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Abstract: This article presents a comparative evaluation of two state-of-the-art object detection 
architectures—Faster R-CNN and YOLOv11—applied to the task of classifying and localizing defects in 

images of metal castings, contributing to the automation of inspection in Industry 4.0. This research adapts a 
public database with annotated images of castings and performs data augmentation, exclusion and 
reclassification of classes, resulting in a set of 2,273 images divided into training, validation and testing. Both 
models were rigorously assessed via evaluation metric standards, including precision, recall, F1-score, and 

average precision (AP) over an IoU threshold of 0.5. YOLOv11 showed better performance in terms of 
precision and F1- score, standing out as more efficient and balanced for industrial environments that 
prioritize agility and a low false positive rate. On the other hand, Faster R-CNN obtained better results in 

terms of recall and mean average precision (mAP), being more suitable in critical scenarios where complete 
defect detection is essential, even with higher computational cost. The research highlights that the choice 
between models should consider the industrial context and the impacts of false positives or negatives on the 

production process. 
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1. Introduction 

 

Object recognition is an inherently complex task, 

influenced by various factors such as scene 

constancy, image-model space variability, the 

number of objects in the model database, object 

multiplicity within images, and the presence of 

occlusions, among others [1]. To enable artificial 

intelligence models to recognize thousands of objects 

across millions of images, substantial learning 

capacity and extensive annotated datasets are 

required. In this context, machine learning 

algorithms, particularly those developed for 

computer vision, have been widely adopted to 

automate industrial tasks, including defect detection 

and the classification of materials and mechanical 

components [2][3]. 

Such technological advances align closely with the 

goals of Industry 4.0, particularly in enhancing 

quality control through automated surface defect 

identification—an activity that typically demands a 

degree of visual cognition. Over the past decades, 

object detection network architectures have 

undergone significant evolution. Deep learning-

based techniques have emerged as the dominant 

approach, categorized primarily into convolutional 

neural network (CNN)-based and transformer-based 

models [4]. While transformer architecture, 

originally developed for natural language processing, 

have recently been adapted for vision tasks, such as 

in the Detection Transformer (DETR), which 

reformulates object detection as an end-to-end task 

through a transformer encoder-decoder mechanism 

[5], CNNs remain more efficient in terms of 

parameterization and training complexity [6]. 
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CNNs have been employed in image recognition 

since the 1980s, and with the advent of increased 

computational power, they have demonstrated 

superhuman performance in complex visual 

applications, including autonomous driving, image 

retrieval, and video analysis [7]. In object detection, 

CNN-based models are typically categorized into 

two main types based on architectural design: two-

stage and single-stage detectors [4]. Two-stage 

models—such as those based on the Region-Based 

Convolutional Neural Network (R-CNN)—first 

generate region proposals and subsequently perform 

classification and bounding box refinement, resulting 

in high detection accuracy. In contrast, one-stage 

models, such as You Only Look Once (YOLO), 

unify detection and classification into a single 

regression task, enabling real-time performance with 

reduced computational demands [8]. 

This study presents a comparative analysis of two 

CNN-based object detectors—Faster R-CNN (two-

stage) and YOLOv11 (single-stage)—applied to the 

task of identifying and classifying casting defects. 

The primary contributions of this work include: 

• A rigorous comparison between single-stage 

and two-stage detectors in an industrial 

defect detection context; 

• A comprehensive performance evaluation 

using metrics such as Precision, Recall, F1-

Score, Average Precision (AP), and mean 

Average Precision (mAP), based on the 

Pascal VOC protocol; 

• A practical discussion on the suitability of 

each model for different industrial 

applications. 

1. Faster R-CNN 

Faster R-CNN significantly improved both the 

efficiency and accuracy of the original R-CNN 

framework by minimizing computational 

overhead. Its architecture adopts a two-stage 

object detection strategy. In the first stage, a 

convolutional neural network (CNN) functions 

as a backbone for feature extraction, capturing 

salient image attributes such as edges, textures, 

and structural patterns. These features are 

encoded into a spatial feature map, which is 

subsequently processed by a Region Proposal 

Network (RPN). The RPN employs anchor 

boxes of various scales and aspect ratios to 

identify candidate regions that are likely to 

contain objects. Each region is assigned an 

objectness score, reflecting the probability of 

containing a valid object. Regions with high 

scores are retained and passed to the second 

stage for further classification and refinement, 

while those with low scores are suppressed. 

 
The second stage of the Faster R-CNN architecture 

is responsible for classification and refinement. In 

this phase, each region proposed by the RPN is 

assessed to determine the presence of an object. If an 

object is detected, the network assigns it a class label. 

Additionally, the bounding boxes generated in the 

previous stage are refined in terms of position and 

scale to improve localization accuracy. By 

integrating the RPN with the classification and 

regression layers, Faster R-CNN achieves an 

effective balance between detection precision and 

computational efficiency, establishing itself as a 

robust solution for multiclass object detection tasks 
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[9]. Prior research has demonstrated the applicability 

of Faster R-CNN for detecting surface defects in 

various materials, including steel [10], wood [11], 

and textiles [12]. 

2. YOLOv11 

YOLO has transformed the field of object 

detection by offering a fast, efficient, and real-

time solution. Unlike traditional multi-stage 

approaches, YOLO employs a single 

convolutional neural network to simultaneously 

predict bounding boxes and class probabilities, 

which greatly enhances its computational 

performance. This architectural simplicity, 

coupled with its flexibility, has established 

YOLO as a leading method in both academic 

research and industrial applications [8]. 

The YOLO architecture comprises three primary 

components: (i) the backbone, which is typically 

a pretrained CNN used to extract features from 

input images; (ii) the neck, which enhances 

feature representation through mechanisms such 

as Feature Pyramid Networks (FPNs) and 

Spatial Attention Modules (SAMs); and (iii) the 

head, responsible for predicting bounding boxes 

and class scores using fused features and 

multiscale anchor boxes to improve detection 

across different object sizes. The most recent 

version, YOLOv11, incorporates innovative 

modules—namely the C3k2 block and the 

C2PSA block—which further enhance feature 

extraction and processing efficiency. 

3. Evaluation Metrics 

The first indicator to be considered is the 

intersection over union (IoU), which measures 

how close the boxes related to the detections are 

to the corresponding truth boxes or, in other 

words, how accurate the model is in terms of 

positioning its detections compared to the real 

position [14], as shown in Figure 1. There is a 

way to set a specific threshold for the IoU, 

below which the detection boxes are not 

considered good enough and should be 

disregarded. This study uses 0.5 as the IoU 

threshold, which means a minimum overlap of 

50% between the ground truth box and the 

detection box for the detection to be considered 

relevant. However, the IoU is not the only 

parameter to be considered in the evaluation of 

multiclass object detection, as the model also 

needs to correctly predict the corresponding 

class of detection. For the problem studied, there 

are three types of possibilities for the result of 

each detection that can be observed in a 

confusion matrix [14] [15]: 

• True positive (TP): corresponds to the 

correct detection of an existing object. 

• False positive (FP) corresponds to an 

incorrect detection of an existing object or a 

detection of a nonexistent object. 

• False negative (FN): corresponds to a failed 

detection of an existing object. 

Other indicators used to evaluate the 

performance of object detection algorithms are 

as follows: 

 

Figure 1: IoU definition 
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Precision (Pr) corresponds to a percentage of 

correct predictions made in relation to the total 

predictions made by the model and can be 

calculated as: 

 

 
Pr   =  

∑ 𝑇𝑃𝑛
𝑁
𝑛=1

𝑇𝑃 + 𝐹𝑃
 

(1) 

 

Recall (Re) or sensitivity corresponds to a 

percentage of correct predictions made in 

relation to the total number of existing 

possibilities and can be calculated as: 

 

 
𝑅𝑒  =  

∑ 𝑇𝑃𝑛
𝑁
𝑛=1

𝑇𝑃 + 𝐹𝑁
 

(2) 

 

F1 score: represents the harmonic mean between 

precision and recall: 

 

 
𝐹1 − 𝑆𝑐𝑜𝑟𝑒  =  

2 ⋅ Pr ⋅ 𝑅𝑒

𝑃𝑟 + 𝑅𝑒
 

(3) 

 

Considering the activity that is the object of this 

research, precision reflects the model’s ability to 

correctly identify instances of defects without 

making too many errors. High precision is 

crucial in this type of task since false positives 

can lead to rejection of nondefective parts, 

increasing operational costs and reducing the 

efficiency of the production process. On the 

other hand, the sensitivity of the model 

represents its ability to detect all relevant 

instances of defects in an image. High sensitivity 

ensures that defects are identified and reduces 

the possibility of accepting defective parts as 

healthy, which is a critical factor in quality 

control scenarios where undetected defects can 

compromise the safety and reliability of the 

product. In multiclass problems, it is important 

to analyze these metrics by class type to assess 

how the model fits in different types of 

detection. Notably, for each detection made by 

the algorithm, a probability function is 

associated that estimates the certainty of the 

prediction made. This is the confidence level of 

detection. Similarly, it is necessary to establish a 

minimum threshold for the confidence level 

(confidence level 6 threshold), below which the 

detections are disregarded by the model because 

they have a greater probability of being false 

positives. A standard metric used in 

competitions and benchmarks is average 

precision (AP). It measures the quality of a 

model in terms of precision and recall, providing 

a consolidated view of performance. To 

calculate the average precision, it is necessary to 

list the detections by confidence level, in 

decreasing order, and calculate the accumulated 

precision and recall of the model. After this, the 

precision × recall curve (PR curve) is plotted. 

The AP is the area below this curve. According 

to [14], a good object detector should be 

considered good if its precision remains high as 

its recall increases, that is, if it can locate all 
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relevant objects without making many errors. A 

larger area under the PR curve tends to mean 

high precision and high recall; therefore, the 

higher the AP of a model is, the better it is at the 

activity. To calculate the AP, one can perform 

the integral of the curve or make an 

approximation through the interpolation of all 

points that can be calculated via the formula 

below: 

 
𝐴𝑃 =∑(𝑅𝑛 − 𝑅𝑛−1)

 

 

⋅ 𝑃𝑛 
(4) 

 

In multiclass problems, the average AP of each 

class is calculated, resulting in the mAP 

indicator, which provides a comprehensive 

assessment of the model’s effectiveness in 

identifying defects in all specified classes: 

 
𝑚𝐴𝑃 =

∑ 𝐴𝑃𝑖
𝑁
 𝑖=1

𝑁
 

(5) 

Where,𝑁     is the number of classes. 

 

Methodology 

The chosen dataset was originally downloaded 

from the Roboflow platform from the project 

called the “Casting detection Computer Vision 

Project” [16] and consists of 4,278 images of 

castings appropriated in 7 different classes and 

with their corresponding annotation text files. 

The following adjustments were made: 1. 

Exclusion of images that contain more than 4 

markings; 2. Exclusion of two classes of defects: 

scratches and deformations; 3. Renaming of the 

polished class to avoid defects. By changing and 

omitting conditional classes in the original 

dataset, a web application was developed using 

ES6 JavaScript to reannotate these images 

according to the new database configuration. 

The images were also standardized and resized 

to 640x640 pixels to maintain a consistent input 

size. With this reorganization, the new database 

configuration has 2,273 images divided into 

three groups according to the 7 model 

implementation phase: training (composed of 

1958 images), validation (composed of 205 

images) and testing (composed of 110 images). 

There are images with more than one class’s 

annotation, and the database balance by classes 

follows the distribution illustrated in Table 1. 

There are five types of labels per appointment, 

as shown in Figure 2. 

 

Figure 1: Examples of parts with labels 

according to the identified dataset classes. 

 

 

Table 1: Database configuration, after 

adjustments 

Id. Class Training  Validation Testing 

0 Burr 223 (8%) 21 (7%) 9 (6%) 

1 Crack 773 (29%) 94 (33%) 41 (27%) 

2 Pit 481 (18%) 54 (19%) 28 (19%) 

3 Unpolished 420 (16%) 48 (17%) 26 (17%) 

4 No Defect 780 (29%) 68 (24%) 45 (30%) 

 

The confusion matrices of the results obtained 

after processing by the Faster R-CNN and 

YOLO v11 models are shown in Figures 5 and 6 

at the end. In the main diagonal, the first number 

represents the number of true positives followed 
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by the result and recall indicators for each label. 

The “background” label in this matrix was 

added to map the false positives related to the 

detection of nonexistent objects or objects that 

were positioned incorrectly (identified in the 

background column) and the false negatives 

(identified in the background row). 

 

The results of the precision, recall, F1 score, and 

average precision (AP) indicators are presented 

in Table 2. In general, except for the crack and 

pit classes, YOLOv11 presented superior 

performance than Faster R-CNN. The precision 

× recall (PR) curves for each class are presented 

in Figures 3 and 4. For both models, the 

precision decreases rapidly with increasing 

recall for cracks and pits, which demonstrates an 

opportunity to improve them in identifying these 

classes. 

 

Table 2: Results of indicators after testing the 

YOLOv11 and Faster R-CNN Models 

 

Metric Model Burr Crack Pit 
Unpo

lished 

No 

Defec

t 

Precision 
YOLO 1.000 0.815 0.671 0.932 0.982 

Faster 0.909 0.694 0.845 0.677 0.653 

Recall 
YOLO 1.000 0.675 0.724 0.767 0.941 

Faster 1.000 0.807 0.732 0.851 1.000 

F1-Score 

 

YOLO 1.000 0.738 0.696 0.841 0.961 

Faster 0.952 0.747 0.784 0.754 0.790 

AP 
YOLO 1.000 0.518 0.608 0.753 0.987 

Faster 1.000 0.629 0.681 0.740 0.981 

F1-Score 

Avg. 

YOLO 0.847 

Faster 0.806 

mAP 
YOLO 0.773 

Faster 0.806 

 

Overall, although YOLOv11 managed to 

achieve better precision in identifying almost all 

classes (except for pit), Faster R-CNN achieved 

better recalls in all classes (except for burrs, 

which both models were able to correctly 

identify all images of parts that had this class), 

suggesting that it is more sensitive and detects 

more positive cases. Regarding the F1 score, 

there is a clear advantage of YOLOv11 over 

Faster RCNN, with the exception of the pit 

class, which means that it presents a better 

balance between precision and recall. On the 

other hand, considering the results obtained for 

average precision (AP), Faster R-CNN has an 

advantage, which suggests better aggregate 

performance per class at different confidence 

thresholds. The main objective in an automated 

inspection task is to detect defects with high 

reliability, avoiding both:  

• False negatives: defects that go unnoticed 

(serious consequences such as 

dissatisfaction, risk of accidents, rework).  

• False positives: good parts discarded for no 

reason (waste).  

YOLOv11 delivers superior performance in 

terms of precision and F1 score, which is ideal 

for avoiding unnecessary discarding of good 

parts, in addition to having a better balance 

between detecting defects and not misclassifying 

them. On the other hand, Faster R-CNN showed 

better sensitivity and the ability to detect more 

defects, which can be considered in more critical 

inspections (for example, parts that will be used 

in medicine or aeronautics), where shipping a 
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defective part has more serious consequences 

than discarding a part in good condition. 

 

Figure 3: PR curves for the Burr, crack, pit, 

unpolished and no defect classes according to 

the Faster R-CNN model. 

 

Figure 4: PR curves for the Burr, crack, pit, 

unpolished and no defect classes according to 

YOLOv11. 

 

Conclusion 

This study compared the performance of the 

Faster R-CNN and YOLOv11 models in the 

detection and classification of defects in 

castings, highlighting their performance in terms 

of precision, recall, F1 score and average 

precision. In general, especially in industrial 

environments with large-scale production, 

accuracy and speed are essential. In this way, 

YOLOv11 delivers superior performance, 

making it more reliable for automatic 

classification. In addition, the lower false 

positive rate helps reduce the cost of rework and 

the waste of good parts. However, if the cost of 

a single failure going unnoticed is very high, 

Faster R-CNN can still be considered, even with 

a higher total cost. For future work, techniques 

to expand the training database should be used 

to improve the performance of the models 

studied, with the aim of increasing data quality 

by reviewing current annotations, balancing 

classes and expanding the dataset. It is also 

recommended to evaluate hybrid or transformer-

based models, where an improvement in the 

overall performance in defect detection is 

expected. 
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Figure 5: Confusion matrix of the Faster R-CNN model. 

 

 

Figure 6: Confusion matrix of the YOLOv11 model. 
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