous treatment effects which are relevant for policy evaluation. This paper

proposes identification results and a consistent estimator for the marginal treatment effect

(MTE) in the 2 × 2 DiD setting with imperfect compliance. The MTE is defined as the

average treatment effect for individuals which are indifferent between participating in the

treatment or not. Thus, it carries a meaningful economic interpretation as the individual’s

willingness to pay for the treatment. Moreover, the MTE is a natural building block for

all the other aggregate average treatment parameters, which can be obtained as weighted

averages of the MTE (Heckman and Vytlacil, 2005).

We show how we can make slight modifications in the standard identification assumptions

of DiD settings with covariates to propose an estimand that identifies the MTE.

We proposed two different estimators for the MTE that rely on different assumptions

regarding the functional form of potential outcomes. Both estimators follow the control

function approach. We impose a functional form that relates the unobserved heterogeneity

with the propensity score, and use this function to control for the endogeneity as an omitted

variable.

Furthermore, we derive a doubly-robust estimator for the LATE that is consistent whether

either the model for the control function is correctly specified or the model for the selection

into treatment is correctly specified.

We illustrate the desirable finite-sample properties of the proposed estimators through

Monte Carlo simulations of a linear MTE model1. The simulations show that the parametric

control function estimator consistently recovers the MTE curve and has a better performance

on the estimation of the LATE when compared to other estimators commonly used in the

applied literature. When only one of the working nuisance models is correctly specified, the

doubly-robust estimator consistently estimates the LATE and outperforms all the other DiD

estimators.

We establish
√
n-consistency and asymptotic normality of the parametric control function

estimator and the doubly robust estimator2. The control function estimator for the LATE

and MTE is consistent when the control function and propensity score are correctly specified,

and the doubly-robust estimator for the LATE is consistent when either one of the nuisance

parameters is correct.

Related Literature: Our paper relates to several strands of the causal inference litera-

ture. First of all, the results are intimately related to other papers in the MTE literature. The

1Simulations of the semiparametric method are still in progress.
2Asymptotic theory for the semiparametric estimator is still in progress.
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concept of marginal treatment effect was first introduced by Björklund and Moffitt (1987)

as the gain from treatment for individuals who are shifted into treatment by a marginal

change in its cost. Heckman and Vytlacil (1999, 2001, 2005, 2007) further defined the MTE

as the gain from treatment for individuals shifted into treatment by a marginal change in

the propensity score, the predicted probability of treatment (see Cornelissen et al. (2016) for

a comprehensive review of the literature).

Identification and estimation of the MTE has been widely discussed in instrumental

variables (IV) settings (Heckman and Vytlacil, 2001; Carneiro et al., 2011; Brinch et al.,

2017). We are the first to define, identify and estimate marginal treatment effects in DiD

settings.

Second, our results are directly related to the recent advances in the DiD literature.

Bonhomme and Sauder (2011) consider a DiD model which allows for heterogeneous effects

of time, but De Chaisemartin and D’Haultefoeuille (2018) were the first to explore the

identification heterogeneous treatment effects in DiD settings with imperfect compliance.

We build on the framework proposed by the authors and show how the MTE relates to the

LATE parameter. Moreover, our work is also connected to Sant’Anna and Zhao (2020),

as we draw insights from their results in order to adequately account for covariates in our

parametric outcome regression.

Third, our work relates to the control function literature. In particular, to the work of

Brinch et al. (2017), in which the authors show how to estimate the MTE using a control

function approach in IV settings. We show how we can use a conditional parallel trends

assumption to build a control function and consistently estimate the MTE curve in DiD

designs. In order to do so, we build on the theoretical results presented by Olsen (1980),

Heckman and Robb (1985) and Heckman et al. (2006).

Finally, our work is directly related to the literature on doubly-robust estimators (see

Robins et al. (1994), Rothe and Firpo (2018), Sant’Anna and Zhao (2020) and Graham and

Pinto (2021)). In particular, our doubly-robust estimator is an adaptation of the reshaped

inverse probability weighting (RIPW) estimator from Arkhangelsky et al. (2021). We modify

it to account for essential heterogeneity by including the control function and for the case of

repeated cross-sections.

Organization of the paper: In the next section we define the DiD setting in a potential

outcomes model with essential heterogeneity and provide an estimand for the MTE. In section

3 we propose two estimators for the MTE that rely on different assumptions and derive their

large sample properties. In section 4 we present tests for the conditional parallel trends

assumption and for the external validity of the estimates for LATE. In section 5 we present

the doubly-robust RIPW estimator for the LATE and derive its large sample properties. We
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examine the properties of the estimators by the means of a Monte Carlo simulation study

in Section 6 and provide an empirical illustration in Section 7. Section 8 concludes.

2 Differences-in-Differences with heterogeneous treat-

ment effects

2.1 Set-up and Notation

We present the framework through a model that is best suited for repeated cross sections

or single cross sections in which the cohort of birth plays the role of time, but the model

can be easily adapted for panel data. Data can be divided into time periods, represented a

random variable T , and into groups represented by a random variable G. We focus on the

2×2 DiD setting, in which there are only two groups and two periods of time. Hence, G is a

dummy for units in the treatment group, and T is a dummy for the post-treatment period.

Time-invariant covariates X are also observed.

In sharp DiD designs, treatment assignment is given by the interaction between the group

and period dummies, that is, D = G×T . However, it is not uncommon that there are units

in the control group that go into treatment, units in the treatment group that are being

treated in the pre-treatment period or even units in the treatment group remain untreated

through both periods. Such settings in which D ̸= G× T are called ”fuzzy” DiD settings.

”Fuzzy” DiD settings are somewhat analogous to Instrumental Variables (IV) settings

with a single binary instrument. In this settings, there is a binary exogenous variable often

denoted by Z which takes value 1 for units assigned into treatment and 0 otherwise. However,

actual treatment status can differ from treatment assignment. In 2 × 2 DiD settings, we

can interpret the interaction between group and time variables as the treatment assignment.

Sharp designs are characterized by full compliance of treatment status towards the treatment

assignment, whereas the ”fuzzy” design can be interpreted as as DiD setting with imperfect

compliance.

”Fuzzy” designs could also arise from the fact that there are no groups readily avail-

able for which the assumptions in the setting are valid. In such case, these treatment and

control groups require estimation (see De Chaisemartin and D’Haultefoeuille (2018)) and

the inequality between treatment status and the interaction between group and time comes

precisely from such estimation procedure.

Throughout the article we use the notation introduced by De Chaisemartin and D’Haultefoeuille

(2018). For any random variable R, let S(R) denote its support. Moreover, define the ran-

dom variables Rgt and Rdgt such that Rgt = R|G = g, T = t and Rdgt = R|D = d,G =
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g, T = t. For example, the notation implies that E(R10) = E(R|G = 1, T = 0) and

E(R110) = E(R|D = 1, G = 1, T = 0).

2.2 Framework and treatment effects

We are interested in the effect of a binary treatment D on some outcome Y . The potential

outcomes for a unit with and without treatment are respectively denoted by Y (1) and Y (0).

The realized outcome is Y = DY (1) + (1−D)Y (0).

Our general framework is a model based on potential outcomes and a latent variable

discrete choice model for selection into treatment, as it has been established in the MTE

literature since Heckman and Vytlacil (1999).

We specify potential outcomes as

Y (0) = µ0(G, T,X) + U0 (1)

Y (1) = µ1(G, T,X) + U1 (2)

The function µj(G, T,X) is the conditional mean of Y given G,T and X in treatment

status j ∈ {0, 1}, such that E(Uj|G, T,X) = 0. We do not assume that the vectors (G, T,X)

and (U1, U0) are independent.

We consider the following selection into treatment model, which is the foundation of the

MTE approach:

D = 1 {PD(G, T,X) ≥ UD} (3)

Equation (3) imposes a single threshold crossing model for selection into treatment.

The function PD(G, T,X) represents the net benefits from receiving treatment, which are a

function of the group and time variables and time-invariant covariates X. The threshold UD

is a random variable representing the unobservable distaste for the treatment, also referred

to as the essential heterogeneity among individuals. We assume that both terms in the

inequality are bounded within the unit interval, so that PD(G, T,X) has a propensity score

interpretation3.

The participation equation implies that units from the same group switch treatment

status in the same direction. This monotonicity assumption will be key for our identification

results.

3This assumption is made for simplicity of the exposition only. If the terms are not bounded within the
unit interval, we can obtain the propensity score interpretation by applying the CDF of UD on both sides of
the inequality.
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We can define the selection into treatment as a function of time:D(t) = 1 {PD(G, t,X) ≥ UD}.
Let S = {D(1) > D(0), G = 1} denote the units from the treatment group which go from

non-treatment to treatment with the passage of time, defined by De Chaisemartin and

D’Haultefoeuille (2018) as the ”control group switchers”. The control group switchers are

analogous to the compliers in IV settings, in the sense that they’re treatment status is defined

by the treatment assignment.

Our model essentially boils down to the switching regression model (Quandt, 1972; Lee,

1979). The potential outcomes framework can be expressed by the following random coeffi-

cients regression model:

Yi = µ0(Gi, Ti, Xi) +Di[µ1(Gi, Ti, Xi)− µ0(Gi, Ti, Xi) + U1i − U0i] + U0i (4)

in which the individual treatment effect is given by

∆i = µ1(Gi, Ti, Xi)− µ0(Gi, Ti, Xi) + U1i − U0i (5)

The individual treatment effect can be decomposed in the average gains of treatment for a

unit in a given group, period of time and observed characteristics, and an individual-specific

gain, U1i − U0i.

The existence of individual specific gains, also referred to as essential heterogeneity,

implies that aggregate treatment effects will be different from each other. In sharp DiD

designs, for example, the treatment effect that can be identified is the average treatment

effect on the treated (ATT). Conditional on X = x, it is expressed in our framework as

∆ATT (x) = E(Y11(1)− Y11(0)|X = x) = µ1(1, 1, x)− µ0(1, 1, x)

In ”fuzzy” designs, however, De Chaisemartin and D’Haultefoeuille (2018) show that we

cannot identify the ATT, but a local average treatment effect (LATE) is identifiable, which

is the average treatment effect for the ”control group switchers”:

∆LATE(x) = E(Y11(1)−Y11(0)|X = x, S) = µ1(1, 1, x)−µ0(1, 1, x)+E(U1−U0|G = 1, T = 1, X = x, S)

The unobservable gains that are part of the LATE can be expressed as function of the

UD variable that drives selection into treatment:
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E(U1 − U0|G = 1, T = 1, X = x, S)

= E(U1 − U0|G = 1, T = 1, X = x, PD(1, 0, x) < UD ≤ PD(1, 1, x))

That is, the control group switchers are the units in control group that are not treated

in the pre-treatment period, but become treated in the post-treatment period.

While the LATE aggregates treatment effects over a certain range of the UD distribution,

the MTE is defined as the average treatment effect at a particular value of UD. Before we

define the MTE, we introduce the following notation for the conditional expectation of U1

and U0:

kj(g, t, x, p) = E(Uj|G = g, T = t,X = x, UD = p), d = {0, 1}

and

k(g, t, x, p) = E(U1 − U0|G = g, T = t,X = x, UD = p)

The MTE can then be expressed as follows:

∆MTE(x, p) = µ1(1, 1, x)− µ0(1, 1, x) + k(1, 1, x, p)

where µ1(1, 1, x) − µ0(1, 1, x) is the average treatment effect for units in the treatment

group and the post-treatment period, and k(1, 1, x, p) the average unobservable gain from

treatment for individuals with the distaste for treatment equal to p. Conditioning on UD =

p is equivalent to conditioning on the intercept of PD(G, T,X) = p and PD(G, T,X) =

UD. Therefore, the MTE can be interpreted as the average effect of treatment for units

from the treatment group in the post-treatment period on a margin of indifference between

participation in treatment and nonparticipation.

While the MTE is defined for a particular value of the UD distribution, the other treat-

ment effects that can be identified in DiD settings are defined over different ranges of UD.

Thus, the MTE appears as the building-block for other average treatment effects. Heckman

and Vytlacil (1999) show that the aggregate average treatment parameters can be expressed

as weighted averages of the MTE. In DiD setting, this can be expressed as

7



∆ATT (x) =

∫ 1

0

∆MTE(x, uD)duD

∆LATE(x, S) =
1

∥S∥

∫
S

∆MTE(x, uD)duD

Note that in the sharp design essential heterogeneity plays no role in selection into treat-

ment, from which it follows that for d = {0, 1}, E(Ud|G, T,X, UD = p) = E(Ud|G, T,X) = 0.

Thus, treatment effects are constant and equal to the ATT.

2.3 Identification

We now invoke the main assumptions that are used for identification of the MTE in this

setting. The first concerns the evolution of the share of treated units in the treatment and

control group:

Assumption 1. (Fuzzy Design). Almost surely, E (D11 | X) > E (D10 | X) and

E (D11 | X)− E (D10 | X) > E (D01 | X)− E (D00 | X).

Assumption 1 is used to represent treatment and control group in the setting. The

treatment group is the one which experiences the greater increase in its treatment rate. The

sharp design can be viewed as an extreme case of the fuzzy setting, in which E (D11 | X)−
E (D10 | X) = 1 and E (D01 | X) = E (D00 | X). It is not uncommon the DiD literature

that there is imperfect compliance among the treatment group, but there is a pure treatment

group with treatment rate equal to zero (Field, 2007), this case is also contemplated by our

framework. Assumption 1 only rules out the case in which the two groups experience the

same evolution in their treatment rates.

The next assumptions are standard in DiD settings, but we modify them to account for

essential heterogeneity among units:

Assumption 2. (Conditional Parallel Trends). Almost surely, E(YG1(0)−YG0(0)|X,PD =

p) does not depend on G.

Assumption 3. (Common Support). For some ε > 0, Pr(Dgt = 1) > ε and

Pr(Dgt = 1|X) ≤ 1− ε, almost surely.

Assumption 2 is the conditional parallel trends assumption, which is standard in DiD

settings with covariates. We modify it to account for the heterogeneity that arises from the

unobservables driving selection into treatment. The conditional parallel trends assumption

implies that the mean evolution of the outcome through time across groups would be the same

in the absence of treatment, conditional on covariates and the propensity score. Assumption
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3 is the common support assumption, it asserts that at least a small fraction of the population

is treated and that for every value of the covariates X, there is at least a small probability

that the unit is not treated, which is also a standard assumption in conditional DiD methods.

3 Estimation of the MTE Curve

In this section we provide two different estimators for the MTE in the fuzzy 2 × 2 setting.

Both methods are control function estimators that are consistent under different assumptions

regarding i) separability of the potential outcomes in terms of X and UD = p and ii) the

functional form of µj(.). Our control function approach conditions on D and PD = p.

From our potential outcomes model and the common support assumption, we have that

E(Y1GT |X) = E(YGT (1)|X,D = 1) = µ1(G, T,X) + E(U1|G, T,X,D = 1)

= µ1(G, T,X) + E(U1|G, T,X, UD ≤ PD(G, T,X))

= µ1(G, T,X) +K1(G, T,X, PD(G, T,X))

and

E(Y0GT |X) = E(YGT (0)|X,D = 0) = µ0(G, T,X) + E(U0|G, T,X,D = 0)

= µ0(G, T,X) + E(U0|G, T,X, UD > PD(G, T,X))

= µ0(G, T,X) +K0(G, T,X, PD(G, T,X))

where Kj = E(Uj|G, T, PD(G, T,X)) are control functions (Olsen, 1980; Heckman and

Robb, 1985). We recover the unobservable gains (k(1, 1, x, p)) by identifyingE(U1|G, T,X, UD =

uD) and E(U0|G, T,X, UD = uD) separately. Heckman and Vytlacil (2001) show that

k1(G, T,X, p) ≡ E(U1|G, T,X, UD = p)

= p
∂K1(G, T,X, PD = p)

∂p
+K1(G, T,X, PD = p)

and
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k0(G, T,X, p) ≡ E(U0|G, T,X, UD = p)

= −(1− p)
∂K0(G, T,X, PD = p)

∂p
+K0(G, T,X, PD = p)

Therefore, the first step in any estimation method is the estimation of the propensity

score trough a
√
n consistent method (Probit, Logit, Linear Probability Model), which will

be used to estimate the control function in a first moment, and later to differentiate it in

order to obtain the MTE. Below, we provide two different strategies for the estimation of

the control function and the MTE curve, which rely on different assumptions regarding the

functional form of the potential outcomes. Thus, applied researchers have freedom to choose

the method that seems more suited for the particular application. In both approaches, we

follow Brinch et al. (2017) and estimate control functions separately for each treatment

status, which allows the identification of richer specifications for the MTE model.

3.1 Semiparametric model

First, we consider a semiparametric estimator, which requires an additional assumption:

Assumption 4. (Additive Separability). E(Ydgt|X = x, UD = p) = µd(g, t, x) +

kd(g, t, p), for (d, g, t) ∈ {0, 1}3.
Assumption 4 implies that the unobservable gains as a function of UD do not depend on

X, so that the MTE is additive separable in X and UD:

∆MTE(x, p) = µ1(1, 1, x)− µ0(1, 1, x) + k(1, 1, p)

When justified, the separability assumption allows for the functional form of the con-

trol function to remain unespecified, which is fundamental in the proposed semiparametric

two-step procedure, which adapts the double residual regression from Robinson (1988) and

Heckman et al. (1997).

In the first step, we specify µj(G, T,X) as linear function of the covariates: µd(G, T,X) =

βdGTX. The slope coefficients are allowed to vary with treatment status, period and group.

The outcome model we estimate is

Yigt(1) = Xiβ1gt +K1(g, t, Pi) + εi1, for i ∈ {D = 1, G = g, T = t}

Yigt(0) = Xiβ0gt +K0(g, t, Pi) + εi0, for i ∈ {D = 0, G = g, T = t}
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In the implementation of the method, we replace Pi with P̂i which is estimated using a
√
n-consistent method.

We obtain identification of βdgt by removing the parts of Yi(d) and Xi that are dependent

on Pi, Di, Gi and Ti:

Yigt(d)− E(Ydgt|Pi) = (X − E(Xdgt|Pi))βdgt + εid

Let Ỹgt(d) = (Ygt(d)− E(Ydgt|P̂i)), X̃gt(d) = (X − E(Xdgt|P̂i))

We estimate βdgt by

β̂dgt = (X̃T
dgtX̃dgt)

−1X̃T
dgtỸdgt

The first step of the procedure recovers the observable gains from treatment. We estimate

µ̂d(g, t, x) = β̂dgtx. Note that, by the conditional parallel trends assumption, we have that

µ̂0(1, 1, x) = µ̂0(1, 0, x) + (µ̂0(0, 1, x)− µ̂0(0, 0, x))

Thus, we recover the observable gains through the difference-in-differences of the esti-

mated values from the first stage:

µ̂1(1, 1, x)− µ̂0(1, 1, x) = µ̂1(1, 1, x)− µ̂0(1, 0, x)− (µ̂0(0, 1, x)− µ̂0(0, 0, x))

After the estimation of βdgt, we estimate the control functions nonparametrically using

the residual-adjusted outcome model.

Define ci(d) = Yidgt −Xβ̂dgt. LetK(.) denote a kernel function and k a bandwidth. The

pointwise estimators for Kd(g, t, p) and γd(p) =
∂Kd(g,t,p)

∂p
in the neighborhood of p are defined

as

(K̂d(p), γ̂d(p)) = argmin
Kd,γd

∑
i∈{D=d,G=g,T=t}

(ci −Kd(p)− γd(p)(P̂i − p))2K(
P̂i − p

h
)

The estimation allows for the recovery of the conditional expectations of U1 and U0 on

UD as presented by Heckman and Vytlacil (2001), from which we are able to recover the

unobservable gains from treatment. The conditional parallel trends assumption combined

with the separability assumption implies that

k̂0(1, 1, p) = k̂0(1, 0, p)− (k̂0(0, 1, p)− k̂0(0, 0, p))
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Hence, we recover the unobservable gains from treatment through the difference-in-

differences of the estimated conditional expectations of the unobservable terms in the po-

tential outcomes model:

k̂1(1, 1, p)− k̂0(1, 1, p) = k̂1(1, 1, p)− k̂0(1, 0, p)− (k̂0(0, 1, p)− k̂0(0, 0, p))

The MTE is thus estimated by putting together the observable and unobservable gains

obtained from the semiparametric procedure. Let Ê(Ydgt|X = x, UD = p) = µ̂d(g, t, x) +

k̂d(g, t, p). We estimate the MTE by

∆̂MTE(x, p) = Ê(Y111|X = x, Ud = p)− Ê(Y010|X = x, Ud = p)−

(Ê(Y001|X = x, Ud = p)− Ê(Y000|X = x, Ud = p))

In short, the semiparametric estimation of the MTE can be performed in six steps:

1. Estimation of the propensity score using a
√
n-consistent method (e.g. Logit, Probit,

LPM).

2. Regress Y onto the estimated P̂D and X onto P̂D.

3 . Build the variables Ỹdgt = Ydgt − Ê(Ydgt|P̂D) and X̃dgt = Xdgt − Ê(Xdgt|P̂D).

4 . Recover the observable gains from treatment by regressing Ỹdgt onto X̃dgt through OLS

regression.

5 . Build the residual variables cdgt = Ydgt −Xdgtβ̂dgt

6 . Recover the unobservable gains by regressing cdgt onto P̂D using a local linear regression.

Asymptotic theory for the semiparametric model is not complete yet. At this moment,

we suggest the use of boostrap for inference.

3.2 Fully parametric polynomial model

The approach outlined in the previous setting relies on the additive separability assumption,

which is not justifiable in all applied settings. In the cases the assumption fails to hold,

we propose an alternative fully parametric estimator, which relies on a different assumption

regarding the functional form of potential outcomes:

Assumption 5 . (The role of covariates on the potential outcomes model). For

j ∈ {0, 1} , µj(G, T,X) = µj(G, T ).
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Assumption 5 states that covariates only affect potential outcomes through its unobserv-

able components. The assumption is necessary in order to build a parametric estimator that

consistently recovers covariate-specific treatment effects under covariate-specific trends (see

Sant’Anna and Zhao (2020) for a detailed discussion on DiD estimation with covariates).

Assumption 5 implies that the potential outcomes model can be expressed by the following

two-way fixed effects (TWFE) regression model augmented by the control functions:

Yi = β0 + β1Gi + β2Ti + τDi +DiK1(Gi, Ti, Xi, Pi) + (1−Di)K0(Gi, Ti, Xi, Pi) + ui (6)

The parametric estimation of the MTE requires a specification for the functional form

of the unobservable heterogeneity in the potential outcomes model. We follow Brinch et al.

(2017) and Cornelissen et al. (2018) and specify the functions K1(.) and K0(.) as polynomials

in the propensity score p.

In the subsection below, we illustrate the parametric estimator for a linear MTE model.

3.2.1 Linear MTE Model

We now define the conditional expectations for U1 and U0, characterizing our linear MTE

model4:

k0(G, T,X, p) = (δG+ γT + π0X)(p− 1

2
)

and

k1(G, T,X, p) = (δG+ γT + π1X)(p− 1

2
)

In this case, the MTE is linear and given by

∆MTE(x, p) = τ + (π1 − π0)x(p−
1

2
)

From the expressions above, we derive

K1(G, T,X, p) =
1

p

∫ p

0

E(U1|G, T,X, UD = u)du

=
1

2
(δG+ γT + π1X)(p− 1)

4The constant ensure that the marginal expectations of U1 and U0 are zero if we assume that UD has a
standard uniform distribution

13



and

K0(G, T,X, p) =
1

1− p

∫ 1

p

E(U0|G, T,X, UD = u)du =

1

2
(δG+ γT + π0X)p

which are the control functions that can be recovered through the parametric estimator.

Parametric estimation of the MTE, thus, can be implemented in three steps.

1 . Estimation of the propensity score through a n-consistent method (e.g. Probit, Logit,

LPM).

2 . Specification of the control functions as polynomials with respect to the propensity

score and OLS estimation of the regression model from equation (6).

3. Plug-in estimation of the MTE using the estimates from item 2.

In the linear model outline above, the MTE estimate amounts to

∆̂MTE(x, p̂) = τ̂ + (π̂1 − π̂0)x(p̂−
1

2
)

where p̂ is recovered in Step 1, and the estimates for the parameters come from Step 2.

We now study the asymptotic properties of the control function estimator for the MTE

parameters assuming we have an i.i.d sample for (Y,D,G, T,X).

Assumption 6: (Yi, Di, Gi, Ti, Xi)i=1,...,n are i.i.d.

Theorem 1 shows that our parametric estimator is
√
n- consistent and asymptotically

normal.

Theorem 1 Let Assumptions 1-3, 5 and 6 hold, then under standard regularity conditions

√
n(∆̂MTE(x, p̂)−∆MTE(x, p)) ∼ N(0, VCF )

where VCF is defined in the section 2 of the Appendix. Moreover, the bootstrap is consistent

for ∆̂MTE.

Our two-step control function can be interpreted as a two-stage GMM estimator (Hansen,

1982). We derive the variance for the MTE estimator in the appendix. The derived expres-

sion can be used to manually correct the estimated second-stage variances for the use of

the estimated propensity score. However, because the variance can take complicated expres-

sions, using the bootstrap might be convenient for inference. Theorem 1 also shows that

bootstraped confidence intervals are asymptotically valid for our estimator.
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4 Internal and External Validity Tests

4.1 Testing for Conditional Parallel Trends and Violations of the

Functional Form

We now propose a simple test which can be used to test both for the conditional parallel

trends assumptions and for violations of the functional form of the model.

We follow Borusyak et al. (2021) and perform the test using untreated observations only.

Despite the drawback of losing statistical power by dropping treated observations from the

procedure, the choice allows us to overcome traditional challenges in pre-trend testing in

DiD designs (see Roth (2022) for a thorough discussion).

We propose a test that comes directly from the functional form for the untreated outcomes

that is implied by the conditional parallel trends assumption. Assumptions 3 and 5 imply

the following functional form for untreated outcomes:

Y (0) = µ0(G, T ) +K0(G, T,X, PD = p)

A simple test for the conditional parallel trends assumption is to consider a richer specifi-

cation for Y (0) than the one imposed by Assumption 3 and test for the statistical significance

of the additional regressors.

More specifically, we consider the following regression model,

Yi(0) = µ0(Gi, Ti) +K0(Gi, Ti, Xi, PD = p) +W T
i Θ+ εi

estimate Θ by Θ̂ using OLS. The choice of W is therefore fundamental for our validity

test. In settings with observations available for multiple periods before treatment, a nat-

ural choice is a set of indicator variables for pre-treatment periods (De Chaisemartin and

D’Haultefoeuille, 2020; Sant’Anna and Callaway, 2021). In the 2 × 2 setting, however, the

construction of the placebo treatments is not so straightforward. Assume we have data

available for period T = −1. We can run the regression above for periods T = 0, T = −1

and define W = G × T . In the absence of pre-treatment observations , we can test for

violations of the functional form of potential outcomes by building W using variables that

are assumed to be correlated to the covariates in the model, but do not affect the potential

outcomes. The choice of the variables should follow context-specific economic knowledge in

order to adequately assess the possible violations of conditional parallel trends (Rambachan

and Roth, 2022).
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4.2 Testing the External Validity of LATE in a Linear Model

Recent work has focused on proposing several tests for the external validity of the LATE in

IV settings (Heckman et al., 2010; Angrist and Fernandez-Val, 2013; Brinch et al., 2017).

The control function estimation approach offers a simple test for the external validity of

LATE in a linear MTE model. Specifically, we reject the external validity of the treatment

parameter if the slope of the MTE model is different from zero, that is, the MTEs are

nonconstant.

The MTEs are constant in the absence of unobservable variables driving selection into

treatment. Thus, constant MTEs imply that all the average treatment effects from the DiD

literature will have the same value, and therefore the LATE estimate will be informative for

all population. If the MTEs are nonconstant, however, then the LATE is informative only

for the population of treatment group switchers.

Our test is similar to the one presented by Brinch et al. (2017). Define ∆j = E(Yj11)−
E(Yj10) − (E(Yj01) − E(Yj00)). In a linear MTE model, testing the null hypothesis of a

constant MTE (i.e., U1−U0 ⊥ UD) versus the alternative of a nonconstant MTE is equivalent

to testing the null hypothesis

H0 : ∆1 = ∆0

versus a two-sided alternative hypothesis.

A straightforward way to implement the test is to run the following regression:

Yi = α0 + α1Gi + α2Ti + α3Di + α4Gi · Ti + α5Di ·Gi · Ti + ei

and perform a two-sided t-test on the estimate for α5.

The intuition of the test is pretty clear: If we are dealing with a constant MTE model,

then it must be the case that treatment effects are independent from the variables that drive

selection into treatment.

5 Doubly-Robust estimation of LATE

In the 2×2 setting, our parametric estimator is equivalent to a TWFE estimator augmented

by the control function, as illustrated by equation (6). In the regression model, the parameter

τ represents the LATE.

We propose a doubly-robust estimator for the LATE, which is the TWFE specification

augmented by the control function and unit-specific rates which are a function of the propen-

sity score and a reshaped distribution of selection into treatment.
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The estimator is a function of two nuisance parameters: the estimated propensity score

P̂D(G, T,X) and the outcome model mij(G, T,X) = µ0(G, T ) + Kj(G, T,X, p). In that

sense, it is an adaptation of the Reshaped Inverse Probability Weighting (RIPW) estimator

for panel data proposed by Arkhangelsky et al. (2021). We modify it to account for essential

heterogeneity by including the control function and for the case of repeated cross-sections.

Given an estimate P̂D(G, T,X) for the propensity score and estimates for mj(G, T,X, p)

we consider the following RIPW estimator:

τ̂(π) = argmin
µ,τ

n∑
i=1

((Yi −mij(Gi, Ti, Xi, pi))− µ−Diτ)
2 π(Di;Xi)

P̂D(Gi, Ti, Xi)
(7)

where π(Di;Xi) is a density for Di conditional on the covariates Xi
5.

Theorem 3 defines the form of our doubly-robust estimator for the LATE:

Theorem 2 Let Θi =
π(Di;Xi)

P̂D(Gi,Ti,Xi)
and Ỹi = Yi−mij(Gi, Ti, Xi, P̂D(Gi, Ti, Xi)). Furthermore,

define ΓΘ = 1
n

∑n
i=1Θi, ΓDD = 1

n

∑n
i=1ΘiD

2
i , ΓDY = 1

n

∑n
i=1ΘiDiỸi, ΓD = 1

n

∑n
i=1 ΘiDi and

ΓY = 1
n

∑n
i=1ΘiỸi.

Under Assumptions 1-6,

τ̂(π) =
A

B
=

ΓDY − Γ−1
Θ ΓDΓY

ΓDD − Γ−1
Θ Γ2

D

In section 3 of the Appendix we derive a linear asymptotic expansion of the RIPW

estimator from which we obtain its corresponding influence function:

N∗ =
1

2n

n∑
i=1

E[Vi] = E[ΓDY ]E[ΓΘ]− E[ΓD]E[ΓY ]− τ(E[ΓDD]E[ΓΘ]− E[ΓD]
2)

where

Vi = Θi

{
(E[ΓDY ]− τE[ΓDD])− (E[ΓY ]− τE[ΓD])Di + E[ΓΘ]Di(Ỹi − τDi)− E[ΓD](Ỹi − τDi)

}
Theorem 3 shows an important property from the RIPW estimator, which is the double-

robustness property:

Theorem 3 Let Assumptions 1-6 hold, then τ̂(π) is a consistent estimator of τ if

5Arkhangelsky et al. (2021) show that the density can be arbitrary in the 2× 2 DiD setting, as long as
positive probabilities are assigned for both treatment status.
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1. P̂D(G, T,X) p−→PD(G, T,X), a.s., or

2. m̂j(G, T,X, p) p−→mj(G, T,X, p) a.s..

Theorem 3 states that as long as one of the nuisance parameters is correctly specified,

we can consistently recover the LATE. Therefore, the RIPW estimator is less demanding

when it comes to the researcher’s ability to specify the selection into treatment model or the

unobserved gains from treatment (see Section 4 of the Appendix for the proof).

We use the plug-in estimates of Vi to estimate a conservative variance of the term
1√
n

∑n
i=1(Vi − E[Vi]) as

σ̂2 =
1

n− 1

n∑
i=1

(V̂i − V̂i)
2

where V̂i =
1
n

∑n
i=1 V̂i. This yields the following Wald-type confidence interval for τ :

Ĉ1−α = [τ̂(π)− z1−α/2σ̂/
√
nB, τ̂(π) + z1−α/2σ̂/

√
nB] (8)

where zη is the η−th quantile of the standard normal distribution (see Section 3 of the

appendix for more details).

6 Monte Carlo Simulation Studies

In this section, we conduct a series of Monte Carlo experiments to assess the finite sample

properties of our proposed estimators. We compare our proposed parametric control function

(CF-DID) and RIPW estimators to the standard unweighted TWFE linear regression model,

the doubly-robust DiD estimator (DR-DID) proposed by Sant’Anna and Zhao (2020), the

Wald-DID estimator used in Duflo (2001) and the Time-Corrected WALD-DID estimator

(TC-WALD) as proposed by De Chaisemartin and D’Haultefoeuille (2018).

In all simulation exercises, we consider a linear probability model for selection into treat-

ment and a linear working model for the evolution of the outcomes.

D = 1 {α1X + α2G+ α3T + α4G× T ≥ UD}

where UD follows a standard uniform distribution and the coefficients are specified such

that the left hand side of the inequality is also bounded within the unit interval.

Furthermore, we assume that the unobservable terms from the potential outcomes and

the treatment participating equation are linearly correlated, characterizing, thus, a linear
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model for the MTE as the one presented in Section 3.2.1.6.7

We specify the potential outcomes as

Y (0) = µ0(G, T ) + U0

= β0 + β1G+ β2T + U0

and

Y (1) = µ1(G, T ) + U1

= β0 + β1G+ β2T + τ + U1

where E(U0|G, T,X) = E(U1|G, T,X) = 0. We consider a linear functional form for the

observable terms of the potential outcomes where the conditional parallel trends assumptions

follows naturally from the linear model with additive separability between the time and group

variables.

The parameter τ represents both the ATT and the LATE in this DGP, given that the

MTE is linear. We set its value to be equal to zero in the simulations. The parameters

that determine the unobservable gains from treatment are defined such that the slope of the

MTE curve is equal to 1 (π1 − π0 = 1).

We consider a sample size n equal to 1000. We compare the various DiD estimators

estimators for the LATE in terms of average bias, median bias, root mean squared error

(RMSE), empirical 95% coverage probability and the average length of the 95% confidence

interval.

Figure 1 shows the comparison between the true MTE curve and the one estimated by

our procedure, for the mean value of the covariates. The blue line represents the true MTE

curve, the red line shows the estimated curve and the dashed lines show us the bounds for

the 95% bootstrapped confidence interval.

The estimator successfully recovers the MTE curve. Bias becomes greater in magnitude

for larger values of p, which is expected as common support loses is strength for extreme

values, but is never greater than the absolute value of 0.013, as shown in Figure 2.

In the LATE simulations, we focus on four empirically relevant situations. Table 1

displays the results for the simulations in the case where both the propensity score and the

6We define U1 ∼ N(0, 1) and U0 ∼ N(0, 1). The linear correaltion with UD is defined in Section 3.2.1.
7This specification is consistent with the model presented in Olsen (1980), we use it for the sake of

simplicity.
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Figure 1: MTE Curve

Note: This figure displays the MTE estimates based on assumptions 1-6.The MTE is evaluated at the mean value of the
covariates. PD(G,T,X) is constructed through a linear probability model. The MTE estimates are based on a control function
regression. The 95% precent confidence interval is computed from a bootstrap with 500 replications. The y-axis measures the
value of the MTE from the DGP, whereas the x-axis measures the unobserved distaste for treatment.

control functions are correctly specified.

First, note that the TWFE fixed effect estimator is severely biased and its confidence

interval has coverage probability close to zero. This result is expected, as it is well known

that the TWFE regression model implicitly rules out covariate-specific trends and treatment

effects (Sant’Anna and Zhao, 2020). Furthermore, the estimator is agnostic to imperfect

compliance and does not account for the essential heterogeneity. The DR-DID estimator

is also severely biased. It presents coverage rate of nearly 0.4, mostly due to the fact the

bootstrapped confidence intervals have greater average length than the TWFE confidence

interval. The DR-DID estimator accounts for covariate-specific trends but not for imperfect

compliance, so the results are not unexpected. The WALD-DID is the first estimator we are

considering that tries to tackle the ”fuzzy” DiD design. To put it simply, it is a 2SLS strategy

in which the instrument is given by the interaction of group and time variables. The WALD-

DID is also severely biased in our setting. It recovers the LATE under the assumption

of homogeneous treatment effects across groups. Since the assumption does not hold in

our setting, the results are expected. Furthermore, the WALD-DID estimator presents the

greatest average length for the confidence interval amongst the considered estimators, which
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Figure 2: Bias of the CF-DID Estimator for the MTE

Note: This figure display the bias from the MTE estimates presented in Figure 1. The y-axis measures the value of the bias of
the MTE estimates, whereas the x-axis measures the unobserved distaste for treatment.

is expected from the IV literature. The TC-WALD estimator presents a reasonably smaller

bias, yet it still severely biased, as it relies on the assumption of homogeneous treatment

effects within groups. Since our DGP allows for heterogeneous treatment effects withing

groups as a function of the unobserved distaste for treatment, the bias is expected. Finally,

the CF-DID and the RIPW estimators show little to no bias. In terms of efficiency, the

performance of both estimators is also similar. Since we are dealing with parametric models

and reasonably large simulated samples, we believe there is little difference in the performance

of the estimators in terms of efficiency when both nuisance parameters are correct, which

will not be necessarily true when working with non-parametric versions of the estimators.

Table 1: Control Function and Propensity Score are correct.

Estimator Av. Bias Med. Bias RMSE Cover CIL
TWFE -1.613 -1.614 1.615 0.000 0.208
DR-DID 1.611 1.612 1.615 0.327 2.632

WALD-DID 2.971 2.863 2.988 0.657 4.542
TC-WALD -0.450 -0.439 0.449 0.768 1.822
CF-DID -0.010 -0.011 0.209 0.953 1.088
RIPW -0.012 -0.008 0.209 0.947 1.327

Note: Simulations based on 10,000 Monte Carlo experiments. TWFE is the two-way fixed effects estimator, DR-DID is the
Doubly-Robust DiD estimator as proposed in Sant’anna and Zhao (2020), WALD-DID is the Wald-DiD estimator as used in

Duflo (2001), TC-WALD is the Time-Corrected Wald Ratio proposed by De Chaisemartin and D’Haultefoeuille (2018),
CF-DID and RIPW are our proposed estimator. “Av. Bias”, “Med. Bias”, “RMSE”, “Cover” and “CIL’, stand for the
average simulated bias, median simulated bias, simulated root mean-squared errors, 95% coverage probability, and 95%

confidence interval length, respectively.

Table 2 shows the results for the simulations in which only the propensity score is correct.
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We misspecify the control function by estimating a quadratic model for the MTE. In that

case, the CF-DID estimator presents non-negligible bias, while the RIPW estimator still

shows little to no bias.

Table 2: Only the Propensity Score is correctly specified.

Estimator Av. Bias Med. Bias RMSE Cover CIL
TWFE -1.613 -1.614 1.615 0.000 0.208
DR-DID 1.611 1.612 1.615 0.327 2.632

WALD-DID 2.971 2.863 2.988 0.657 4.542
TC-WALD -0.450 -0.439 0.449 0.768 1.822
CF-DID -0.141 -0.143 0.222 0.793 1.072
RIPW -0.007 -0.001 0.209 0.949 1.329

Note: Simulations based on 10,000 Monte Carlo experiments. TWFE is the two-way fixed effects estimator, DR-DID is the
Doubly-Robust DiD estimator as proposed in Sant’anna and Zhao (2020), WALD-DID is the Wald-DiD estimator as used in

Duflo (2001), TC-WALD is the Time-Corrected Wald Ratio proposed by De Chaisemartin and D’Haultefoeuille (2018),
CF-DID and RIPW are our proposed estimator. “Av. Bias”, “Med. Bias”, “RMSE”, “Cover” and “CIL’, stand for the
average simulated bias, median simulated bias, simulated root mean-squared errors, 95% coverage probability, and 95%

confidence interval length, respectively.

In table 3 we present the results for the case in which only the control function is correctly

specified. We estimate a linear model for the MTE, but using an incorrect propensity score

to account for the unobserved heterogeneity. The CF-DID estimators exhibits non-negligible

bias with magnitude similar to the one displayed in Table 2. The RIPW estimator remains

unbiased.

Table 3: Only the Control Function is correctly specified.

Estimator Av. Bias Med. Bias RMSE Cover CIL
TWFE -1.613 -1.614 1.615 0.000 0.208
DR-DID 1.611 1.612 1.615 0.327 2.632

WALD-DID 2.971 2.863 2.988 0.657 4.542
TC-WALD -0.450 -0.439 0.449 0.768 1.822
CF-DID -0.160 -0.173 0.304 0.664 1.488
RIPW -0.012 -0.013 0.205 0.941 1.617

Note: Simulations based on 10,000 Monte Carlo experiments. TWFE is the two-way fixed effects estimator, DR-DID is the
Doubly-Robust DiD estimator as proposed in Sant’anna and Zhao (2020), WALD-DID is the Wald-DiD estimator as used in

Duflo (2001), TC-WALD is the Time-Corrected Wald Ratio proposed by De Chaisemartin and D’Haultefoeuille (2018),
CF-DID and RIPW are our proposed estimator. “Av. Bias”, “Med. Bias”, “RMSE”, “Cover” and “CIL’, stand for the
average simulated bias, median simulated bias, simulated root mean-squared errors, 95% coverage probability, and 95%

confidence interval length, respectively.

When both nuisance parameters are incorrect, all estimators have non-negligible bias and

all inference procedures are misleading. In this scenario, our estimators present the smaller

biases when compared to the rest, and the CF-DID seems to perform the best in this case.

The simulations assert the desirable double-robustness property of the RIPW estimator.

In terms of efficiency however, our estimators present a similar performance. Moreover, the
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simulations show that we can consistently estimate the MTE curve when the nuisance pa-

rameters are correctly specified. There is no doubly-robust procedure for the estimation of

the MTE, as it relies on the assumption that we can model the unobservable gains from

treatment. Therefore, correctly specifying the control function is paramount for the identi-

fication of marginal treatment effects. In order to do so, researchers must rely on economic

theory to model their control functions.

Table 4: Control Function and Propensity Score are incorrect.

Estimator Av. Bias Med. Bias RMSE Cover CIL
TWFE -1.613 -1.614 1.615 0.000 0.208
DR-DID 1.611 1.612 1.615 0.327 2.632

WALD-DID 2.971 2.863 2.988 0.657 4.542
TC-WALD -0.450 -0.439 0.449 0.768 1.822
CF-DID -0.137 -0.141 0.352 0.699 1.451
RIPW 0.174 0.266 0.334 0.799 1.652

Note: Simulations based on 10,000 Monte Carlo experiments. TWFE is the two-way fixed effects estimator, DR-DID is the
Doubly-Robust DiD estimator as proposed in Sant’anna and Zhao (2020), WALD-DID is the Wald-DiD estimator as used in

Duflo (2001), TC-WALD is the Time-Corrected Wald Ratio proposed by De Chaisemartin and D’Haultefoeuille (2018),
CF-DID and RIPW are our proposed estimator. “Av. Bias”, “Med. Bias”, “RMSE”, “Cover” and “CIL’, stand for the
average simulated bias, median simulated bias, simulated root mean-squared errors, 95% coverage probability, and 95%

confidence interval length, respectively.

7 Empirical illustration: Returns to schooling in In-

donesia

We illustrate the use of our estimators by revisiting Duflo (2001), which analyzes the returns

to schooling in Indonesia by exploiting a major government school construction program as

a natural experiment in a DiD design.

In 1973 the Indonesian government launched the INPRES program, a major primary

school construction program. In the setting, year of birth plays the role of time. Men born

between 1957 and 1962 are defined as cohort 0, as they should have finished primary school

by the time the program was launched. Men born between 1968 and 1972 are defined as

cohort 1 since they had the age to enroll in primary education after the program. Treatment

and control groups are defined according to the number of primary schools per capita at each

district. The author regresses the number of primary schools constructed on the number of

school-age children in each district and define treatment districts as those with a positive

residual in that regression.

The outcome of interest is the logarithm of wages and the treatment variable is the indi-

vidual’s years of schooling. Since our method is suited for binary treatments, we recategorize
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the treatment variable in order to take value 1 for individuals that attended primary school

and 0 for individuals that did not. Individuals with a greater educational attainment were

excluded from the sample. We include a district’s school enrollment rate in 1971 and the

presence of a water and sanitation program as covariates in the regressions.

We estimate the LATE using the parametric control function and the RIPW, and compare

the results obtained using the WALD-DID and the TC-WALD. We also use the estimates

from the parametric control function to derive a linear MTE model.

7.1 LATE

Table 5 displays the value of the estimates obtained using the WALD-DID, the TC-WALD,

the CF-DID and the RIPW. Standard errors for the first three estimators were obtained

using 200 bootstrap replications of a bootstrap clustered at the district level, whereas the

standard error for the RIPW was obtained trough the plug-in estimator from Section 5.

Table 5: Returns to primary school using the groups from Duflo (2001)

WALD-DID TC-WALD CF-DID RIPW
Returns to education 0.345 0.317 0.202 0.186

95% CI [0.075, 1.432] [0.062, 1.363] [0.111, 0.367] [0.116, 0 354]
Note: Sample size: 9113 observations. Standard errors account for clustering at the district level.

All point estimates are positive and statistically significant at conventional levels. The

WALD-DID and the TC-WALD present larger point estimates than the ones obtained

through the CF-DID and the RIPW, but not at a statistically significant level.

The RIPW estimator is the most flexible among the ones considered, as it relies on the

least restrictive set of assumptions. Thus, we take it as the most credible estimate. Therefore,

the results suggest that there is nearly a 19% increase in wages associated to primary school

attendance.

7.2 Linear MTE model

We define a linear MTE model following the specification outlined in Section 3.2.1. Figure

3 depicts the MTE curve evaluated at the mean values of the covariates in the sample. The

figure reveals substantial heterogeneity in the effects of primary school attendance on future

wages.

The MTE curve has an upward sloping shape, which indicates a pattern of adverse

selection on gains. While individuals with low resistance to primary school attendance (i.e.,

low values of UD = p) actually exhibit negative effects on future earnings, while there is
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a substantive increase in wages for individuals with a high resistance to school attendance

(high UD). This pattern of reverse selection is also present in Cornelissen et al. (2018) which

analyzes the returns of early child care attendance in Germany.

The results displayed in Table 5 exhibit the positive returns of primary school attendance

for the treatment group switchers, but nevertheless mask substantial heterogeneity in the

returns.

Figure 3: MTE curve for the returns to schooling

Note: Figure 3 displays the MTE curve of the effect of primary school attendance on future wages estimated by the CF-DID
method using the data from Duflo (2001). The 95% confidence interval is based on bootstrapped standard errors.

The findings have important policy implications. First, they suggest that policies that

successfully attract children with high resistance not currently enrolled in primary school

may yield large returns. Thus, it follows that targeted programs can be more cost effective

than universal primary school enrollment programs.

8 Conclusion

The Marginal Treatment Effect provides a choice-theoretic foundation that unifies the econo-

metric literature on causal inference. Not only it has a clear economic interpretation, it also

summarizes all other conventional treatment parameters.

In this paper we show how the difference-in-differences design can be used to identify
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the MTE under a functional structure that allows for treatment heterogeneity based on

the unobservable characteristics that drive selection into treatment using a control function

estimation approach.

We propose two different estimators, that rely on different assumptions regarding the

potential outcomes. First, we propose a semiparametric estimator that is valid if we assume

that the potential outcomes are additively separable in a component that depends on co-

variates X and a component that is function of of the essential heterogeneity UD. Second,

we propose a parametric estimator that is valid if additive separability does not hold, but

requires that covariates only affect potential outcomes through its unobservable component

and that the unobserved heterogeneity has a known polynomial form. Thus, we provide for

the applied researchers different estimators, from which he can choose the one that is most

adequate for the particular empirical problem.

We derive the large sample properties of our parametric MTE estimator and illustrate

the desirable finite sample properties of the estimator via a simulation exercise. Asymptotic

properties for the semiparametric estimator are being derived still. For now we recommend

to use boostrap for inference, which is standard for semiparametric MTE estimators in IV

settings.

We provide simple tests to assess the validity of the identification assumptions in the

setting, and to test the external validity of LATE estimates in a linear MTE model.

We also show that unit-specific reweighting of our parametric estimator’s objective func-

tion improves the robustness of the resulting estimator for the LATE, providing thus a less

demanding procedure for applied researchers to estimate the LATE in ”fuzzy” DiD settings.

The Monte Carlo simulation studies assert the desirable finite-sample properties of the

parametric control function DiD estimator and the RIPW estimator. Furthermore, results

show that the conventional DiD established in the literature fail to recover consistent esti-

mates for treatment effects in the presence of essential heterogeneity.

The empirical illustration illustrates the economic insights that can come from the esti-

mation of the MTE curve. Applying the parametric control function DiD estimator in the

setting of Duflo (2001) we find substantial heterogeneity in the effects of primary school

attendance on future earnings, and a pattern of reverse selection on gains which could not

be recovered by any other conventional policy evaluation parameter.

This work is only a first effort in the direction of building a complete theory for the MTE

framework in DiD designs. So far we have only considered a parametric procedure for the

2× 2 setting. A natural direction for the advance of this agenda is to propose identification

results for the MTE in DiD settings with staggered adoption and dynamic treatment effects,

following the recent advances in the literature (Sant’Anna and Callaway, 2021; Goodman-
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Bacon, 2021; Borusyak et al., 2021).

Another necessary step in future research is to consider 2× 2 settings and settings with

multiple periods where the treatment variable is either multi-valued or continuous (Callaway

et al., 2021).
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Appendix: Main Proofs

Theorem 1

Proof. Standard errors of the two-stage estimator need to be adjusted for the fact that the

we use the estimated propensity score from the first stage as a regressor in the second stage.

The asymptotic distribution of the second-stage estimates can be obtained by interpreting

our two-stage procedur as a joint GMM estimator (Hansen, 1982).

Define W1i as the vector of regressors from the selection into treatment equation and

θ1 as the vector of parameters to be estimated8. Furthermore, define W2i as the vector of

regressors used in the second stage and θ2 as the vector of parameters associated to them.

The CF-DID estimator solves the population analogue of

8In the linear MTE model used in the simulations, W1i = (Xi, Gi, Ti, Gi × Ti) and θ1 = (α1, α2, α3, α4)
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E[f(θ1, θ2;W1i,W2i)] = E

[
W1i(Di − θT1 W1i)

W2i(Yi − θT2 W2i)

]
= 0

By Theorem 6.1 of Newey and McFadden (1994), and under standard regularity conditions,

√
n(θ̂2 − θ2) ∼ N(0, VCF )

where VCF is the last element of

E

[
∂f(θ1, θ2;W1i,W2i)

∂(θ1, θ2)

]−1

E[f(θ1, θ2;W1i,W2i)f(θ1, θ2;W1i,W2i)
T ]E

[
∂f(θ1, θ2;W1i,W2i)

∂(θ1, θ2)

]−1T

We construct our MTE estimates as a function of the parameters estimated in the second-

stage of the procedure. For instance, in the case of our linear MTE model, the MTE estimates

are given by ∆MTE(θ̂2) = τ̂ +(π̂1− π̂2)x(p− 1
2
). Thus, it follows from the Delta Method that

√
n(∆MTE(θ̂2)−∆MTE(θ2)) ∼ N(0, VMTE)

where VMTE = (▽θ2∆
MTE(θ2))

TVCF (▽θ2∆
MTE(θ2)), in which ▽θ2 represents the gradient

of the MTE function with respect to the parameters in θ2. Consistency of the bootstrap

follows directly from the consistency of the bootstrap for GMM estimators.

Theorem 2

We conduct the proof using the notation previously established in Section 5

Proof. Given an estimate m̂ij and an estimate P̂D(G, T,X) we consider the following RIPW

estimator:

τ̂(π) = argmin
µ,τ

n∑
i=1

((Yi − m̂ij)− µ− τDi)
2Θi

= argmin
µ,τ

n∑
i=1

(Ỹi − µ− τDi)
2Θi

The first order conditions with respect to µ and τ are respectively

n∑
i=1

Θi(Ỹi − µ− τDi) = 0
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and
n∑

i=1

ΘiDi(Ỹi − µ− τDi) = 0

From the first order conditions we obtain the optimal µ̂ as function of τ :

µ̂(τ) = Γ−1
Θ (ΓY − τΓD)

Substitute µ̂(τ) into the first order condition with relation to τ and after some tedious

algebraic manipulation we obtain

τ̂(π) =
ΓDY − Γ−1

Θ (ΓDΓY )

ΓDD − Γ−1
Θ Γ2

D

Asymptotic Linear Expansion of the RIPW Estimator

We conduct the expansion using the notation introduced in Section 5. We begin the asymp-

totic expansion by noting that

B(τ̂ − τ) = A− τB

By Lemma A.2 of Arkhangelsky et al. (2021), we have

|(ΓDY − E[ΓDY ])(ΓΘ − E[ΓΘ])|+ |(ΓD)− E[ΓD](ΓY − E[ΓY ])| = Op(n
−q)

where q ∈ (0, 1] denotes measures the strength of the correlation between unit’s selection

into treatment.

Let

Vi1 = Θi

{
E[ΓDY ]− E[ΓY ]Di + E[ΓΘ]DiỸi − E[ΓD]Ỹi

}
Then we can write A as

A = E[ΓDY ]E[ΓΘ]− E[ΓD]E[ΓY ] +
1

n

n∑
i=1

(Vi1 − E[Vi1]) +Op(n
−q)

Similarly, we define

Vi2 = Θi

{
E[ΓDD]− E[ΓD]Di + E[ΓΘ]D

2
i − E[ΓΘ]Di

}
Since Vi = Vi1 − τVi2, it follows that
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B(τ̂ − τ) = N∗ +
1

n

n∑
i=1

(Vi − E[Vi]) +Op(n
−q)

Our plug-in estimator for the variance of the RIPW estimator and the inference procedure

follow from Theorem A.5 of Arkhangelsky et al. (2021).

Theorem 3

Proof. Theorem A.2 of Arkhangelsky et al. (2021) show that 1
n

∑n
i=1(Vi − E[Vi]) = op(1).

Thus, it follows that the asymptotic limit of B(τ̂ − τ) is equal to N∗. For consistency of the

estimator , it remains to show that N∗ = op(1).

For the sake of simplicity in this exposition, we assume that τ = 0, without loss of

generality. Then

N∗ = E[ΓDY ]E[ΓΘ]− E[ΓD]E[ΓY ]

We begin by noting that Ỹi = Ỹi(Di) + τDi. By Assumptions 1-6,

E[ΓDY ] =
1

n

n∑
i=1

[ΘiDiỸi] =
1

n

n∑
i=1

[ΘiDi(Ỹi(Di) + τDi)]

=
1

n

n∑
i=1

E[ΘiDi]E[Ỹi(Di)] +
1

n

n∑
i=1

E[ΘiD
2
i ]τ

Analogously,

E[ΓY ] =
1

n

n∑
i=1

E[Θi]E[Ỹi(Di)] +
1

n
E[ΘiDi]τ

Thus, it follows that

N∗ =
1

n

n∑
i=1

{E[ΘiDi]E[ΓΘ]− E[Θi]E[ΓD]}E[Ỹi(Di)]

+
1

n

n∑
i=1

{
E[ΘiD

2
i ]E[ΓΘ]− E[ΓD]E[ΘiDi]

}
τ

1) Suppose that m̂ij(Gi, Ti, Xi, pi) = mij(G, T,X, p) a.s.. Since we assume τ = 0, it

follows that
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N∗ =
1

n

n∑
i=1

{E[ΘiDi]E[ΓΘ]− E[Θi]E[ΓD]}E[Ỹi(Di)]

By Assumptions 1-6, if m̂ij(Gi, Ti, Xi, pi) = mij(G, T,X, p), then E[Ỹi(Di)] = 0. There-

fore, it is obvious from the expression above that N∗ = 0.

2) Sppose now that P̂D(Gi, Ti, Xi) = PD(G, T,X)a.s.. Then for any function f(.),

E[Θif(Di)] =
∑

D∈{0,1}

π(D;X)

PD(G, T,X)
PD(G, T,X)f(Di) = ED∼π[f(D)]

where ED∼π[(.)] denotes to the expectation of a given variable reshaped by the density

π(D;X).

Therefore, we have that

E[ΘiDi] = ED∼π[D] = E[ΓD], E[Θi] = E[ΓΘ] = 1

and

E[ΘiD
2
i ] = ED∼π[D

2], E[ΘiDi] = ED∼π[D]

Consequently, we obtain

E[ΘiDi]E[Θi]− E[Θi]E[ΓD] = ED∼π[D]− ED∼π[D] = 0

and

E[ΘiD
2
i ]E[ΓΘ]− E[ΓD]E[ΘiDi] = ED∼π[(D − ED∼π[D])D]

As a result,

N∗ =
1

n

n∑
i=1

ED∼π[(D − ED∼π[D])D]τ = 0
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