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Abstract

We apply the Bayesian workflow approach by [GVS+20] of model building, inference and
comparison to the modeling of the term structure of interest rates. We describe novel procedures of
Bayesian data analysis, such as prior predictive checking, computational diagnostics, and posterior
predictive checkings. We propose versions of the Vasicek, CIR and Diebold-Li models for the term
structure, elicit prior distributions for the parameters, estimate the models with both simulated
and real data, and compare the models. Our results show that the Diebold-Li models have better
predictive capabilities than those of the affine (Vasicek and CIR) models, however our main goal
is to illustrate how the Bayesian workflow approach is carried out in a practical setting of financial
econometrics.

Keywords: Term structure of interest rates, Bayesian data analysis, Bayesian inference, Finan-
cial econometrics, Time series modeling.

1 Introduction

The advances in computational methods over the last decades have allowed for possibilities in Bayesian
modeling that were otherwise unfeasible. In order to tap into this newfound potential, modeling
procedures that go beyond the regular Bayesian inference with conjugate priors must be formalized and
developed. The Bayesian workflow proposed by [GVS+20] summarizes advances from the “Bayesian
data analysis” approach, ranging from prior distribution elicitation and computation diagnostics until
model comparison and prediction of future data.

The goal of this work is to show how the Bayesian workflow can be applied to a practical issue in
financial econometrics, in this case term structure modeling. We propose several statistical models for
the term structure of interest rates and carry out procedures such as prior and posterior predictive
checking, estimation with simulated and real data, and convergence diagnostics. Guided by Bayesian
reasoning, we analyse before and after estimation how consistent with domain knowledge our modeling
is.

Section 2 details our methodology, stating and describing each step of our adaptation of the Bayesian
workflow. Section 3 presents our results for each step in the context of term structure modeling. Section
4 contains concluding remarks.

2 Methodology

Our methodology consists of proposing a Bayesian workflow in the likes of the one by [GVS+20]
for comparing between statistical models for the term structure of interest rates. Each step of the
workflow is then carried out and their results are interpreted in the light of the domain knowledge
for term structure modeling. The Bayesian workflow aims to be a step-by-step method based on the
Bayesian data analysis approach, which goes beyond traditional Bayesian inference by also including
model building and checking/comparison under Bayesian reasoning.

The steps of our proposed Bayesian workflow for term structure modeling consist of

1. Describing our data

2. Proposing models and priors for each parameter

3. Prior predictive checking
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4. Estimation with simulated data

5. Computational diagnostics and assessing of estimation bias

6. Estimation with real data

7. Posterior predictive checking

8. Comparison of predictive abilities

The first step is describing the dataset we want to propose models for, and more generally yield
curve data. The yield curve is the graphical representation of the term structure of interest rates at
a given point in time, however it is common to refer to the term structure as the “yield curve”. The
main characteristic of yield curve data is how it is jointly determined by short and long interest rates.
This makes term structure modeling different from e.g. modeling of stock prices, and, ideally, should
be accounted for in our models. Empirically, the yield curve presents three patterns: flat, steep and
inverted.

In the model proposing step, we look at some of the most common models for term structure
modeling in financial econometrics. More specifically, we provide state-space specifications of the
benchmark models by [Vas77], [CIR85] and [DL06]. We discuss the assumptions behind these models,
and how reasonable they are in practice. We also describe the parameters of each model, and propose
prior distributions for each parameter. We then move on to prior predictive checking, a procedure
proposed by [GSV+19], in order to choose values for the hyperparameters of the priors. We use prior
predictive checking to simulate data that is a priori consistent with our knowledge about the yield
curve.

We then move on to estimating each of the models with fake, simulated data. This is important
because, among other reasons, we can better assess issues such as adequate computation and estimation
bias in a setting where the true parameters are known [GVS+20]. This becomes more difficult to do
with real data, where we do not even know the true data-generating process, let alone parameter
values. After estimating the models with simulated data, we analyse the computational diagnostics
and parameter bias.

Being aware of computational issues and/or estimation bias, we can then move on to the estimation
with real data. Seeing how our proposed model(s) reacts with the observed data is perhaps the most
critical step in statistical modeling. However, in a setting where the models are complex and the direct,
practical interpretation of the parameters might not be clear, we can propose other ways of evaluating
models after fit. This is where procedures such as posterior predictive checking [GSV+19] come in,
taking advantage of the fact that, with the previously observed data and updated distributions (the
posteriors) for the parameters, we can sample from the posterior predictive distribution. This gives us
hypothetical “to be observed” future data, which we can compare to the observed data with graphical
plots in the style of [GSV+19]. This comparison is a good measure of model fit quality, as, if the
model is good at describing our observed data, it makes sense that it can generate additional data
that resemble the previously observed set. Besides posterior predictive checking, we present additional
measures of predictive ability, such as a cross-validation procedure or an information criterion.

3 Steps of our Bayesian workflow

3.1 Describing the data

The data utilized in this work comes from NEFIN FEA-USP – Center for Research in Financial
Economics of the Department of Economics, and consists of the spot rate curve for Brazil, calculated
from One-Day Interbank Deposit Futures contracts (DI rate).1 In our estimated models we shall use
the yields with the following maturities: 2 months, 3 months, 6 months, 1 year, 3 years, 5 years, all
with weekly frequency. Our utilized sample starts in 2012-01-08 and ends in 2020-05-24, totalling 438
observations for each maturity.

From the graphical visualization of our dataset, we can notice some features. The highest value
observed for the rates is of around 16% for the 3 and 5 year maturities, and the lowest is of around
2% for the shortest maturities. If we imagine the observed data as a realization of our data-generating

1The data can be found at http://nefin.com.br/data/spot_rate_curve.html
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Figure 1: Term structure data for Brazil from 2012 to 2020

process, it would seem highly unlikely that the interest rates would ever go above 30% for any of the
maturities. Also, one might argue that, given the characteristics of the Brazilian economy during our
chosen time frame, interest rates below zero would also be highly unlikely. We shall keep this in mind
when the prior predictive checking step comes.

3.2 Proposing models

As previously mentioned, the most relevant feature of yield curve data is that the term structure
is jointly determined by long and short rates. It is then reasonable to expect that good models for
term structure data take this into account. We look at some of the benchmark models in financial
econometrics for term structure data, more specifically the ones by [Vas77], [CIR85], and [DL06]. As
we have a panel of time series for rates with different maturities, we seek dynamic (as opposed to static)
models for the term structure. We use a latent variable approach for all three models, specifying each
model in a state space framework.

We start with the Vasicek model, which describes the rates for all of the maturities as a function
of the short rate, which is defined as a spot rate with time to maturity tending towards zero. The
law of motion for the short rate in the Vasicek model is an Ornstein-Uhlenbeck process, which is a
continuous time analogous of an AR(1). The Vasicek model is an affine model for the term structure,
meaning that the rates for each maturity are affine functions of the short rate [Pia10]. We can write
the observed spot yields Yt(τ) for maturities τ as an affine function of the short rate rt:

drt = κ(µ− rt)dt+ σdWt,

Yt(τ) = −A(b, a, σ, τ)−B(b, τ)rt
τ

+ ηt.

The imposition of no-arbitrage is used to derive the coefficients A and B [LMN15]:

B(b, τ) =
1− exp{−bτ}

b
,

A(b, a, σ, τ) =

(
σ2

2b2
− a
)
τ +

1− exp{−bτ}
b

(
a− σ2

b2

)
+
σ2

4b3
(1− exp{−2bτ}).

.
The parameters of the standard Vasicek model are κ, µ and σ, but, following the approach by

[JP10], we add a and b as the physical measure analogs of the risk-neutral parameters µ and κ. We
also add observation noise ηt as this can break a possible stochastic singularity [JP10].

The proposed prior distributions for the parameters are

κ ∼ TN(0, 2
∆t )

(µκ, σ
2
κ),

µ ∼ TN(0,∞)(µµ, σ
2
µ),

σ ∼ HalfCauchy(βσ),

a ∼ N(µa, σ
2
a),

b ∼ N(µb, σ
2
b ),

ηt ∼ N(0, σ2
obs).

3



We use truncated normal distributions for κ and µ as we want to impose stationarity in the short
rate process (in the case of κ) and fix the mean of the process as a positive value (in the case of
µ). We use the half-Cauchy prior for σ based on the recommendation by [PS12]. The values for the
hyperparameters shall be chosen through the prior predictive checking procedure in the next subsection.

The next model is the Cox-Ingersoll-Ross (CIR) model, which is also affine. It bears a great
similarity to the Vasicek model but has one key difference: the law of motion for the short rate is a
square-root process instead of the Ornstein-Uhlenbeck. This has two consequences in practice: it adds
conditional heteroskedasticity and ensures that the short rate only assumes positive values. This is
not intrinsically “better” or “worse” than the Vasicek model, as if these assumptions make sense or
not depends on our data. The CIR model in state space form is

drt = κ(µ− rt)dt+ σ
√
rtdWt,

Yt(τ) = −A(τ)−B(τ)rt
τ

+ ηt,

ηt ∼ N(0, σ2
obs),

γ =
√
κ2 + 2σ2,

g(τ) = 2γ + (κ+ γ)(exp{γτ} − 1),

B(τ) = 2(exp{γτ} − 1)/g(τ),

A(τ) =
2κµ

σ2
ln

[
2γ exp{(κ+ γ)τ/2}

g(τ)

]
.

Our prior distributions for the CIR model are

κ ∼ TN(0, 2
∆t )

(µκ, σ
2
κ),

µ ∼ TN(0,∞)(µµ, σ
2
µ),

σ ∼ HalfCauchy(βσ),

a ∼ N(µa, σ
2
a),

b ∼ N(µb, σ
2
b ),

ηt ∼ N(0, σ2
obs).

The derivation of the observation equation can be found in [LMN15] and the reasoning for the
choice of our priors is very similar to the Vasicek case.

The last model is the dynamic adaptation of the three factor Nelson-Siegel model by [DL06]. The
level, slope and curvature factors become time-varying. Each of the factors follow an AR(1), but we
use continuous time specifications similarly to our Vasicek short rate. Our factors are also assumed to
be independent of each other.

Our state space specification for the Diebold-Li model is

dlt = κl(µl − lt)dt+ σldW1t,

dst = κs(µs − st)dt+ σsdW2t,

dct = κc(µc − ct)dt+ σcdW3t,

Yt(τ) = lt + st

(
1− e−λτ

λτ

)
+ ct

(
1− e−λτ

λτ
− e−λτ

)
+ ηt,

where λ is a decay parameter which control factor loadings. We propose two variants of the Diebold-
Li model, one with λ as a static parameter and another with a time-varying λ following an AR(1)
process. We assume the static specification of λ has prior distribution

λ ∼ N(1.1, 0.09),

and the dynamic specification has priors

λt = µλ + exp{φλλt−1 + εt},

εt ∼ N(0,
1

τλ
).
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Figure 2: Prior predictive check: samples from Vasicek short rate

Figure 3: Prior predictive check: samples from Vasicek 1 year spot rate

The prior distributions for the remaining parameters are

κl,s,c ∼ TN(0, 2
∆t )

(θκ, σ
2
κ),

µl ∼ TN(0,∞)(θµ,l, σ
2
µ,l),

µs,c ∼ TN(−∞,0)(θµ,sc, σ
2
µ,sc),

σl,s,c ∼ HalfCauchy(βσ),

ηt ∼ N(0, σ2
obs),

chosen in a fashion similarly to the Vasicek and CIR priors.

3.3 Prior predictive checking

With the models and prior distributions at hand, we now look at the problem of choosing hyperpa-
rameter values. One tempting idea might be that of choosing “uninformative” priors, where we let the
data “speak for itself”. However, the analysis we did in subsection 3.1 shows how, given the nature of
the data, some values are much more or less likely than others. One so-called “uninformative” prior
might attribute equal likelihood to scenarios that are a priori highly or minimally likely. Thus, prior
hyperparameters must be consistent with what we know a priori regarding our data.

By trial and error, we have found hyperparameter values for our priors that result in the samples
for the factors and the 1 year spot rate shown in Figures 2 to 7.
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Figure 4: Prior predictive check: samples from CIR short rate

Figure 5: Prior predictive check: samples from CIR 1 year spot rate

Figure 6: Prior predictive check: samples from Diebold-Li factors

Figure 7: Prior predictive check: samples from Diebold-Li 1 year spot rate
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The hyperparameter values for the samples above are

κ ∼ TN(0, 2
∆t )

(0.7, 0.16),

µ ∼ TN(0,∞)(0.08, 0.01),

σ ∼ HalfCauchy(0.03),

a ∼ N(0.1, 0.01),

b ∼ N(0.5, 0.25),

σobs ∼ HalfCauchy(0.008)

for the Vasicek model,

κ ∼ TN(0, 2
∆t )

(0.7, 0.16),

µ ∼ TN(0,∞)(0.08, 0.01),

σ ∼ HalfCauchy(0.1),

a ∼ N(0.1, 0.01),

b ∼ N(0.5, 1),

σobs ∼ HalfCauchy(0.008)

for the CIR model, and

κl ∼ TN(0, 2
∆t )

(1, 1),

κs ∼ TN(0, 2
∆t )

(0.8, 0.25),

κc ∼ TN(0, 2
∆t )

(0.5, 0.16),

µl ∼ TN(−0.5,∞)(0.12, 0.0025),

µs ∼ TN(−∞,0.5)(−0.04, 0.0009),

µc ∼ TN(−∞,0.5)(−0.03, 0.0016),

σl,s,c ∼ HalfCauchy(0.015),

σobs ∼ HalfCauchy(0.005),

φλ ∼ U(−1, 1)

µλ ∼ N(0.3, 0.25),

τλ ∼ Exp(1)

for the Diebold-Li models.

3.4 Estimation with simulated data

For the construction of our fake, simulated data, we first choose “true” parameter values and plug
those values in the model equations in order to generate fake data. For the simulated data, we choose
T = 440 and discretization time step dt = 1

52 in order to replicate the weekly frequency from our
observed data. As we also want to assess how our model reacts to sampling uncertainty and learns
from the data, we choose true parameter values different to those of the prior means. The chosen true
values for the parameters in the simulated data are

κ = 0.4,

µ = 0.05,

σ = 0.02,

a = 0.2,

b = 0.3,

σobs = 0.003
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parameter mean sd hdi 0.5% hdi 99.5% mcsemean mcsesd essbulk esstail rhat median
a 0.204 0.002 0.199 0.208 0.000 0.000 1486.0 2443.0 1.0 0.204
b 0.287 0.005 0.275 0.299 0.000 0.000 1325.0 2263.0 1.0 0.287
kappa 0.483 0.256 0.001 1.114 0.006 0.004 1560.0 1152.0 1.0 0.473
mu 0.057 0.028 0.004 0.169 0.001 0.001 1627.0 1174.0 1.0 0.053
sigma 0.020 0.001 0.018 0.022 0.000 0.000 2328.0 2727.0 1.0 0.020
stdobs 0.003 0.000 0.003 0.003 0.000 0.000 3904.0 3099.0 1.0 0.003

Table 1: Summary for the Vasicek model with simulated data

for the Vasicek model,

κ = 0.4,

µ = 0.05,

σ = 0.1,

a = 0.2,

b = 0.3,

σobs = 0.003

for the CIR model, and

κl = 0.8,

κs = 0.6,

κc = 0.4,

µl = 0.11,

µs = −0.03,

µc = −0.03,

σl = 0.02,

σs = 0.03,

σc = 0.04,

σobs = 0.001,

λ = 1.2(static),

φλ = −0.2,

µλ = 0.2,

τλ = 20(dynamic)

for the Diebold-Li models. We simulate data for the same maturities as in our observed data.
Our models are fit via Hamiltonian Monte Carlo (HMC) in Python language with the PyMC

[SWF16] library. Some of the diagnostics are computed with the ArviZ package [KCHM19]. For each
model, we simulate 2 chains with 2000 draws each. We use an Euler-Maruyama discretization scheme
for the continuous time processes. We proceed to fit the models and report summary statistics, such
as mean, median and standard deviations of posterior distributions. We also report computational
diagnostics that shall be detailed in the following subsection.

3.5 Computational diagnostics and estimation bias

Some of the parameter estimates are biased in that they differ from e.g. the posterior mean by several
standard deviations, with a few even being outside of the 99% highest density intervals (HDIs). Since
our goal is not to obtain unbiased estimates of the parameters, but to illustrate the process of Bayesian
data analysis for term structure modeling, we ignore this for now.

Beyond the “traditional” Bayesian computational diagnostics of trace and autocorrelation plots,
and the old-fashioned Gelman-Rubin statistic (R̂), we report some novel diagnostics. These include
Monte Carlo standard error (MCSE), effective sample size (ESS) and the rank normalized version of
R̂ by [VGS+21], which are detailed below.
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parameter mean sd hdi 0.5% hdi 99.5% mcsemean mcsesd essbulk esstail rhat median
a 0.204 0.002 0.200 0.209 0.000 0.000 1040.0 1992.0 1.0 0.204
b 0.287 0.005 0.274 0.299 0.000 0.000 933.0 1769.0 1.0 0.287
kappa 0.472 0.261 0.000 1.112 0.006 0.004 1780.0 1649.0 1.0 0.462
sigma 0.100 0.004 0.089 0.113 0.000 0.000 2157.0 2504.0 1.0 0.100
mu 0.061 0.033 0.001 0.203 0.001 0.001 2063.0 1305.0 1.0 0.053
stdobs 0.003 0.000 0.003 0.003 0.000 0.000 4473.0 2869.0 1.0 0.003

Table 2: Summary for the CIR model with simulated data

parameter mean sd hdi 0.5% hdi 99.5% mcsemean mcsesd essbulk esstail rhat median
lambda 1.220 0.031 1.142 1.297 0.002 0.002 197.0 424.0 1.02 1.222
kappal 0.580 0.359 0.000 1.501 0.009 0.006 1282.0 1288.0 1.00 0.540
mul 0.113 0.020 0.049 0.191 0.001 0.000 2004.0 1481.0 1.00 0.112
sigmal 0.020 0.001 0.018 0.023 0.000 0.000 4275.0 3498.0 1.00 0.020
kappas 0.310 0.195 0.000 0.858 0.003 0.002 3104.0 2015.0 1.00 0.283
mus -0.043 0.024 -0.109 0.019 0.000 0.000 6127.0 2687.0 1.00 -0.042
sigmas 0.027 0.001 0.025 0.030 0.000 0.000 6304.0 3528.0 1.00 0.027
kappac 0.706 0.313 0.005 1.473 0.006 0.004 2275.0 1476.0 1.00 0.696
muc -0.014 0.019 -0.079 0.038 0.000 0.000 3220.0 2270.0 1.00 -0.013
sigmac 0.034 0.003 0.028 0.042 0.000 0.000 1032.0 2037.0 1.00 0.034
stdobs 0.001 0.000 0.001 0.001 0.000 0.000 3072.0 2873.0 1.00 0.001

Table 3: Summary for the Diebold-Li model (static λ) with simulated data

parameter mean sd hdi 0.5% hdi 99.5% mcsemean mcsesd essbulk esstail rhat median
mulamb 0.209 0.035 0.126 0.306 0.002 0.001 425.0 915.0 1.01 0.209
philamb -0.159 0.084 -0.371 0.050 0.002 0.002 1471.0 2727.0 1.00 -0.160
taulamb 12.267 1.587 8.805 16.750 0.057 0.040 802.0 1715.0 1.00 12.177
kappal 0.570 0.359 0.000 1.504 0.009 0.006 1326.0 1632.0 1.00 0.527
mul 0.114 0.021 0.049 0.195 0.001 0.000 1862.0 1577.0 1.00 0.112
sigmal 0.020 0.001 0.018 0.023 0.000 0.000 3263.0 3289.0 1.00 0.020
kappas 0.345 0.208 0.000 0.924 0.004 0.003 2569.0 2058.0 1.00 0.318
mus -0.043 0.023 -0.107 0.014 0.000 0.000 5197.0 2916.0 1.00 -0.042
sigmas 0.029 0.001 0.025 0.032 0.000 0.000 4573.0 3526.0 1.00 0.029
kappac 0.730 0.328 0.011 1.522 0.008 0.005 1707.0 1208.0 1.00 0.725
muc -0.017 0.021 -0.097 0.033 0.000 0.000 2500.0 1635.0 1.00 -0.014
sigmac 0.035 0.003 0.028 0.043 0.000 0.000 806.0 1643.0 1.01 0.035
stdobs 0.001 0.000 0.001 0.001 0.000 0.000 2365.0 3105.0 1.00 0.001

Table 4: Summary for the Diebold-Li model (dynamic λ) with simulated data
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3.5.1 Monte Carlo standard error

It is possible to evaluate the precision of the average θ of S independent draws as an estimate of E[θ|y]
through the Monte Carlo standard error (MCSE). The MCSE can be computed as

MCSE =

√
Var(θ) =

√
Var(θ|y)

S
,

and this can be generalized to the posterior expectation of any function g(θ). In this work the MCSEs
are computed from the effective sample sizes through the procedure described in [VGS+21]. We report
the mean and standard deviation estimates for the MCSE.

3.5.2 Effective sample size

The effective sample size (ESS) is a measure of information contained in each sampling chain. A higher
sampling autocorrelation means higher sampling uncertainty and therefore smaller ESS. The ESS can
be estimated as

ÊSS =
S

τ̂
,

τ̂ = −1 + 2

K∑
t′=0

P̂t′ ,

P̂t′ = ρ̂2t′ + ρ̂2t′+1,

where S is the number of samples and ρ̂t are autocorrelations estimated at lag t via fast Fourier
transform. K is the last integer for which P̂K = ρ̂2K + ρ̂2K+1 is positive.

Besides the mean and standard deviation estimates of ESS, [VGS+21] propose two other versions:
Bulk-ESS and Tail-ESS. Bulk-ESS is obtained through rank normalization of the draws in the chain,
that is, replacing drawn parameter values with rank normalized values, i.e., normal scores for pooled
draws from all chains. Tail-ESS is the minimum of the effective sample sizes of the 5% and 95%
quantiles. While Bulk-ESS is useful for assessing problems due to trend behavior of chains, Tail-ESS
allows for diagnosing issues related to the scale of chains.

3.5.3 Rank normalized R̂

The Gelman-Rubin statistic, or R̂, is one of the most common diagnostics for MCMC convergence.
We do not use the original Gelman-Rubin statistic, but the rank normalized version from [VGS+21].
The Gelman-Rubin statistic is defined as

R̂ =
V̂

W
,

where W is the within-chain variance and V̂ is the posterior variance estimate for the rank normalized
pooled traces calculated via the same procedure from Bulk-ESS. If convergence has been achieved, the
within-chain and between-chain (pooled) variances should be the same, and the R̂ should be equal to
1.0. Values above that, e.g., 1.1 indicate one or more chains have not converged.

3.6 Estimation with real data

We estimate the models with the observed dataset described in subsection 3.1 with the priors specified
in subsections 3.2 and 3.3 and the same estimation procedure employed in subsection 3.4. As, with
the real world dataset we do not know what the true data-generating process is, we cannot assess
estimation bias. We provide tables with the same summary statistics and computational diagnostics
as we did with the simulated data. We report the KDE and trace plots for the posterior distributions
of the parameters and the estimated latent factors in Figures 8 to 15. We also provide autocorrelation
plots from Figures 16 to 19.

We also notice that the autocorrelation plots show the persistence of autocorrelation for the λ
parameter of the Diebold-Li models. The autocorrelation seems more persistent for the parameters of
the dynamic λ than for the static λ model. The autocorrelation is also persistent for the σ parameters
in one of the chains for the dynamic λ model.
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parameter mean sd hdi 0.5% hdi 99.5% mcsemean mcsesd essbulk esstail rhat median
a 0.137 0.001 0.133 0.141 0.000 0.000 3339.0 3205.0 1.0 0.137
b 0.181 0.006 0.166 0.197 0.000 0.000 3113.0 3254.0 1.0 0.181
kappa 0.084 0.056 0.000 0.247 0.001 0.001 1835.0 1398.0 1.0 0.078
mu 0.047 0.041 0.000 0.204 0.001 0.001 2452.0 1934.0 1.0 0.038
sigma 0.012 0.001 0.010 0.014 0.000 0.000 1156.0 1837.0 1.0 0.012
stdobs 0.006 0.000 0.006 0.006 0.000 0.000 5951.0 3127.0 1.0 0.006

Table 5: Summary for the Vasicek model with real data

parameter mean sd hdi 0.5% hdi 99.5% mcsemean mcsesd essbulk esstail rhat median
a 0.138 0.001 0.134 0.142 0.000 0.000 4523.0 3349.0 1.0 0.138
b 0.179 0.006 0.163 0.195 0.000 0.000 4165.0 3256.0 1.0 0.179
kappa 0.107 0.059 0.000 0.262 0.001 0.001 1808.0 1797.0 1.0 0.105
sigma 0.040 0.002 0.034 0.046 0.000 0.000 989.0 2138.0 1.0 0.040
mu 0.028 0.029 0.000 0.143 0.001 0.000 2549.0 1676.0 1.0 0.021
stdobs 0.006 0.000 0.006 0.006 0.000 0.000 4729.0 2668.0 1.0 0.006

Table 6: Summary for the CIR model with real data

parameter mean sd hdi 0.5% hdi 99.5% mcsemean mcsesd essbulk esstail rhat median
lambda 1.396 0.014 1.360 1.432 0.001 0.000 381.0 665.0 1.0 1.396
kappal 0.590 0.371 0.000 1.572 0.008 0.006 1684.0 1735.0 1.0 0.547
mul 0.109 0.023 0.031 0.191 0.000 0.000 2648.0 2114.0 1.0 0.109
sigmal 0.025 0.001 0.023 0.028 0.000 0.000 5475.0 3363.0 1.0 0.025
kappas 0.540 0.288 0.001 1.276 0.006 0.004 2331.0 1662.0 1.0 0.524
mus -0.033 0.019 -0.097 0.019 0.000 0.000 5084.0 2780.0 1.0 -0.031
sigmas 0.027 0.001 0.025 0.030 0.000 0.000 4849.0 3303.0 1.0 0.027
kappac 0.330 0.204 0.000 0.878 0.004 0.003 2316.0 2258.0 1.0 0.305
muc -0.041 0.030 -0.122 0.049 0.000 0.000 5453.0 2336.0 1.0 -0.041
sigmac 0.034 0.002 0.030 0.039 0.000 0.000 2108.0 2878.0 1.0 0.034
stdobs 0.001 0.000 0.001 0.001 0.000 0.000 2468.0 3018.0 1.0 0.001

Table 7: Summary for the Diebold-Li model (static λ) with real data

parameter mean sd hdi 0.5% hdi 99.5% mcsemean mcsesd essbulk esstail rhat median
mulamb 0.300 0.039 0.202 0.392 0.005 0.004 61.0 137.0 1.04 0.301
philamb 0.946 0.018 0.898 0.987 0.001 0.000 861.0 1406.0 1.01 0.947
taulamb 27.039 3.452 19.269 37.282 0.280 0.199 154.0 389.0 1.02 26.885
kappal 0.350 0.248 0.000 1.054 0.005 0.004 1487.0 1193.0 1.00 0.307
mul 0.112 0.027 0.024 0.201 0.001 0.000 2836.0 1876.0 1.00 0.112
sigmal 0.018 0.001 0.016 0.021 0.000 0.000 16.0 28.0 1.08 0.018
kappas 0.300 0.185 0.000 0.814 0.004 0.003 1722.0 1544.0 1.00 0.273
mus -0.044 0.021 -0.109 0.006 0.000 0.000 4507.0 2490.0 1.00 -0.042
sigmas 0.019 0.001 0.016 0.021 0.000 0.000 14.0 32.0 1.09 0.019
kappac 0.440 0.245 0.001 1.060 0.004 0.003 2557.0 1869.0 1.00 0.420
muc -0.040 0.029 -0.123 0.040 0.000 0.000 4931.0 2403.0 1.00 -0.041
sigmac 0.044 0.003 0.038 0.052 0.001 0.001 12.0 20.0 1.11 0.044
stdobs 0.001 0.000 0.001 0.001 0.000 0.000 824.0 1774.0 1.00 0.001

Table 8: Summary for the Diebold-Li model (dynamic λ) with real data
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Figure 8: Estimated short rate for the Vasicek model

Figure 9: Estimated short rate for the CIR model

Figure 10: Estimated factors for the Diebold-Li model (static λ)
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Figure 11: Estimated factors for the Diebold-Li model (dynamic λ)

Figure 12: Trace and KDE plots for the Vasicek model
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Figure 13: Trace and KDE plots for the CIR model
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Figure 14: Trace and KDE plots for the Diebold-Li model (static λ)
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Figure 15: Trace and KDE plots for the Diebold-Li model (dynamic λ)
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Figure 16: Autocorrelation plots for the Vasicek model
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Figure 17: Autocorrelation plots for the CIR model
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Figure 18: Autocorrelation plots for the Diebold-Li model (static λ)
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Figure 19: Autocorrelation plots for the Diebold-Li model (dynamic λ)
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Figure 20: Posterior predictive check for the Vasicek model

3.7 Evaluating predictive accuracy

Our first measure of model predictive accuracy are posterior predictive checks. This graphical pro-
cedure is suggested by [GSV+19] and consists of simulating data from the model posterior predictive
distribution and plotting the KDE of each simulation together with the KDE for the observed data. If
the model has a good fit to the observed data, then it is possible to simulate data from the posterior
predictive that closely resembles the observed data. The authors recognize this procedure is mostly
qualitative.

Our posterior predictive checks, shown in Figures 20 to 23, indicate that the Diebold-Li models
are able to produce data that better resembles the observed data rather than the affine (Vasicek and
CIR) models.

Besides that, we also present the results of a cross validation procedure, leave-one-out cross vali-
dation (LOO-CV), and an information criterion, the Watanabe-Akaike information criterion (WAIC)
[VGG17]. The WAIC and LOO-CV take into acount the posterior distribution of the Bayesian model,
unlike, e.g., AIC or BIC. Both measures require estimating the expected log pointwise predictive den-
sity (elpd). [VGG17] devise a new procedure for estimating the LOO-CV elpd, via Pareto smoothed
importance sampling (PSIS). The PSIS-LOO elpd is computed as

êlpdPSIS−LOO =

n∑
i=1

ln

(∑S
s=1 w

s
i p(yi|θs)∑S

s=1 w
s
i

)
,

where wsi are weights obtained from the PSIS procedure and θs are samples from the posterior, for
s = 1, . . . , S samples in total. Per [VGG17], the WAIC for the elpd is estimated as

êlpdWAIC = l̂pd− p̂WAIC ,

where l̂pd is the computed log pointwise predictive density estimated as

l̂pd =

n∑
i=1

ln

(
1

S

S∑
s=1

p(yi|θs)
)
,

for the n data points, and the estimated effective number of parameters p̂WAIC as

p̂WAIC =

n∑
i=1

V Ss=1(ln p(yi|θs)),
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Figure 21: Posterior predictive check for the CIR model

Figure 22: Posterior predictive check for the Diebold-Li model (static λ)
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Figure 23: Posterior predictive check for the Diebold-Li model (dynamic λ)

where V Ss=1 is the sample variance. The LOO-CV and WAIC are calculated for the models and
presented in Figures 24 and 25. On the horizontal axis of the plots is the calculated value for the
LOO-CV/WAIC on the logarithmic scale. It is worth of notice that we use the Pareto smoothed
importance sampling (PSIS) version of the LOO-CV and that both LOO-CV and WAIC are asymp-
totically convergent.2 The Diebold-Li models both rank above the affine models, with the dynamic λ
model performing the best.

4 Concluding remarks

As pointed out by [Sim10], many economists see Bayesian inference as just a set of practical tools,
and not as a different way of statistical reasoning. Bayesian data analysis provides a novel approach
for tackling each of the steps in statistical modeling of empirical data. Our process of model build-
ing, inference and comparison shows how problems in financial econometrics, such as term structure
modeling, can benefit from the Bayesian workflow approach.

Our main results that the Diebold-Li outperforms the Vasicek and CIR models are themselves
hardly surprising. We are just using novel tools in Bayesian computation developed over the last years
to confirm the canonical result [LS91] obtained more than three decades ago that three factors suffice
at describing the term structure. However, this was not the goal of this work. Our main objective was
to show how the Bayesian workflow of [GVS+20] can be applied to financial econometrics.

As for further directions, now that we have shown how Bayesian data analysis can be applied to term
structure modeling, the same approach can be used for evaluating other models, such as multifactor
affine models [DK96] an arbitrage-free version of the Diebold-Li model [CDR11], or a term structure
model with macroeconomic variables [RW03]. The Bayesian data analysis can even lead us to think
how would our results change with yield curve data for another countries. For a term structure like
that of Japan, we could hardly rule out negative rates, as an example. We would have to adapt our
models accordingly, and the Bayesian workflow might help us do just that.

2We also note the ArviZ Python package used for calculating LOO-CV and WAIC has given out warnings that the
estimated shape parameter of Pareto distribution of the PSIS-LOO is greater than 0.7 for one or more samples, for the
two Diebold-Li, and the the posterior variance of log predictive densities for the WAIC exceeds 0.4 for one or more
samples.
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Figure 24: Leave-one-out cross validation

Figure 25: Watanabe-Akaike information criterion
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