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Abstract In this paper, we applied machine learning techniques to analyze the default probability
in financial institutions using a large dataset of variables collected from 2,325 banks over 17
years, extracting the most relevant variables using a feature selection method (Lasso), predicting
default and systemic risk with random forest and XGBoost algorithms, and finally investigating
the contributions of each relevant feature to the overall financial stress of banking institutions
using Explainable Artificial Intelligence (XAI) techniques. According to this methodology, we found
that the most important variables for the default risk predictions are the probability of a bailout
calculated, the market share in terms of assets, the market-to-book ratio, total liabilities, and the
number of banks in the market (a measure of concentration and competition). For the systemic
risk predictions, the most important variables are the number of banks in the country, the level of
interest rates, the market share of the top 5 largest banks, and the region of the bank (in North
America, Europe, and Central Asia). The findings of this research provide an empirical assessment
of the main factors that explain the presence of financial stress in banking institutions, conciliating
the versatility of machine learning models with practical interpretability and causal inference, being
of potential interest to researchers in quantitative finance and market practitioners.

Keywords Big Data - Quantitative Finance - Explainable Artificial Intelligence - Ensemble
Methods - Supervised Machine Learning - Banking

1 Introduction

The investigation of bankruptcy and financial distress in financial institutions has been one of
the most prominent research topics of quantitative corporate finance (Gruszczynski, 2020). As
discussed in Carvalho et al (2015), financial stresses in financial institutions are often associated
with posterior equity valuation losses and investment cuts to borrower firms and can be transmitted
onto non-financial firms, with the losses being concentrated in firms with the greatest information
asymmetry problems and weakest financial positions. Likewise, the impacts of financial distress
can be propagated within the financial system, as banks can make more efficient liquidations if
they are regionally active and have closer relationships with the firm, while banks with higher
exposure to firms that undergo financial distress have larger negative announcement-period returns,
which results in wealth losses for the bank shareholders and also induces a negative effect on the
borrower’s returns (Dahiya et al, 2003; Hower, 2016).

Given the variety of variables that may potentially explain the causes of financial distress in
banks, it becomes relevant to provide measures of their respective contributions to this phenomenon.
These aspects are particularly pertinent with the emergence and popularization of data science
methods in both academic works and business solutions, thus allowing different settings of training
samples, predictors, and hyperparameters for the same empirical analysis, all elements which may
decisively affect the final outcome of the models. As pointed out in Hassani et al (2018), the
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financial system has been substantially influenced by data mining and big data techniques in
terms of decision-making support and strategic management. On the other hand, a comprehensive
understanding of the causes of financial stress and their implications may require additional caution
to not only identify the important factors that maximize the model’s overall explainability but also
be able to reveal underlying patterns from the data, such as the variables’ importance to individual
observations and their joint behavior in terms of partial dependence. Iwanicz-Drozdowska and
Ptak-Chmielewska (2019), for instance, analyzed an unbalanced panel of European banks with
more than three thousand banks over 25 years applying regional grouping and investigating the
relationships between macroeconomic variables and the occurrence of distress events, evidencing
the dynamic role of the macroeconomic outlook and its systemic impacts on the banking sector.

In this sense, this paper employs state-of-the-art machine learning techniques to analyze the
probability of default in financial institutions using a large dataset of variables collected from 2,325
banks over 17 years, tackling not only the predictive aspects but also the explanatory aspects of
the phenomenon, by evaluating the most relevant variables using feature selection methods and
investigating the contributions of each relevant feature to the overall financial stress of banking
institutions using Explainable Artificial Intelligence (XAI) for enhanced interpretability of the
models’ results at a practical level, addressing gaps from the literature of quantitative banking
finance in a data-driven approach.

This paper is structured as follows, Section 2 addresses the theoretical background of modeling
bank risk, Section 3 presents the data and methods covered, Section 4 presents the main results of
the research and its analysis, and finally presents the final considerations in Section 5.

2 Theoretical background
2.1 Default models

In this section, the calculation measures of default banking are presented. In particular, this section
considers the Merton (1974) probability of default method, also known as the Merton model, the
default model KMV from Moody’s, and the Z-score model of Lown et al (2000) and of Tabak et al
(2013), which is an adaptation of the Altman (1968) model.

2.1.1 Merton Model

The Merton (1974) model aims to find the values of assets and their volatilities in a dynamic process
following Black and Scholes (1973). In the Merton model, it is assumed that the total value of the
firm follows a geometric Brownian motion process.

AV = pVdt + oy VdW (1)

where V is the total value of the firm’s assets (random variable), p is the expected continuous
return of V', oy is the firm value volatility, and dW is the standard process of Gauss—Wiener.

The Merton model uses the Black and Scholes (1973) model of options in which the firm’s equity
value follows the stipulated process of Black and Scholes (1973) for call options. A call option on
the underlying assets has the same properties as a caller has, namely, a demand on the assets
after reaching the strike price of the option. In this case, the exercise price of the option equals
the book value of the firm’s obligations. If the value of the assets is insufficient to cover the firm’s
obligations, then shareholders with a call option do not exercise their option and leave the firm to
their creditors.

E=VN(d) — e "TFN(dy) (2)

where E is the market value of the equity of the firm (or free cash flow to the shareholder), F is
the face value of the debt securities, r is the risk-free interest rate, and A/(.) is the standardized
cumulative normal distribution; d; is given by

_In(§) + (r+0.50%)T
dy = —£ p—y (3)
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and dy is simply di — oy VT
Applying the It6 Lemma in the dynamic process of V and manipulating the terms of Equation
3, we obtain the following equation of the variability of the free cash flows of the shareholders (o)

(Bharath and Shumway, 2008).
V\ OFE
OE = (E) WUV (4)

Given that Merton (1974), it can be shown that g—g = N (dy); then, Equation 4 can be written
as follows Bharath and Shumway (2008):

op = (E) N(di)ov (5)

In essence, the algorithm works with Equations 2 and 5 to find the value terms of the asset V'
and the volatility of the asset value oy . In this study, we use the Newton method to solve Equations
2 and 5, the same algorithm that was used by Anginer and Demirguc-Kunt (2014).

Equations 2 and 5 have numerical solutions only for the values of V' and oy . Once the numerical
solution is found, the distance of default is calculated as follows:

In (%) + (p— 30T
O'V\/T

According to Bharath and Shumway (2008), the distance to the default model of Merton (1974)
accurately measures the probability of firms defaulting.

DD =

(6)

T Merton =— N(_DD) (7)

The default probability measure of Merton (1974) is simply the probability function of the
normal minus the distance to default, Equation 6. According to Bharath and Shumway (2008), this
probability of default (Equation 7) should be a sufficient statistic for the default prognostic.

The starting point of the algorithm follows an adaptation of Bharath and Shumway (2008) and
Anginer and Demirguc-Kunt (2014), where the initial kicks of V assume V' = market capitalization+
total liabilities and oy assume oy = Ogsset price return - (Market capitalization + total liabilities).

2.1.2 KMV Model

The KMV model is calculated from the total value of the firm’s assets V and the volatility of the
asset value oy from the iteration between Equations 2 and 5. We can observe the same process in
Merton (1974) Model.

(Vit = TLy)
(Vit - ovie)

where V;; represents the market value of asset ¢ in period ¢, oy ;; represents the volatility of
asset value 7 in period ¢, and T'L;; is total liabilities to asset i in period ¢. As indicated by Equation
8, the higher D Dypvit, the higher the distance to default from bank 7 in period t¢.

To normalize the variable to have a parallel effect and correlation analysis with the risk premium
and risk exposure variables, normalization similar to that elaborated by Merton (1974) is used. In
other words, the probability of default of the KMV model is given by equation 9:

(8)

DDgyvie =

Thmv = N(=DDgpv) 9)

The default KMV measure is the normal probability function minus the default distance, as
well as the Merton (1974) model.
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2.1.8 Z-score Model

Another way to measure the default risk is the Z-score indicator, similar to Lown et al (2000) and
Tabak et al (2013). According to Lown et al (2000) and Tabak et al (2013), this indicator represents
the probability of bank failure. The Z-score measure has the following formulation:

A; EQUAS,;
Z — score;; = ROAyw + EQUAS. (10)
OROA,;

where EQUAS = (TE:%%C;) In this model, E;; represents bank equity 7 in period ¢, Fit — 1
represents bank equity ¢ in period ¢ — 1, T'A;; represents total assets of bank ¢ in period ¢, and
T A;;_1 represents total assets of bank 4 in period t — 1.

Parameter ROA;; is expressed as the following relation:

27‘(’1',5

(TAit —TAi 1)

ROA;: = (11)

ROA;; is the return on assets in period ¢ for bank 7 and ocroas: is the standard deviation of
ROA of bank i in period t. As the formula indicates, the higher the Z-score value, the lower the
probability of bank i failure. For Tabak et al (2013), the Z-score is a risk default measure accepted
by the literature. The Z-score measures the number of standard deviations of ROA that must
decrease for banks to become insolvent, which can be interpreted as the inverse of the probability
of insolvency Tabak et al (2013).

Both the default probability measure of Merton (1974) and the KMV measure have a direct
relationship with the default, that is, the higher their values, the greater the likelihood of a financial
institution failing. Meanwhile, the Z-score model has an inverse relationship with the default
bank, that is, the higher its values, the more distant the bank is from the default. This inverse
relationship between the Merton, KMV, and Z-score models occurs because the first two represent
a normalization of the distances from the default, making them directly linked to the default. In
the Z-score model, on the other hand, the relationship is inverse because it measures the distance
from the default, that is, the probability of banks being further from the default and not the direct
probability of default.

The Merton (1974) model and the KMV model are default proxies that do not directly calculate
the probability of default, but rather measure it implicitly, by looking at bank liabilities and how
the market prices these liabilities (Milne, 2014). According to Wang et al (2017), to measure the
default risk, a common proxy should not be used, but a flexible enough measure to quantify most
firms in the market.

The Z-score model, despite being an accepted measure in the risk measurement literature,
especially of bank risk, does not express the market relationship, but the banks’ accounting
relationship.

2.2 Systemic Risk Measures

In order to measure systemic stability, we apply an approach developed by Anginer et al (2014). As
a measure of systemic risk, we use the R? obtained by regressing changes in bank default risk in
relation to the average default risk for each of the 92 countries in the sample. The default models
used were: the Merton (1974) Model, the KMV Model, and the Z-score model of Tabak et al (2013).

When calculating systemic risk, for each bank 4 in the country j in the year ¢, firstly we computed
quarterly default probabilities. So, for each bank i in the country j time regressions are generated,
observing the relationship between the bank variation ¢ and the country average j in the period ¢,
which in this case is annual.

n
1
Tmeasure, i,j,t — ai,j,t + ﬁi,j,t* § Tmeasure, 1,j,t + Ei,j,t (12)

k=1 ki
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So, we compute the logistic transformation of the R? of the regression in Equation 12, which is

2
equal to log (&%) This measure expresses the systemic risk that the bank 7 faces in country

i,5,t

j-

Since the data were computed on an annual basis, in order to use them in the quarterly model,
we applied cubic splines interpolation.

According to Anginer et al (2014), high R? values of the Equation 12 suggest that the bank
i is exposed to risks similar to the risks of other banks in the country j. That is, these figures
suggest that there is a channel of the interdependence of banks in each country j. This common risk
mechanism of banks in each country j makes the banking sector more exposed to the individual
risks of each bank 1.

It is worth adding that, according to Acharya (2009), banks that have incentives to connect
their risks through guarantees from the State - even if implicit - end up prolonging and affecting
systemic risk.

2.3 Competition Measure, Bank Competition, and Bailout Probability Perception

In this section, one measure of competition is developed: the Lerner index, of Amidu and Wolfe
(2013); Fu et al (2014); Anginer et al (2014). Three concentration averages are also addressed:
the HHI index, the Market-Share index, and the CR5 index by Akins et al (2016). Finally, the
perception of the probability of a bailout by Gropp et al (2011) is developed.

2.8.1 Competition Measure
To measure the Lerner Index, it is necessary to find the Marginal Costs functions. Since the marginal
cost estimates are not straightforward, this study uses the translog cost functions of each bank 7 in

the period t (quarter) for each country j, an approach similar to that used by Tabak et al (2012).
The translog cost function is given by:

¢ 1
ZOQ () = (50 + Z logyp,i,t + = Z Z 1) yklogyp,i,tlogyk,i’t
W2/ ¢ 5 2 —~ 4
w 1 w w ”
+Bilog (1> + 5B1.1log (1) log <1> + Y O,logy,.itlog (1)
w2/ 2 W2 /i W2/ wo

+Dummies; +€;¢ (13)

it

Where C' represents the total costs of banks and y represents three outputs: total loans;
total deposits and non-interest income. This output is a measure that, according to Tabak
et al (2012), represents a non-traditional activity of banks. These outputs, according to term
z > p 2k Op,kl0gYp.i,tl0gyk, i ¢, interact with each other in order to measure the translog costs. w
consists of 2 price inputs: financial expenses in relation to total deposits (the price of funds) and
non-financial expenses on total assets (capital price).!

When estimating Equation 13 of cost translog, this study proceeded to estimate fixed-effect
models corrected by the variance matrix of Newey and West (1987). Sargan and Hausman endogeny
tests were also used in order to find possible endogenies in the estimation of Equation 13. However,
the endogenous process was not found, which led to the estimation by fixed effects with correction
of autocorrelation and heteroscedasticity via Newey and West (1987).

To obtain marginal costs (MC'), the dependent variable of Equation 13 is derived in first order
in relation to the output y; ;¢ (loans):

Ci,t/w2

MCi 4 = (
Yilt

w
) 5j:l + 26l7llogyi,l,t + Z 5lvk109yi,k7t + 0;log (1> (14)
k=1,.. Kkl w2

I Tabak et al (2012); Hasan and Marton (2003) use non-financial spending as prozy for personnel expenses, due to
the restriction on obtaining this variable.
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After calculating the M C by Equation 14, the Lerner index and the Boone index were measured.
The Lerner index of Amidu and Wolfe (2013); Fu et al (2014), and Anginer et al (2014) is given
by:

Price;s — MCj

Price; 4

Lerner; = (15)
Where the term Price;; represents the price of the total asset in relation to total revenues
(financial and non-financial income) of the bank 7 in the period ¢ (quarter). The MC;;, represents
the marginal cost given by Equation 14.
The Lerner index provides a direct relationship with the level of market power because it
represents a marginal variation in prices in relation to the marginal cost Amidu and Wolfe (2013);
Fu et al (2014); Anginer et al (2014).

2.8.2 Concentration Measures

The first concentration measure used in this work is the Herfindahl Index (HHT), based on total
bank deposits. This approach was used by Akins et al (2016). For each bank ¢ in quarter ¢, the
total sum of deposits in the country j. Another measure used by Akins et al (2016), adopted in
this study, is the ratio of the concentration of the five largest banks in the country j, in terms of
deposits. For each country j there is a C'R5 measure per period t. The last measure utilized in this
study is the market share of each bank 4 in the period ¢ in the country j, in terms of deposits. These
concentration measures seek to present the relationship between the most or the less concentrated
with the measures of default and systemic stability.

2.3.3 Bailout Probability Perception Measures

According to Gropp et al (2011), one of the most important and difficult measurements is that of
the public guarantees that the State can give to banks. The objective of this section is, therefore, to
use an approach similar to that of Gropp et al (2011) in order to construct a variable that measures
the perception of the probability of a bailout in banks. This measure, referred to in the literature
as the market share of insured competitor banks, is constructed as follows:

N;j
MSI,]C’]' = Z’]TZ'J Z’j (16)
ik J

Where N; represents the total number of banks in the country j, a; ; is the bank ¢ ’s total assets
in the country j, and A; is the sum of the bank’s total assets in the country j ((4; = ZivJ @i j)-
As Gropp et al (2011) note, if all banks have the probability to engage in a bailout as zero or one,
then this variable will present only the market share in terms of bank ¢ assets in the country j. It is
observed that the variable M .ST not only varies between countries but also between banks in each
country.

With a simple transformation, the M ST variable can be written as the product of the competitor’s
bailout probability averages in the total market share.

MSI ;=7 i, Ak (17)
4;
Wherein m_j, ; = Egzk m,j% is the average of the bailout probabilities weighted on market-
shares and A_j ; = A; — ay,; is the total assets of competitors in the country j. In this sense,
the bigger the average probability of bailout and total market—share, the greater the distortion of
competition in the banking market (Gropp et al, 2011).
According to Gropp et al (2011), a major challenge is to estimate the probability of a bailout.
In this context, the authors use the default probabilities calculated by the risk agencies. In this
study, the default measures of Merton (1974), the KMV model, and the Z-score model by Tabak
et al (2013) are adopted.
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2.4 Nonlinearity and machine learning in finance

Machine learning models are characterized to be “inductive” in the sense that they are flexible to the
data collected in the sample, yielding decision functions based on the patterns that the data show,
instead of fixing functional forms (like a linear or quadratic one) or holding restrictive assumptions
about the distribution of the data. Regarding these elements, studies like Burns and Moosa (2015)
and Hsu et al (2016) argue in favor of the use of machine learning methods in traditional financial
economics problems, given their better empirical predictive power and better capability to generalize
nonlinear relationships, as well as providing a broader view for well-established research topics in
the finance agenda beyond classic econometrics; indeed, the relationships between the specified
variables and the effects they induce occur in a nonlinear way, which makes the use of linear models
in these contexts generate potentially biased results that can decisively hinder the decision-making
process (Mama, 2017).

Concerning the effects of high dimensionality in finance, Kozak et al (2020) tested a number of
well-established asset pricing factor models — including the CAPM model and the five-factor model of
Fama and French (2015) introducing nonlinear interactions between 50 anomaly characteristics and
80 financial ratios up to the third power, applying dimensionality reduction and regularization with
{1 and {5 penalties to increase the model’s sparsity. The results showed that a very small number
of principal components were able to capture almost all of the out-of-sample explanatory power,
resulting in a much more parsimonious and easy-to-interpret model; moreover, the introduction
of additional regularized principal components does not hinder the model’s sparsity but does not
improve predictive performance either.

In fact, the flexibility of machine learning models allows the development of extended cases
of many well-known models in the financial literature: for instance, Feng et al (2018) proposed a
nonlinear feature extraction to map the most informative components that explain the patterns
of financial assets over time, treating the sorting of securities as an activation function of a deep
neural network. The authors showed that the well-known Fama-French models with three (Fama
and French, 1992) and five factors (Fama and French, 2015) are particular cases of the proposed
deep learning approach; those factors were compared the “deep factors”’, with the deep learning cases
slightly outperforming the 3-factor case, but showing higher mean square error than the 5-factor
case, while ordinary least square showed high levels of out-of-sample error.

Similarly, Gu et al (2020) compared machine learning methods like boosted regression trees,
random forests, and artificial neural networks with linear models like ridge regression and LASSO
to measure the risk premium of financial assets using data of nearly 30,000 financial assets from
the New York Stock Exchange and NASDAQ using monthly data from 1957 to 2016. The results
indicated that machine learning models yielded better fitness in comparison to traditional statistical
methods and that all models converged to a similar set of relevant predictors composed mainly
by variations in the assets’ liquidity and volatility, arguing in favor of parsimonious models over
complex ones.

2.5 Explainable Al: conciliating complexity and interpretability

As pointed out by Croxson et al (2019), interpretability is a key element for stakeholders to
understand the process of model-driven decision-making and to evaluate its potential implications,
especially when the outcome is obtained under some degree of automated analysis. While machine
learning models have the potential to better approximate complex patterns, usually the interpretabil-
ity of the models is harder as their complexity increases, as the estimated parameters may not have
a straightforward real-world implication. For example, for the class of Kernel methods, like the
Support Vector Machine (Cortes and Vapnik, 1995) and its extensions, the Kernel function is able
to generalize polynomial interactions up to an arbitrarily high dimension, making the estimation
of the model feasible, but also encapsulating all nonlinear interaction between the explanatory
features inside an inner product operator, thus being unable to separate the marginal effect that a
single interaction term has on the dependent variable.

In this sense, the explainable Artificial Intelligence (XAI) framework allows conciliating the
advantages of machine learning methods and the possibility to interpret the impacts of each variable
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in the target variable (“global interpretation”), as well as in the predicted outcome of a specific
observation (“local interpretation”). As Fisher et al (2019) pointed out, a metric of global feature
importance can be obtained by a permutation-based approach, such that, for a relevant feature to
model the target variable, the predictive performance of the learner is expected to suffer sharper
drops when that feature is permuted; in this sense, the difference between the observed values for
the loss function before and after the permutations on a feature can be regarded as a proxy for its
overall importance.

For example, the paper of Gan et al (2020) applied deep learning methods for the pricing of
arithmetic and geometric average options with gains in both empirical accuracy and computation
speed, without taking assumptions present in traditional pricing models, which may be sometimes
unrealistic. However, interpretability tends to be hard for deep learning models, since the estimated
parameters for the deeper hidden layers represent abstract hierarchies that influence the target
variable but are hard to be expressed in terms of the original predictors. Therefore, a question like
“the expected impact on y given a change in some preditor ” — which would be easy to answer in a
linear model — tends to be non-trivial for most machine learning models. Based on the findings of
Leo et al (2019)’s survey paper, conciliating efficient algorithms with intelligible interpretations
at the practical level is one of the main challenges not only for banking risk management but for
machine learning applications in finance in a broad sense.

This challenge is also evident in the application of Beutel et al (2019), which applied machine
learning-based early warning systems for systemic banking crises and found out that the machine
learning methods were outperformed by the simpler logistic regression when tested recursively for
out-of-sample data. Besides evidencing the importance of parameter-tuning for machine learning
models to avoid overfitting (Peng and Nagata, 2020), these results draw attention to the relevance
of intuitive prediction outcomes and interpretability in machine learning models, since the logit
model, albeit much more restrictive in terms of assumptions and generalization ability, has a very
easy interpretation, making it still a widely used tool for real-world decision-making.

Bussmann et al (2021) proposed an XAI model for credit risk management, aggregating
predictions of machine learning models in terms of similarity of their respective values for Shapley
Additive Explanation (SHAP). The results suggest that the groupings revealed sets of characteristics
for clients of different risk profiles, which in turn can be used to model the credit score of future
individuals. Likewise, Xiaomao et al (2019) analyzed the application of SHAP values for the feature
selection task in finance-related classification problems, performing an empirical exercise on the
modeling of bankruptcy for Polish companies combined with random forest and gradient boosting.

3 Data and methods

Our data comprises quarterly observations of 2,325 banks from all five continents collected from 2000
to 2016, totaling 155,775 observations. As previously mentioned in sections 2.1 and 2.2, dependent
variables refer to the probability of default of banks (or default risk) calculated according to the
Z-score, Merton, and KMV models (variables z_score, merton and kmv, respectively), and to
systemic risk measures calculated according to these three models (r2_z score, 12 _merton and
r2_kmv, respectively), totaling six dependent variables.

In the default risk calculated with the Z-score model, 99% of the values are concentrated in the
0 to 300 range, with only less than 400 observations with negative values. With the Merton and
KMV models, values are concentrated around 0 and 1, in approximately equal proportions. The
left-hand side of figure 1 shows the behavior of the three default risk-dependent variables. In the
systemic risk-dependent variables, most of the values are negative, but with a wider distribution.
The right-hand side of figure 1 shows the behavior of these variables.

Independent variables include the variables described in section 2.3, generally employed to forecast
default risk. These variables include accounting variables (interest and non-interest income, interest
and non-interest expenses, long-term, cash and savings deposits, total liabilities and deposits, equity,
among others), market-related variables (market capitalization of the bank, meaning historical stock
returns of the bank and of the main index of the country, the standard deviation of these returns,
market to book ration, historical t-bill return, etc.), performance variables (ROA, ROE, ROA and
ROE to total assets, and others), competition and concentration-related variables (market-share
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variables. Source: authors’ elaboration.

in relation to assets and loans, Lerner, HHI and CR5 indexes, etc.), risk related variables (risk
exposure, bailout probabilities based on Merton and KMV measures, etc.) and macroeconomic and
microeconomic variables (GDP growth and MC), besides the geographical region of the bank and
the income group of the country where the bank is located. Table 1 presents descriptive statistics
for both dependent and independent variables.

Table 1: Descriptive statistics of variables

count mean std. dev. min max.
Default risk dependent variables
z_score 63,690 3.74 1.05 -10.16 9.73
merton 30,883 0.46 0.50 0.00 1.00
kmv 26,851 0.49 0.50 0.00 1.00
Systemic risk dependent variables
r2_merton 138,489 -4.79 2.36 -10.22 1.79
r2_kmv 130,248 -4.94 2.33 -8.09 1.99
r2_z_score 150,616 -3.88 2.08 -7.72 8.76

Continued on next page
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Table 1: Descriptive statistics of variables

count mean std. dev. min. max.
Accounting
LONG_TERM DEPOSITS 44,612 10,444.96 59,427.88 0.00 1,486,700.00
CASH DEPOSITS 45,047 7,484.41 50,508.04 0.00 1,305,600.00
SAVINGS DEPOSITS 37,957 5,604.50 33,140.53 0.00 1,271,100.00
TOTAL _LIABILITIES 62,614 53,975.12  241,513.78 0.00 3,587,200.00
EQUITY 62,621 3,638.05 15,762.70  -11,814.38 290,433.31
TOTAL_ DEPOSITS 61,909 30,671.61  136,574.45 0.00 2,666,600.00
TOTAL _LOANS 57,560 27,272.33  107,509.84 0.00 1,913,300.00
LOG_TOTAL_ ASSETS 62,561 8.12 2.26 -4.98 15.14
LEVERAGE RATIO 62,583 10.82 59.92 -8,695.71 7,419.11
NON_ PERFORMING LOANS 37,230 98,555.15  777,826.91 0.00 27,479,333.00
NET INCOME 67,676 154.38 2,086.75  -37,968.62 75,453.00
NON _INTEREST INCOME 24,360 348.83 1,333.91  -30,731.20 21,061.00
INTEREST INCOME 77,242 354.98 1,932.37 -748.00 53,221.20
NON INTEREST EXPENSES 77,020 238.85 1,348.18 -4,751.90 179,174.30
INTEREST EXPENSES 76,528 232.29 1,552.02 -907.20 49,475.30
NET INTEREST INCOME 77,097 213.89 1,001.81 -13,974.50 32,945.70
Market
MARKET CAP 59,794 4,331.76 17,312.55 0.00 338,916.50
MARKET TO_ BOOK_RATIO 59,283 0.05 1.81 0.00 375.00
HIST STOCK_ RETURN 102,506 104.32 1,029.80 0.00 45,000.05
STOCK_ _RETURN_STD DEV 65,369 0.02 0.01 0.00 0.14
MEAN INDEX RETURN 145,700 0.00 0.00 -0.02 0.01
INDEX RETURN_ STD DEV 145,700 0.00 0.00 0.00 0.00
RISK PREMIA 99,874 -0.02 0.32 -11.12 11.13
Performance
ROA 64,102 0.00 0.61 -136.75 70.61
ROE 64,134 0.02 1.38 -230.53 148.21
ROA TOTAL ASSETS 65,758  10,9856.78  489,601.33 0.02 7,093,400.00
ROE_TOTAL ASSETS 65,784 6,934.17 30,379.58  -23,522.89 571,103.66
EQUITY TOTAL ASSETS 65,747 0.10 0.24 -19.90 1.00
ROA STD DEV 107,267 0.03 0.58 0.00 21.09
Competition and concentration
MARKET SHARE 61,517 0.06 0.16 0.00 1.00
MARKET SHARE ASSETS 62,566 0.06 0.16 0.00 1.00
MARKET SHARE LOANS 57,546 0.06 0.16 0.00 1.00
HHI 135,728 0.18 0.19 0.05 1.00
CR5 135,728 0.72 0.15 0.32 1.00
LERNER 18,823 -162.04 366.01 -17,495.54 22,465.43
LOG_N_ BANKS 155,775 5.28 2.20 0.00 7.17
Risk
RISK EXPOSURE 35,216 15.67 157.55 0.00 15,283.22
TOTAL _ASSETS RISK EXPOSURE 35,889 9.57 91.56 0.00 7,643.90
BAILOUT PROB_MERTON 30,882 0.02 0.09 0.00 1.00
BAILOUT PROB_KMV 26,850 0.02 0.08 0.00 1.00
BAILOUT PROB_MERTON_ EX I 30,882 0.01 0.04 0.00 0.25
BAILOUT PROB_KMV_ EX I 26,850 0.01 0.03 0.00 0.25
Macroeconomic and microeconomic
GDP_GROWTH 147,264 0.65 0.60 -2.88 6.13
T BILL RETURN 155,775 0.01 0.00 0.01 0.02
MARGINAL COST 130,114 1.52 1.54 -27.75 34.97

Note: Prepared by the authors.

std. dev. = standard deviation; min. = minimum value; max. = maximum value.

Monetary values expressed in dollars.

BAILOUT PROB_<METHOD> variables employed only when the dependent variable

was calculated using a method other than the one employed to calculate these independent variables.

Figure 2 shows the breakdown of observations by region (a) and income group (b) of the countries
in which each bank in our sample has headquarters, the two only categorical variables. Most of the
observations come from North America, followed by banks from Europe & Central Asia and East
Asia & and the Pacific. As a consequence, most of the observations belong to banks in high-income
countries. There are only 134 observations from low-income countries.
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Fig. 2 Breakdown of observations by (a) region and (b) income group. Source: authors’ elaboration.

Preprocessing of the variables involved min-max scaling, encoding categorical values as numeric
(one hot encoded as dummy variables), and imputing missing values with the k-nearest neighbors
algorithm (with k = 2, euclidean distance as the distance metric for searching neighbors and
weighting all neighbors of a given observation uniformly). Since we have observations ranging from
2000 to 2016, randomly dividing the observations into training and test samples would risk using
observations from the future to predict an observation from the past. Observations up to 2012
were then used as the training sample (approximately 75% of the observations, according to the
dependent variable and algorithm) and observations from 2012 to 2016 were employed as the test
sample (approximately 25% of the observations, according to the dependent variable and algorithm
as well).

We then employed a LASSO regression for pre-selecting variables to be used in the prediction
of default and systemic risks, employing both Random Forest and XGBoost methods, explained in
the following subsections. While these models are not state-of-the-art when applied in a standalone
fashion for default probability prediction, the primary objective of our study is to apply the
explainable artificial intelligence framework (by means of SHAP values described in subsection 2.5)
to contribute to this problem domain.

The best parameters for each implementation model were chosen with a time series cross-
validation approach, to take into account the temporal nature of the observations mentioned before.
We aim to maximize the R? measure since our purpose here is to enhance the explaining power of
the models. The values used in the cross-validation for each of the hyperparameters are shown in
table 2.

Table 2: Hiperparameters values used in cross-validation

Hiperparameter Model Values

alpha Lasso 100 values from 0.00001 to 0.5
max_ depth Random Forest 10, 100, 200

max_features Random Forest auto, sqrt and log?2

min samples split Random Forest 3, 5, 30
min samples leaf Random Forest 5, 10, 80

n_estimators Random Forest 100, 1000, 2000
colsample bylevel  XGBoost 0.6, 0.7
colsample bytree XGBoost 0.6, 0.7
gamma XGBoost 0.01, 1
learning rate XGBoost 0.0001, 1
max_delta step XGBoost 0.1, 10
max_depth XGBoost 6, 15
min_child weight XGBoost 10, 500
n_estimators XGBoost 10, 100
reg alpha XGBoost 0.1, 100
reg lambda XGBoost 0.1, 100
subsample XGBoost 0.4, 0.7

Note: Prepared by the authors.
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Hiperparameters are named as in the scikit-learn and xbgoost Python modules.
alpha described in section 3.1.

Random forest hiperparamaters described in table 5.

XGBoost hiperparamaters described in table 7.

SHAP values for each of the dependent variables (z_score, kmv, merton, r2_z score, r2_kmv,
and r2_merton) were then calculated for each method (Random Forest and XGBoost) and their
importance was analyzed. Results for the best default risk and systemic risk dependent variable
and method are presented in section 4.

We employed the scikit-learn implementation for the random forest model (Pedregosa et al,
2011), the xgboost module implementation for XBGoost (Chen and Guestrin, 2016), and the shaps
implementation for shap values (Lundberg and Lee, 2017).

Figure 3 summarizes the methodology employed in our study:

1. Calculate default and systemic risk measures according to Z-score, KMV, and Merton models

as dependent variables;
2. Filter independent variables (16 accounting, 7 competition and concentration, 6 performance, 3
macro, and microeconomic, 7 market-related, and 6 risk-related features) using Lasso regression;
3. Forecast default or systemic risk according to RF and XGBoost models;
4. Explain the variables’ importance with SHAP values for the two best models (one for default

and one for systemic risk).

SYSTEMIC RISK
Merton | KMV | Z-Score

16 accounting features B N n
) " W
! 1 [N

DEFAULT RISK
Merton | KMV | Z-Score

features

’ .
! "‘\ . 7 competi
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Fig. 3 Methodology summary: Lasso regression filters independent variables that forecast, with random forest and
XGBoost models, default and systemic risk calculated with Z-score, KMV, and Merton models. The best-performing
models for each kind of risk were analyzed with SHAP values. Source: authors’ elaboration.

3.1 Least Absolute Shrinkage and Selection Operator (LASSO)

The Least Absolute Shrinkage and Selection Operator (LASSO) for Tibshirani (1996) is a regu-
larization method in which a penalty term is added to the likelihood function optimized in linear
regression. The unconstrained OLS estimates B = (zTx) 12Ty can be vulnerable to high variance,
which in turn can affect inference negatively. Thus, a penalty term for the magnitude of the
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coefficients can control the variance. Similarly to ridge regression, in which the penalty term is
the /5 norm for the 3 parameters, in LASSO the penalty is the ¢; norm. The main difference is
that the LASSO can yield a set of sparse solutions for the betas, making LASSO an embedded
feature selection method, as the algorithm training process is done simultaneously with the feature
selection.

The coefficients of the LASSO regression are the solutions to the following constrained opti-
mization problem:

B(a) = argming {;/,(y— 28)"(y — zB) +a||ﬁ||1} (18)
where ||.||1 is ¢1 norm operator and « is a free regularization parameter that controls the degree of
shrinkage of the betas. Therefore, sufficiently large values for a will effectively force some betas
to be zero, producing a sparse solution for the LASSO estimator. In general, the optimal « that
minimizes the out-of-sample error is found by manually tuning through cross-validation.

The values for the hyperparameters selected by the cross-validation procedure are shown in
tables 3 and 4.

Table 3: Fitted lasso hyperparameter for each dependent original
variable

Dependent variable 2z score  merton kmv

alpha 0.353542  0.00001 0.00001

Note: Prepared by the authors. Hiperparameter named as in the scikit-learn Python modules.

alpha is the regularization parameter in equation 18.

Table 4: Fitted lasso hyperparameter for each dependent trans-
formed variable

Dependent variable 12 z score 12 merton r2 kmv

alpha 0.030313 0.030313 0.00001
Note: Prepared by the authors. Hiperparameter as in table 3.

3.2 Random Forest

Random forest (Breiman, 2001) is an ensemble-based model composed of bootstrap aggregating
of several decision trees. In each tree, the observations present in each node are recursively
partitioned into two mutually exclusive subsets such that the subsets generated have maximum
purity (homogeneity), in the sense that an ideal decision rule would be able to completely separate
two different classes without misclassifications (Breiman et al, 2017; Genuer and Poggi, 2020).
The complexity of a decision tree can be controlled by the number of nodes and the minimum
size of partitions of sub-nodes. As the name suggests, random forest creates several decision trees
and groups them into one “forest” of trees, taking bootstrap samples with size m from the set of
explanatory variables (features) when partitioning the tree at each of its nodes. The final decision
vote will be given by the majority vote for classification problems (and the average value for
regression problems). Thus, by grouping several decision trees, random forest reduces the overall
level of variance of decision trees while maintaining a low bias for data observed in-sample (Genuer
and Poggi, 2020).

As proposed by Breiman (2001), the random forest also yields a measure of feature importance
for each explanatory variable, calculated as a weighted average between all nodes of the decrease
in the respective node impurity, with the node probability being estimated by the proportion of
bootstrap samples that reach that specific node; the intuition is that a feature tends to be more
relevant to explain the target variable the more that it can contribute to building decision rules
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that reduce the node’s impurity more strongly. Algebraically, the estimated importance of the i-th
variable at the t-th tree is defined as:

2N

_jel

0
>N
=1

Ri, (19)

where J is the set of nodes that splits on the i-th feature, {2 is the number of nodes in the decision
tree, and N is the importance of the j-th node, given as:

Nj = wi€ = Y wiky (20)

kej#

where w; is the weighted number of samples that reaches the j-th node, §; is the value of the
impurity function at the j-th node, and j# is the set of all child nodes split from the j-th node.

Finally, the estimated importance for the i-th variable in the random forest is simply the average
importance across all T' decision trees:

T

R;
Nrr, =) o (21)

t=1
In this paper, we estimated the random forest with binary decision trees (each node has two
child nodes), composed by T' = 2000 trees (n_estimators in the sci-kit learn implementation) and
with m = 100% of the observations (max_samples in the sci-kit learn implementation), using
the square error as the purity function to define the splitting rules, following Breiman (2002)’s
recommendations.
The values for the hyperparameters selected by the grid search procedure are shown in tables 5
and 6.

Table 5: Fitted random forest hyperparameters for each default risk
dependent variable

Hyperparameter z_score merton kmv
max_ depth 10 100 100
max_features log2 auto auto
min samples leaf 5 10 10
min samples split 3 5 3
n_estimators 2000 2000 2000

Note: Prepared by the authors.

Hiperparameters are named as in the scikit-learn Python module.

max_depth is the maximum depth of the trees.

max_features is the number of features used to determine the best split at each step
("auto" employs the total number of features available,

"sqrt" is the square root of the total number of features

and "log2" e the log in base 2 of the total number of features).

min_samples_split is the minimum number of observations to split an internal node.
min_samples nodes is the minimum number of observations for a node to be a leaf.

n_estimators is the number of trees in the forest.

Table 6: Fitted random forest hyperparameters for each systemic
risk dependent variable

Hyperparameter r2_7z score 12 merton 12 kmv

max_depth 100 100 100
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Table 6: Fitted random forest hyperparameters for each systemic
risk dependent variable

Hyperparameter r2_z score 12 merton 12 kmv
max_features log2 auto auto
min samples leaf 5 10 5

min samples split 30 5 5

n_ estimators 100 100 1000

Note: Prepared by the authors. Hiperparameters as in table 5.

3.3 XGBoost

The XGBoost algorithm used in this work is an efficient implementation of the Gradient Boosted
Tree (or Gradient Tree Boosting or Gradient Boosted Regression Trees) algorithm, also known as
Gradient Boosting Machine (GBM) (Chen and Guestrin, 2016). It is built on the decision trees
algorithm described earlier (section 3.2) and is known for its speed and accuracy, although tuning
its hyperparameters can be non-trivial (Miller and Guido, 2017).

Boosting attempts to combine several weak predictors into a strong one by training them
sequentially, with each one attempting to correct its predecessor. The most common methods for
this are AdaBoost and Gradient Boosting. AdaBoost trains the predictors sequentially, changing
the weights of each predictor according to its accuracy for classification problems (or any chosen
measure, including those applicable to regression problems). The more accurate the predictor, the
higher its weight in the final ensemble. Gradient Boosting, in turn, fits each new predictor to the
residual errors of its predecessor, trying to minimize a given loss function. Mathematically, the
algorithm tries, at each step t, to minimize the regularized objective given by equation 22:

n

L£O =31y gV + filx)) + 2f) (22)
i=1

where [ is a convex and differentiable loss function, x; is the vector of all features for observation i,
y; is the actual value for the target or dependent variable for observation ¢, f/gt_l) is the prediction
given by the previous model for instance i, f; is the model built on the residuals, and {2 is a
regularization term, also known as the learning rate, which penalizes complexity and prevents
over-fitting. According to Chen and Guestrin (2016), this “cannot be optimized using traditional
optimization methods in Euclidean space” and thus, a second-order Taylor approximation can be
employed, as in equation 23:

n

L0 =3 1y, ) + gifu(x1)) + %hiff(xo] + () (23)

i=1

where 1) is the mean prediction of the target variable in step t, g; and h; are the first and
second order gradients on the loss function, respectively, given by equations 24 and 25:

al(yi7 g(t—l))
G

_ 82l(yi7 y(t—l))
- a(g(tfl))2
The loss function can take many forms, usually defined as the root mean squared error (RMSE)

for regression problems and the logistic log loss for classification problems such as the task in this
paper. The logistic log loss function is given by equation 26:

gi = (24)

h; (25)

£ =— Z yiIn(p) + (1 — ;) In(1 — p) (26)
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where y; is the actual class of instance i and p is its associated probability (or pseudo-probability)
score, given by the sigmoid/logistic equation (equation ??). The final prediction is the sum of
the predictions from each tree in the model. The values for the hyperparameters selected by the
cross-validation procedure in our study are shown in tables 7 and 8.

Table 7: Fitted XGB hyperparameters for each original dependent

variable
Hyperparameter z_score merton kmv
colsample bylevel 0.6 0.7 0.7
colsample bynode 1 1 1
colsample bytree 0.6 0.7 0.7
gamma 0.01 1 1
learning rate 1 1 1
max_ delta_step 0.1 0.1 0.1
max_ depth 15 15 6
min _child weight 10 10 10
n_estimators 100 10 10
reg_alpha 0.1 0.1 0.1
reg lambda 100 100 100
subsample 0.7 0.7 0.7

Note: Prepared by the authors.

Hiperparameters are named as in the xgboost Python module.

colsample bylevel, colsample bynode and colsample bytree

are the subsample ratio of columns for each level, split and tree, respectively.

gamma is the minimum reduction in loss to make another partition on a leaf node.

learning_rate is the boosting learning rate.

max_ delta_step is the maximum delta to estimate each tree weigth.

max_depth is the maximum depth of the trees for base learners.

min_child weight is the minimum sum of instance weights in a child node.

n_estimators is the number of gradient boosted trees.

reg_alpha is the L1 regularization on weights.
reg lambda is the L2 regularization on weights.

subsample is the subsample ratio of instances in training.

Table 8: Fitted XGB hyperparameters for each smoothed dependent

variable
Hyperparameter r2 7z score r2 merton 12 kmv
colsample bylevel 0.6 0.7 0.7
colsample bynode 1 1 1
colsample bytree 0.7 0.6 0.7
gamma 0.01 1 1
learning rate 1 1 1
max_delta_step 0.1 0.1 10
max_depth 6 6 15
min_child _weight 10 10 500
n_estimators 100 100 100
reg_alpha 0.1 0.1 100
reg lambda 100 100 100
subsample 0.4 0.7 0.7

Note: Prepared by the authors. Hiperparameters as in table 7.
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3.4 Shapley Additive Explanation (SHAP)

Finally, to provide interpretability for the results yielded by the machine learning models, we
applied Shapley Additive Explanation (henceforth SHAP), an Explainable Artificial Intelligence
method introduced by Lundberg and Lee (2017) that aims at explaining individual machine learning
model predictions, inspired by Shapley (1953)’s work on cooperative game theory. Besides, SHAP
is a model-agnostic method, implying that it can be applied regardless of the chosen prediction
model, in contrast with model-specific methods for variable importance, such as the importance
metric of decision trees and random forest algorithms. As discussed in Lundberg and Lee (2017),
SHAP unifies a wide class of additive feature attribution techniques used for machine learning
model explanations, such as Local Interpretable Model-Agnostic Explanations (LIME) (Ribeiro
et al, 2016), which approximates linear interpretable models near a given prediction; and Shapley
sampling values (Strumbelj and Kononenko, 2014), which provide estimates for feature importance
in linear models under the presence of multicollinearity, by approximating the effect of removing
each feature from the learner as a weighted average of differences between the predictions of a
model trained with and without the respective feature. In this sense, while being computationally
expensive, SHAP values assign importance values for each feature for a particular prediction, thus
allowing to decompose of the impact of each variable in the predicted outcome compared to the
average prediction for the sampled observations.

The main motivation of Shapley (1953)’s article was to show under which circumstances the
cooperation between a set of players leads to a larger aggregate payoff over the scenario in which
all players act individually, and how the surplus payoff is distributed between the players. Also, the
players are assumed to have different “weights” (relevance) in the coalition. Adapting this rationale
to the context of machine learning and explainable artificial intelligence, the set of explanatory
variables (features) act like the “players” that have different contributions to the model’s prediction,
which is a result of the decision function, who plays the role of the “coalition”. In this sense, as
pointed out by Strumbelj and Kononenko (2010), Shapley (1953)’s problem can be adapted to
obtain how each feature contributes to the model’s decision for each new observation, which in turn
can be regarded as an evaluation method of local model-agnostic variable importance.

In a general case of a dependent variable y = f(x) being explained by a vector & composed by
p explanatory variables, by means of a decision function f(.). We first define IT as a permutation
of the indexes {1, 2, ..., p} which represents an ordering of the p features. Furthermore, we define
7(I1,i) as the set of the indexes associated with features that come before the i — th variable in
permutation IT — in other words, for permutation IT = {3,1,4,2}, w(I1,4) = {3,1} and = (II,3) = 0.
Finally, we define f(z4) as the predicted value of decision function f(.) applied to a particular
observation of interest x4 € RP.

We now define the SHAP value as:

- 1 i 7
Pay,i) = — > AT (3,) (27)
b7
with
A“W(H’i) (J}#) :Em{f(w)|xﬂ(n’l)l - xﬂ-(H,i)l# PR 7'T7T(H,74‘)‘71—(H)7‘,)| = xﬂ'(H,l‘)\ﬂ-(n,q‘,)\# » Ti = .’Ei#}—
Ew{f(wﬂl“rr(n,i)l = Ta(ILi)1y - Ta(IL) iy = a1 im0y b (28)

where p! is the number of possible permutations (orderings) between the p explanatory variables, E
is the expected value operator, |.| is the cardinality operator, and A#7(77) (x4) is the difference
between the expected prediction made by f(.) for observation x4 using the features with indexes
i Um(II,4) and the expected prediction made by f(.) for observation x4 using only the features
with indexes 7(I1,17).

Therefore, in summary, the SHAP value associated with each feature x; to a specific observation
x4 is the average of the relative impact of z; on the model’s prediction across all possible cases of
feature permutations.

For a dataset with a large number of features p, the computation of the SHAP value can be
unfeasible, in which cases alternative formulations based on consistent estimates using permutation
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samples and Monte Carlo methods can be applied to reduce processing time, as seen in, for instance,
Strumbelj and Kononenko (2014) and Lundberg and Lee (2017).

Similarly to the Shapley values from Shapley (1953), SHAP values have the properties of 1)
symmetry (SHAP values of interchangeable variables are equal); 2) additivity (the sum of SHAP
values calculated for two models is equal to the SHAP value of the sum of those two models); 3)
dummy feature (SHAP value of irrelevant features is equal to zero); and 4) local accuracy (the sum
of the SHAP values of all features is equal to the model’s prediction for that specific observation).

4 Results and discussion
4.1 Performance of the models

Tables 9 and 10 present R%, RMSE (root mean square error), and MAE (mean absolute error) for
the three default risk-dependent variables (one for each of the models described in section 2.1)
and for the three systemic risk dependent variables (one for each model described in section 2.2),
respectively, according to either of the two machine learning models (random forest and XGBoost)
described in section 3.

For the default risk dependent variables, the best performance was achieved by the XGBoost
algorithm with the dependent variable calculated with the KMV model, when R? reached almost
60%, i.e almost 60% of the bank’s default risk variability is explained by the features selected by
the LASSO regression, and both RMSE and MAE were the smallest of the set.

Table 9: Evaluation measures for each default risk dependent vari-
able and model

Dependent variable Model R? RMSE MAE
Z_score Random Forest 0.069642 71.997645 34.393490
7__score XGB 0.059789  72.377919 35.207742
merton Random Forest 0.506396  0.349224  0.299259
merton XGB 0.449082  0.368942  0.263609
kmv Random Forest 0.412020  0.382528  0.352650
kmv XGB 0.592897  0.318298  0.236718

Note: Prepared by the authors.

For the systemic risk variables, the best performance was achieved when the dependent variable
was calculated with the Merton model and Random Forest was employed as the forecasting method,
when R? reached almost 71.5% and RMSE and MAE were the smallest of the set.

Table 10: Evaluation measures for each systemic risk dependent
variable and model

Dependent variable Model R? RMSE MAE
r2_z score Random Forest 0.429070 1.452417 1.188878
r2_z score XGB 0.474432 1.393524 1.156054
r2 _merton Random Forest 0.714231 1.376529 1.114268
r2_merton XGB 0.540651 1.745216 1.373592
r2_kmv Random Forest 0.342054 1.583431 1.207218
r2_kmv XGB 0.461598 1.432377 1.164294

Note: Prepared by the authors.

The variables selected by the LASSO regression for the dependent variable calculated with the
KMV method, the best result among the default risk variables, are shown in figure 4. Variables
with zero coeflicients were discarded. Results for the models reported in table 9 include only these
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Fig. 4 Selected variables by the Lasso regression for the default risk dependent variable calculated by the KMV
method. Source: author’s elaboration.

variables. The LASSO regression could filter only a few variables related to accounting, performance,
and geographical location, variables that are highly correlated with others that were kept.

With the systemic risk variables, the Lasso regression was able to filter more variables, keeping
only six of them, as shown in figure 5 for the 72 merton dependent variable, the best one among
the systemic risk variables. As with the default risk ones, results reported in table 10 include only
these variables.

4.2 ITmportance of variables

4.2.1 Default risk

For predicting the default risk calculated with the KMV method, the most important variables,
calculated by the SHAP method described in section 3.4, are BAILOUT PROB_MERTON -
EX I, MARKET SHARE ASSETS, MARKET TO_ BOOK RATIO, TOTAL LIABILITIES,
BAILOUT PROB_MERTON, and LOG_N_ BANKS, as shown in the global variable importance
graphs of figure 6. These results are consistent with the Merton model, not shown. For the Z-
score (not shown), geographical location categorical variables and LOG_N_ BANKS are the most
important. Since the KMV and Merton models use basically as inputs for accounting and market
variables, their results were expected to be similar. For the Z-score, only accounting variables are
used and the location of the bank, together with the number of banks in the country, play a major
role in predicting default risk.

Variables BAILOUT PROB_MERTON and BAILOUT PROB_MERTON EX T are proxies
for the perception of the probability of liquidity injection by central banks in the financial system,
calculated with the Merton method, as described in section 2.3.3. These variables are relatively
similar, but BAILOUT PROB MERTON EX I excludes bank i from the analysis used to
calculate it, while BAILOUT PROB_MERTON does not. It is worth noting that these variables
were only employed when the dependent variable was calculated with the KMV model (and
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Fig. 5 Selected variables by the Lasso regression for the systemic risk dependent variable calculated by the Merton
method. Source: author’s elaboration.

BAILOUT PROB KMV and BAILOUT PROB_ KMV _ EX I independent variables were only
employed when the dependent variable was calculated with the Merton model). The higher their value,
the higher a bank’s default probability predicted by the algorithm, as expected, i.e, expectations
for bailout probabilities increase the risk of the bank’s default, even though in more concentrated
financial markets, as shown in the partial dependence plots of the figure 7 (plots (a) and (e)). These
plots show, for the value of the independent variable of each observation, the corresponding SHAP
value. These findings are almost in line with what is reported by Schiozer et al (2018), for example.

MARKET SHARE ASSETS is the market share of a bank in asset terms. As expected, higher
values of this variable are associated with a lower KMV prediction or a lower bank’s default
probability, as shown in figure 7, panel (b). MARKET TO_BOOK_ RATIO, a bank’s market
capitalization in relation to its book value, shows a slight positive relationship with the predicted
KMV measure, with higher-valued market capitalization banks as the ones that make the algorithm
predict higher default probabilities more often, as shown in figure 7, panel (c). These results show
that banks with relatively low market share but higher market capitalization in relation to their
book values are the ones for which the algorithm predicts higher default risk values. These findings
corroborate results reported by Beck et al (2013), for example.

Finally, TOTAL LIABILITIES also play an important role in the predictions, with higher
values of these variables pulling predictions to the positive camp, as expected and shown in figure
7, panel (d). That is, the algorithm tends to predict higher KMV scores for banks with higher
total liabilities. Bussmann et al (2021) also find that accounting and performance variables (total
assets to total liabilities, EBITDA to interest coverage ratio, shareholders funds plus non-current
liabilities and profits before taxes plus interests paid, current ratio and others in their case) are
also important. They analyze the probability of default of companies for which loans were granted,
though.

It is worth noting that these variables are not exactly the most important variables according
to the Lasso possibly due the nonlinearities described in section 2.4 and shown in figure 7.
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Fig. 6 Global variable importance graphs for the dependent variable calculated with the KMV model and XGBoost
as the forecasting method; (a) average SHAP values and (b) all individual SHAP values. Source: author’s elaboration.

Figure 7 also presents the interaction of each of the six most important variables with other
selected variables. Higher values of BAILOUT PROB MERTON EX I, for instance, are associ-
ated with higher values of MARKET SHARE and with higher values of default probability (panel
a). Higher values of MARKET TO BOOK RATIO, when associated with low values of TOTAL
LIABILITIES, tend to pull predictions to the higher values of default probabilities (panel f).
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Finally, it is also possible to dig into the most important variable for specific observations’
predictions, as shown in the local explainability plots of figure 8. We present two observations where
the predictions are respectively low (left panel) and high (right panel). The left panel shows an
observation for which the algorithm predicts a low probability of default. The bailout probabilities
are the main variables pulling the prediction below average for this bank. MARKET CAP and
MARKET SHARE ASSETS, on the other hand, drive the prediction higher, but they are not
enough to offset the effects of the two first variables. This is probably a big conservative bank with
a relatively high market share and capitalization but a low market-to-book ratio. The sum of the
contributions of each variable (in this case, negative), produces a final prediction below the average.

For the bank in the right panel, bailout perception is also the main driver, but they are
now high, pulling predictions above the average. Among the most important variables, only
MARKET SHARE ASSETS and TOTAL LIABILITIES contribute to a lower value for the
prediction of the default probability. This bank seems to be a relatively small bank, with a relatively
small market cap.
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4.2.2 Systemic risk

For the systemic risk dependent variable calculated with the Merton model, the most important vari-
ables are LOG_N BANKS, T BILL RETURN, CR5, COUNTRY INCOME UPPER_MIDDLE,
REGION EUROPE_ CENTRAL _ ASIA, REGION NORTH AMERICA as shown in figure 9.
These results are consistent with the results from the KMV and Z-score models, not shown.
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Fig. 9 RF model for Merton systemic risk measure (a) mean SHAP values and (b) individual SHAP values. Source:
author’s elaboration.

In systemic risk forecasting, competition plays a more important role. Higher numbers of banks
(LOG_N_BANKS) in a country pull the predictions of the algorithms towards lower values for the
Merton model, as shown in figure 10, panel (a). It shows that a possibly less concentrated market
contributes to lower predictions for systemic risk. The CR5 measure corroborates this perception,
since higher values of this variable, indicating more concentrated markets, pull the predictions for
the Merton model to higher values, and consequently to higher systemic risk, as shown in figure 10,
panel (c¢). These findings are in line with Anginer et al (2014) reports. They find a strong negative
correlation between competition and systemic risk.

The macroeconomic variable T BILL RETURN, a proxy for the general level of interest rates
in the world economy, shows that a more restricted environment, represented by higher interest
rates, tends to pull systemic risk predictions by the RF algorithm toward a higher level, as shown in
figure 10, panel (b). This result is expected since higher interest rates increase the cost of funding
to banks.

Finally, the geographical location of a bank also plays a crucial role in the predictions of systemic
risk. The location of a bank in North America tends to pull predictions into the lower systemic
risk zone, as shown in figure 10, panel (f). Individual banks may face relatively high default risk,
especially small banks, but the system as a whole is considered solid and, hence, the measures of
systemic risk are low. Europe’s and Central Asia location tends to pull systemic risk in higher value
zones (figure 10, panel (e)), probably due to the period of analysis, starting in 2012, the year of the
European sovereign debt crisis. The perception of systemic risk in Europe is higher than in other
regions (most of the observations come from developed countries’ banks, as shown in figure 2).

Figure 11 presents local explainability plots for two observations where the predictions are
respectively low (left panel) and high (right panel). The bank from the left panel is in a competitive
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environment, and both LOG_N_ BANKS and CRb5 play the leading role in predicting systemic risk,
which is low in accordance with Anginer et al (2014), for example. The bank from the right panel is
located in a concentrated market and the important variables are the same, but now pulling the
systemic risk prediction to a higher value. In this case, moral hazard may play an important role,
with the bank counting on an implicit guarantee from the government. It can then assume riskier
operations, increasing the perception of systemic risk in the country.
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Fig. 11 Local explainability plots for the systemic risk Merton model calculated with the RF algorithm (a) for a
low prediction observation and for (b) a high prediction observation. Source: authors’ elaboration.

5 Final remarks

In this paper, we explained banking default risk and systemic risk predictions with SHAP values, an
agnostic explainable artificial intelligence (XAI) method based on game theory that shows variable
importance based on the contribution of each variable to each prediction.

Our data comprise 55,775 observations from 2,325 world banks. For each observation, there
are 45 variables with accounting, market, performance, competition and concentration, risk, and
macroeconomic and microeconomic measures for each bank and quarter (from 2000 to 2016).
Dependent variables for both default and systemic risks were calculated with the Merton, KMV,
and Z-score models, totaling six possibilities. We first filtered independent variables through Lasso
regressions and then applied both random forest and XGBoost to predict each of the six dependent
variables.

The best results according to the R? measure were achieved when default risk was calculated
with the KMV model and predicted with the XGBoost algorithm and when systemic risk was
calculated with the Merton model predicted with the random forest algorithm. These two sets of
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predictions were then subjected to the SHAP values methodology. According to this methodology,
we found that the most important variables for the default risk prediction are the probability of a
bailout calculated with the Merton model, the market share in terms of assets, the market-to-book
ratio, total liabilities, and the number of banks in the market (a measure of concentration). These
results are in line with results from Schiozer et al (2018), Beck et al (2013), and Bussmann et al
(2021), for example.

For the systemic risk predictions, the most important variables are the number of banks in the
country, the level of interest rates, the market share of the top 5 largest banks, and the region of
the bank (in North America and Europe). The competition and concentration variable’s importance
corroborate the work of Anginer et al (2014), for example.

These results may be of interest to regulators and supervisors that can employ machine learning
not only to predict default and systemic risk but also to have insights into what are the main
drivers for these probabilities.

Future research could employ other machine learning methods, such as deep neural networks
and other state-of-the-art algorithms, or even clustering algorithms to perform aggregate analyses.
Other XATI methods could also be employed for comparison and robustness of results. If available,
other variables could also be added to the sample.

Disclaimer 1: The authors declare that they do not have a financial interest or personal relationships that could
influence the work carried out in this paper.

Disclaimer 2: The views expressed in this work are of entire responsibility of the authors and do not necessarily
reflect those of their respective affiliated institutions nor those of its members.
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