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Abstract: Insufficient lubrication is one of the main causes of premature failure in industrial bearings, often 

leading to unplanned downtime and significant financial losses. This work proposes a low-cost solution that 

relies solely on temperature curves to automatically classify lubrication regimes - Healthy, Marginal and 

Starved - by means of convolutional neural networks (CNN). The KAIST Bearing Run-to-Failure Dataset 

was adopted; its thermal signals were processed and converted into images that were labelled, stratified into 

training, validation and test sets, and balanced with class-imbalance mitigation techniques. A pre-trained 

ResNet-18 was fine-tuned to perform the bearing lubrication-regime classification. Although the model 

showed limited performance on the Marginal class due to severe imbalance, it achieved 89.8 % overall 

accuracy and an impressive 96 % recall for the critical Starved condition. These results demonstrate the 

model’s strong potential to anticipate severe lubrication failures at minimal instrumentation cost. 
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1. Introduction 

 

Preventive maintenance plays a critical role in 

the operation of industrial equipment, 

particularly in systems subject to extreme 

operating conditions, such as rolling bearings. 

Classical studies indicate that insufficient 

lubrication accounts for a significant proportion 

of premature failures in these components, 

leading to unplanned downtime and increased 

operational costs [1]. Traditional inspection 

methods are costly, rely on frequent human 

intervention, and do not always detect 

degradation in time to prevent damage [2]. 

The continuous and accurate monitoring of 

bearing lubrication conditions has become 

increasingly critical due to advancements in 

industrial technologies and the growing 

competitiveness of the manufacturing sector. 

Companies seeking to optimize processes and 

reduce costs have shown a rising interest in 

techniques that enable the early detection of 

failures and enhance the efficiency of 

maintenance operations. Furthermore, traditional 

diagnostic and monitoring methods are rapidly 

being complemented or replaced by more 

modern and automated approaches. In this 

context, convolutional neural networks (CNNs) 

have emerged as the technological benchmark in 

visual pattern recognition, owing to their ability 

to automatically extract hierarchical features 

from images [3]. 

In this context, the development of more 

effective and automated technological solutions 

for monitoring bearing lubrication conditions 

becomes particularly relevant. This study 

proposes an image processing–based model to 

visually analyze temperature curves, represented 

as graphs, for the purpose of determining 

bearing lubrication status. The proposed 

approach employs a pre-trained Convolutional 

Neural Network adapted to recognize thermal 
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patterns that indicate risk conditions before 

failures actually occur. In this way, the method 

aims to combine simplicity of instrumentation 

with analytical robustness, thereby contributing 

to the reduction of unexpected downtime and the 

enhancement of industrial productivity.  

 

2. Methodology 

 

Figure 1 presents a flowchart of the 

methodology with the stages of work 

development. 

 

2.1. Data acquisition  

 

The KAIST Bearing Run-to-Failure Dataset 

(2020) [5] was obtained from an accelerated life 

test conducted at the Center for Noise & 

Vibration Control Plus of the Korea Advanced 

Institute of Science and Technology. The 

objective was to monitor the vibration and 

temperature of an SKF 6205 bearing until 

complete failure, resulting in a full run-to-failure 

experiment. Figure 2 shows the test bench used 

in the experiment. 

In this study, Google Colab was chosen as the 

primary development platform, as it provides 

free access to a Tesla T4 GPU, native 

integration with Google Drive, and direct 

support for the latest Python libraries—features 

that meet the computational requirements 

without the need for additional local 

infrastructure. The structured folder organization 

ensures that the processing workflow can be 

executed efficiently, starting solely from the 

notebooks and the raw dataset. 

 

2.2. Pre-processing and images generation  

 

Once the KAIST dataset [5] was verified to be 

complete and the development environment 

proven reproducible, it became necessary to 

transform the continuous thermal signal into a 

format compatible with convolutional 

networks—namely, fixed-size two-dimensional 

images. The preprocessing pipeline converts the 

129 CSV files of 300 s each into 387 curve-

images ready for training. This pipeline 

comprises four main stages: incremental 

ingestion of the CSV files and consolidation into 

compressed Parquet format; temporal 

segmentation into 60 s windows; a trade-off 

between thermal resolution and dataset size; 

initial rendering of the windows as axis-free 

PNGs of approximately 310 × 231 px (later 

resized to 224 × 224 px during loading in 

Notebook 04 to match the ResNet-18 input); and 

automatic labeling based on mean temperature, 

followed by cross-validation between the PNG 

files and the labels.csv file. 

 

2.3. Training and validation set 

 

The training preparation stage comprised the 

automatic labeling of each window based on 

recognized thermotribological thresholds—

Healthy, Marginal, and Starved (Table 1); the 

stratified division of samples into training, 
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validation, and test subsets, followed by the 

application of mechanisms to address class 

imbalance; and the resizing, grayscale 

conversion, and normalization of the images. 

These three phases, complementarily distributed 

between the two notebooks, ensure that the CNN 

receives homogeneous, balanced, and 

architecture-compatible inputs, thereby 

enhancing the quality of the training process. 

The labeling of the 387 curve-images was 

performed immediately after rendering. Each 

window was assigned a label according to the 

average temperature recorded within the 

corresponding 60 s interval. The temperature 

thresholds used for automatic labeling were 

defined based on a combination of empirical 

evidence extracted from the KAIST experiment 

itself and thermotribological parameters reported 

in the literature. It was observed that, after 

reaching approximately 42 °C, the slope of the 

curve changes noticeably, indicating the 

transition from the hydrodynamic regime to a 

boundary lubrication state [1]. This inflection 

point precedes by only a few hours the moment 

when the temperature surpasses 85 °C, the 

failure criterion adopted by the dataset authors. 

Consistent with this behavior, Dinardo et al. 

(2020) [5] demonstrated that, for 6205 bearings 

under loads exceeding 70% of the dynamic 

capacity, the thermal variation rate rises abruptly 

when the average temperature exceeds 

approximately 42 °C, indicating partial rupture 

of the oil film. Accordingly, 41.9 °C was 

adopted as the upper limit of the Healthy 

regime, since no window below this value 

exhibited a rate greater than 0.01 °C s⁻¹, a level 

associated with predominantly hydrodynamic 

friction [1]. To distinguish the marginal from the 

critical condition, an intermediate range of 0.5°C 

(41.9 °C < T ≤  42.4 °C) was defined. This 

narrow interval follows the recommendation of 

Dinardo et al. (2020) [5], who suggest margins 

of up to 1 °C for transition stages in bearings 

monitored by a housing-mounted thermocouple, 

considering the typical sensor uncertainty (± 0.1 

°C) and variations in instantaneous load. Values 

above 42.4 °C were labeled as Starved, as they 

already exhibit thermal variation rates exceeding 

0.05 °C s⁻¹, a heating rate consistent with metal-

to-metal contact. 

After labeling the image windows, the dataset 

preparation proceeded with partitioning the 

images into training, validation, and test subsets. 

A 70-15-15 split ratio was adopted, following 

literature recommendations for projects with 

fewer than 1,000 samples [3]. Stratification 

ensured that all lubrication conditions (Healthy, 

Marginal, and Starved) were proportionally 

represented in each partition, enabling fair 

comparisons and preventing bias in the results. 

The distribution is summarized in Table 2. 

Although stratification guarantees similar 

proportions, Table 2 reveals a severe class 

imbalance: the Marginal class accounts for only 

3% of the dataset, whereas Healthy exceeds 

54%. Without correction, this imbalance 
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imposes well-known challenges in supervised 

machine learning. 

To mitigate this imbalance, complementary 

strategies were employed. The first acts during 

data loading: the training DataLoader utilizes 

PyTorch’s WeightedRandomSampler, which 

samples instances with probabilities inversely 

proportional to their class frequencies [6]. 

Concurrently, to prevent the network from 

favoring the majority class (Healthy, 54% of the 

total), PyTorch’s CrossEntropyLoss was applied 

with an added weight vector compensating for 

the observed imbalance. The combined use of 

the weighted sampler and loss weights preserves 

the original dataset intact while forcing the 

optimizer to consider all classes equitably. 

 

2.4. CNN architecture and configuration 

 

After preliminary tests with MobileNet-V2 and 

VGG-11, ResNet-18 [7] was selected for its 

superior balance between performance and 

parameter count. The choice of neural network 

was guided by three main constraints: the need 

for rapid convergence in the Google Colab 

environment, ease of interpretability, and, most 

importantly, the limited size of the training 

dataset, which precludes training a deep network 

from scratch without risk of overfitting. 

Therefore, transfer learning from a well-

established computer vision model was adopted. 

In the context of transfer learning, fine-tuning 

refers to the process of adapting a model 

previously trained on a large generic image 

dataset (e.g., ImageNet) to the specific data of a 

new problem—in this case, bearing temperature 

curves. Practically, the network is loaded with 

its “inherited” weights and training continues for 

a few epochs using the project dataset; this 

preserves the basic visual features already 

learned (edges, textures, shapes) while allowing 

the deeper layers to specialize in the 

peculiarities of the new images. 

The implementation involved loading the pre-

trained ImageNet weights. To adapt ResNet-18 

to monochromatic temperature curves, the initial 

convolutional block was replaced: the original 

conv1 layer (the first convolutional layer of 

ResNet-18), designed for three RGB channels, 

was substituted by a nn.Conv2d layer in 

PyTorch. The new filters were initialized by 

averaging the RGB weights, a technique that 

preserves the learned statistical distribution and 

shortens the warm-up period [3]. 

Next, the final fully connected layer was 

redefined from 1000 to 3 neurons, directly 

representing the Healthy, Marginal, and Starved 

labels. All intermediate layers remained 

trainable; partial freezing tests reduced the 

macro-F1 score by approximately four 

percentage points, indicating that allowing full 

fine-tuning was advantageous for capturing 

subtle patterns in the temperature curves. Figure 

3 presents a simplified schematic diagram of the 

adapted ResNet-18 architecture, highlighting the 

two main modifications: monochromatic input 

and three-class output. 
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3. Results and discussions 

3.1. Classifier performance 

 

The quantitative evaluation was conducted on the 

test set (59 curve-images), which was fully preserved 

throughout the weight tuning process. Table 3 

presents the classification report and summarizes the 

classifier’s performance across the three studied 

conditions. 

It is observed that the Healthy class achieved a 

precision of 0.97 and a recall of 0.91, the latter 

measuring the proportion of samples from a 

given class that the model correctly identifies. 

For the Starved class, recall reached 0.96, a 

crucial metric in predictive maintenance 

scenarios, as it indicates that nearly all windows 

representing severe failure are detected. 

Conversely, the Marginal class was not correctly 

identified in the two available samples, resulting 

in zero-valued metrics; this outcome is attributed 

to the limited support for this class, which, 

despite the applied balancing strategies, 

impacted the results. 

The lower section of Table 3 displays 

aggregated metrics. The overall accuracy is 

0.90, reflecting the proportion of correct 

classifications regardless of class. The macro-

average F1 score (0.61) penalizes all classes 

equally and therefore highlights the scarcity of 

Marginal samples. In contrast, the weighted 

average F1 score (0.88) accounts for individual 

class support, demonstrating that in practice the 

model maintains high performance over the 

distribution observed in the test set. 

Figure 4 shows the normalized confusion 

matrix. In this graph, rows represent the true 

classes, while columns indicate the classes 

predicted by the model. 

A dark block is evident along the diagonal 

element (True Starved × Predicted Starved) with 

a value of 0.96, confirming the high recall for 

the critical condition. Similarly, the (Healthy → 

Healthy) quadrant shows 0.91, evidencing a low 

false alarm rate. The column corresponding to 

the Marginal class, however, remains 

completely blank, registering 0.00 in all rows; 

this indicates that no sample was classified as 

Marginal. This absence of predictions reflects 

the model’s inability to consolidate a pattern for 

this transitional regime. 

 

4. Conclusions 

 

This study demonstrated the effectiveness of 

employing a modified ResNet-18 architecture, 

adapted for monochromatic thermal images and 

combined with class balancing techniques, to 

accurately classify lubrication conditions in rolling 

bearings. The model achieved notable accuracy and 

high recall for critical failure detection, validating the 

feasibility of integrating deep learning–based thermal 

image analysis into predictive maintenance 

workflows. These promising results highlight the 

potential for developing scalable, low-cost diagnostic 

tools that can enhance industrial asset reliability. 

The adaptation of ResNet-18 for monochromatic 

images, combined with class balancing through the 
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WeightedRandomSampler, enabled the model to 

reach 89.8% accuracy on the test set, with a 96% 

recall for the Starved class, which is critical for 

detecting severe lubrication failures.  

Although the study was limited to a single bearing 

type and operational regime, and faced constraints 

such as the low representation of the Marginal class, 

the results confirm the potential of the proposed 

approach. The conversion of thermal data into 

automated diagnostics through a lightweight, 

reproducible, and low-cost processing pipeline 

represents a promising solution for predictive 

maintenance applications. 

Furthermore, the method shows particular 

applicability in industrial sectors with high reliability 

demands, such as the aerospace, automotive, and 

petrochemical industries, where bearing failures may 

result in elevated costs and significant operational 

risks. The incorporation of automated solutions in 

such contexts can directly contribute to improved 

safety, reliability, and asset availability. 

Another relevant perspective for future studies is a 

cost-benefit analysis. Compared to traditional 

methods, which often require sophisticated 

instrumentation, frequent inspections, and high 

maintenance costs, the proposed approach—based 

solely on thermal curves combined with CNNs—

demonstrates potential for substantial cost reduction 

in monitoring, while maintaining accuracy in the 

detection of critical failures. These contributions 

provide a solid foundation for future research aimed 

at generalizing and applying the technique in 

industrial environments. 
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Figure 1. Methodology. 

 

 

Figure 2. Test bench layout used by KAIST. 

 

 

Figure 3. Simplified diagram of the ResNet-18 

architecture adapted for thermal curve 

classification. 

 

 

Figure 4. Normalized confusion matrix (test 

set). 
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Table 1. Labeling criteria based on average 

temperatures. 

Temperature 

(T) range 

Assigned 

label 
Example image 

T ≤ 41.9 °C Healthy 

 

41.9 < T ≤ 

42.4 °C 
Marginal 

 

T > 42.4 °C Starved 

 

 

Table 2. Class distribution after stratified 

partitioning. 

Class Training Validation Test Total 

Healthy 146 31 32 209 

Starved 116 25 25 166 

Marginal 8 2 2 12 

 

Table 3. Class-wise performance on the test set. 

Class Precision Recall F1-Score Support 

Healthy 0.97 0.91 0.94 32 

Marginal 0 0 0 2 

Starved 0.83 0.96 0.89 25 

Accuracy - - 0.9 59 

Macro 

average 
0.6 0.62 0.61 59 

Weighted 

average 
0.87 0.9 0.88 59 

 


