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Abstract 

Objectives - (i) measure the connectivity between the spillovers of returns from the financial 

and non-financial sectors of the Brazilian stock market; (ii) estimate the spillovers of 

individual returns for each sector, in order to identify periods of higher and lower profits over 

a period of around 8 years; (iii) investigate the existence of relationships between these 

repercussions between pairs of sectoral indices, evaluating how much each specific sector 

transfers to each other and to the market as a whole. Methodology – We researched eight of 

the most relevant sectoral indices on the São Paulo Stock Exchange (B3) and estimate 

Diebold-Yilmaz spillover index and frequency decompositions of Barunik-Krehlik. Results 

– there is an overall connection of 66% in the financial and non-financial sectoral indices, 

with a peak of 83%. The consumer, energy and public services sectors stand out as significant 

sources of primary spillovers.  

Keywords: spillover index; frequency decomposition; emerging markets, sectoral stock 

indices. 
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1. Introduction 

The repercussions of changes in stock prices and interdependencies among financial 

assets have long been topics of interest among emerging market economists. This occurs for 

several reasons, one of which is related to possible links between sectoral indices of emerging 

equity markets. These links are useful proxies of intersectoral connectivity and their 

measurement can help to accurately verify the possibility of increased uncertainty, as well as 

identify the effects of shocks that occur in a given sectoral index and are transmitted to others. 

In this work, we study the connectivity of the main sectoral indices of the São Paulo 

Stock Exchange (B3), which is, by a large margin, the most important stock exchange in 

Brazil. By identifying the patterns and dynamics of transmission of price shocks among a set 

of indices that include the most traded shares in electricity, raw materials, public services, 

retail and consumption, financial, housing, real estate and commodities, we believe we are 

producing a set of relevant information for decision-making by participants in these markets. 

For this, we consider daily closing prices of each index in the period from March 3, 

2015, to June 21, 2023,  totaling 2,059 observations. We use a methodology that combines 

two well-established approaches: the spillover index proposed by Diebold and Yilmaz (2012) 

and the frequency decompositions developed by Baruník and Krehlík (2015). The first 

method aims to measure interactions and interdependencies among indices by decomposing 

their variances, making it possible to quantify the multiple price shocks to and from the 

indicesand assess general market connectivity.  

The second method details these connectivity interactions across multiple frequency 

bands that represent different shorter time frames, providing separate analyzes of the 

dynamics of movements in the short, medium and long terms. This approach helped us 

discover aspects that would otherwise go unnoticed. Both methods are complementary and 

their results vary from 0 to 100, and can be interpreted as percentages. 

Our results showed that the total connectivity of Brazil's main stock sector indices 

reached 66%. However, the trajectory of this variable had several peaks of uncertainty, which 

translated into increases in spillovers from variations in returns on the mentioned sectoral 

assets. We explain what factors contributed to generating these peaks.  



When we divide the spillover index into frequency bands, we empirically 

demonstrated that as the analysis time frame increases, the total connectivity tends to smooth 

out, with the effects of a shock suffered by a given sector being dissipated among the others. 

Although shocks transmitted by closing price changes are not the same thing as volatility 

spillover, this result is in line with previous studies such as Nazlioglu et al. (2013) who 

examined volatility spillover relationships between oil and agricultural commodity returns in 

pre-crisis and post-crisis periods, revealing distinct patterns and variations between the two 

periods. 

Meanwhile, Barunik et al. (2015) investigated the spillover asymmetries among 

different sectors of the US economy, finding that the consumer, telecommunications, and 

health sectors exhibited greater asymmetries compared to the financial, information 

technology, and energy sectors. Likewise, other studies have identified the diesel and gas 

sectors as net transmitters of volatility to other markets, with results indicating asymmetrical 

spillovers (Mensi et al., 2020).In addition, several authors have associated post-crisis 

circumstances with factors that influence the transmission and connectivity of volatility 

(Costa et al., 2021; Umar et al., 2021; Bouri et al., 2017; Vardar et al., 2018). These studies 

have shown that financial news significantly impacts volatility, directly or indirectly within 

or across sectors (Hassan and Malik, 2007; Malik and Ewing, 2009). These findings 

collectively shed light on the complex dynamics of volatility spillovers and their relationship 

to market sectors, highlighting the relevance of external factors such as crises and financial 

news in influencing volatility patterns. 

The interest in empirically verifying the dynamics of connectivity among different 

sectors was the motivation for several studies, such as Elder (2004), Lee et al. (1995), Ratti 

and Vespignani (2016), Elder and Serletis (2010), Gardebroek et al. (2014), Ahmadi et al. 

(2016), Hernández et al. (2011), Diebold and Yilmaz (2012), Alsalman (2016), Nazlioglu et 

al. (2012), Baruník and Krehlík (2015), Ding et al. (2016), Nazlioglu et al. (2015) and Arouri 

et al. (2011). 

Many recent works have also sought to understand the connectivity of economies and 

the dynamics of transmission of volatility, such as Kang et al. (2023), Choi (2022), Balcilar 

et al. (2018), Liu et al. (2021), Cheng et al. (2023), Jababli et al. (2022), Arouri et al. (2011), 



Yin et al. (2020), Chinzara (2011), Fazanya and Akinde (2019), Ajmi et al. (2021), Sarwar 

et al. (2020), Laborda and Olmo (2021), Si et al. (2021), Li et al. (2021), Mensi et al. (2022) 

and Malik (2022). 

It is with this scientific literature that we seek to contribute by bringing empirical 

evidence of the connectivity of sectoral stock indices and how the transmission of price 

shocks behaved in recent periods.  

In addition to this introduction, the paper has three more sections. Section two 

provides a comprehensive definition of the database, detailing its preparation process, as well 

as the methodology employed in the empirical analysis, section three presents and discusses 

the results, and, finally, section four makes the final remarks. 

 

2. Methodology 

2.1. Data 

We use the daily closing prices of sectoral indices of the Brazilian capital market 

quoted in reais (BRL). The period analyzed is from March 3, 2015 to June 21, 2023, totaling 

2,059 price observations for each index. We considered eight different indices from the São 

Paulo Stock Exchange (B3) that represent important references in the Brazilian economy and 

financial market. 

Ibovespa Index (IBOV): is a widely used indicator of the general performance of the 

Brazilian stock market and is considered a fundamental barometer of the country's economy. 

It covers a diverse selection of Brazilian companies from various sectors and industries, 

making it a benchmark for investors and financial professionals to assess overall market 

performance. Many financial products, including mutual funds and exchange-traded funds 

(ETFs), are designed to track or replicate the performance of the Ibovespa. This index 

comprises the 50 companies with the highest trading volume in the market. 

Electric Power Index (IEEX): is a price indicator of the most tradable assets in the 

electricity sector listed on the São Paulo Stock Exchange. To be included in the index, the 

asset must have been traded in at least 80% of the trading sessions in the last three months. 



Raw Materials Index (IMAT): reflects the average performance of companies in the 

basic inputs sector, covering sectors such as paper, mining, and steel. Includes shares and 

units of companies operating in this sector. To be part of the index, assets must be among the 

99% most traded on B3 in the three previous portfolios and must be present in at least 95% 

of trading sessions in the same period. 

Utilities Index (UTIL): represents the public services sector, including companies 

involved in electricity, water, sanitation, and gas. It aims to reflect the average performance 

of the most traded and representative assets in this sector. This index comprises shares and 

units of utility companies. For an asset to be included in the index, it must be among the 99% 

most traded in the last three portfolios and be present in at least 95% of trading sessions in 

the same period. 

Retail and Consumer Index (ICON): includes shares of companies in the consumer 

cyclical, consumer non-cyclical, and health sectors. To be part of the index portfolio, an asset 

must have been traded in at least 95% of trading sessions in the last three months. The shares 

that make up the Consumption Index are unitary, and it is considered a total return indicator, 

where all revenues, such as interest on equity and dividends, go to the investor, along with 

the average trading session variation of the assets in the index. 

Financial Index (IFNC): covers financial intermediaries, various financial services, 

pension plans, and insurance sectors. It seeks to represent the average performance of the 

most traded and representative assets of these sectors. The asset that is the subject of a Public 

Offering during the term of the last three portfolios may be included in the index, provided 

that the offering was carried out before the immediately preceding rebalancing. The asset 

must also have a trading presence of at least 95% since the start of trading. 

Real Estate and Housing Index (IMOB): represents the most traded and representative 

assets of the real estate sector, including real estate exploration and civil construction 

companies. The index comprises stocks and units. To be included in the IMOB, the asset 

must be among the 99% most traded in the sector in the three previous portfolios and have at 

least 95% presence on the trading floor in that period. An asset that is the subject of a Public 

Offering during the term of the last three portfolios can also be considered for inclusion in 

the index. 



Commodity Index (ICOM): represents the performance of commodities traded in the 

Brazilian capital market, such as beef, coffee, soy, corn, ethanol, and gold. To assess its 

performance in the period, a portfolio was created with a naive strategy to obtain its daily 

closing price. The strategy can be represented as 𝐼𝐶𝑂𝑀 = &'(&)*⋯*&,
-

. 

In order to understand the factors that influence the connectivity of the Brazilian 

capital market, we consider the daily series of the following explanatory variables: (i) ten-

year future interest rates in the United States (IGlobal) as a global variable; (i) ten-year future 

interest rates in Brazil (ILocal) as a local variable; and (iii) the Brazilian market's own 

connectivity series (Conn) as an another local variable. Table 1 lists the descriptive statistics 

of each index in the period considered. 

In Table 1 we see that the average returns of all indices were positive throughout the 

entire period. IMOB generated the highest standard deviation of its returns, while IEEX 

generated the lowest. In Table 2, a correlation matrix among sectoral indices. 

Table 1. Descriptive statistics 
 Closing Prices Returns 
 Mean SD Min Max Mean SD Min Max 
IBOV 86,848.2400 24,664.5300 37,497 130,766.30 0.0004 0.0161 -0.1599 0.1302 
ICON 3,676.5880 903.2608 2,207 5,728.820 0.0001 0.0164 -0.1762 0.1128 
IEEX 56,159.6400 20,708.5100 20,873 89,553.360 0.0006 0.0136 -0.1232 0.0861 
IFNC 8,997.1780 2,486.1840 3,911 13,612.130 0.0004 0.0187 -0.1425 0.1236 
IMAT 3,530.0530 1,794.6710 1,046 7,544.810 0.0007 0.0191 -0.1721 0.1297 
IMOB 766.9340 205.1723 417 1,526.200 0.0002 0.0215 -0.1946 0.1438 
UTIL 6,089.1950 2,439.9020 2,150 10,226.860 0.0007 0.0154 -0.1460 0.1043 
ICOM 449.6134 142.8374 262.14 806.200 0.0003 0.0137 -0.1405 0.1471 
IGlobal 2.166 0.809 0.512 4.247 0.0008 0.0332 -0.2768 0.4445 
ILocal 10.653 2.434 6.250 16.85 0.0000 0.0182 -0.1080 0.2719 
Conn 66.240 3.513 57.333 82.769 0.0001 0.0071 -0.0701 0.0820 

Source: Elaborated by authors. 

 

In Table 2 we see that the most correlated sector index pairs are UTIL with IEEX, 

IBOV with IFNC and IBOV with UTIL. The pairs with the lowest correlation are ICOM 

with IMOB and ICOM with ICON. We highlight that the index with the highest degrees of 

correlation is the IBOV. The lowest grade is ICOM. After analyzing the data, we adopted a 

dual but complementary methodological strategy in order to improve the accuracy of the 

results. 



Table 2. Correlation matrix 
 IBOV ICON IEEX IFNC IMAT IMOB UTIL ICOM 
IBOV 1.00 0.734 0.956 0.954 0.906 0.716 0.952 0.760 
ICON 0.734 1.00 0.662 0.768 0.544 0.868 0.624 0.369 
IEEX 0.734 0.662 1.00 0.876 0.897 0.649 0.995 0.818 
IFNC 0.954 0.768 0.876 1.00 0.750 0.837 0.880 0.574 
IMAT 0.906 0.544 0.897 0.750 1.00 0.406 0.879 0.898 
IMOB 0.716 0.868 0.649 0.837 0.406 1.00 0.644 0.231 
UTIL 0.952 0.624 0.995 0.880 0.879 0.664 1.00 0.807 
ICOM 0.760 0.369 0.818 0.574 0.898 0.231 0.807 1.00 

Source: Elaborated by authors. 

We estimate the spillover index from Diebold and Yilmaz (2012) and the frequency 

decompositions from Baruník and Krehlík (2015), which appear in subsections 2.2 and 2.4, 

respectively. 

2.2. Diebold-Yilmaz Method 

As we can see in Passos et al. (2020), Diebold and Yilmaz (2012) use autoregressive 

vectors (VAR) to employ a variance decomposition and for that, the Akaike criterion is used 

for lag selection. The stationary covariance of n variables in VAR (p) is represented by 𝑥/ =

∑ ∅2𝑥/34 + 𝜀/7
284 , where 𝜀~(0, Σ) represents a vector of independently and identically 

distributed errors. The moving average representation is  𝑥/ = ∑ 𝐴2𝜀/34@
28A , with the 

coefficient matrices N × N  𝐴2	 that follows the recursion 𝐴2 = ∅4𝐴234 + ∅C𝐴23C + ⋯+

∅&𝐴23&. Here, 𝐴A represents an identity matrix N × N, and 𝐴2 = 0 for 𝑖 < 0.  

The moving average coefficients, including impulse response and variance 

decomposition functions, are pivotal in understanding system dynamics. Variance 

decompositions enable the analysis of prediction error variations for each variable, attributing 

them to various system shocks. They also allow the assessment of the fraction of the error 

variance H steps forward in the prediction 𝑥2, which is due to shocks to 𝑥F, ∀𝑗 ≠ 𝑖, for each 

𝑖. 

To address contemporaneous correlations in VARs, the authors employed Koop, 

Pesaran, and Potter's (1996) generalized VAR structure and ordering approach. This helps 

account for non-orthogonalized shocks, as the sum of contributions to the variance of the 

VAR prediction error. For instance, this installment addresses the sum of row elements in the 

variance decomposition table) may not necessarily be equal to one.  



 The defined shared installment of the parts of variance is represented as the fractions 

of error variations H steps ahead in forecasting 𝑥2 that is due to shocks to 𝑥2, for 𝑖 =

1, 2, … , 𝑁, and cross-variance parts, or spillovers, such as the fractions of the error variations 

H steps ahead in the forecast 𝑥2 that is due to shocks to 𝑥F for 𝑖, 𝑗 = 1, 2, … , 𝑁, such that 𝑖 ≠

𝑗. Denoting the prediction error variation decompositions of H steps forward by 𝜃2F
O(𝐻) → 

𝐻 = [1, 2, … , 𝑛], we have 

𝜃2F
O(𝐻) =

𝜎FF34 ∑ (𝑒2W𝐴X ∑ 𝑒F)
CY34

X8A

∑ (𝑒2W𝐴X ∑𝐴XW 𝑒2)Y34
X8A

																																												(1) 

Let Σ be the variance matrix for the error vector ε, where σjj represents the standard 

deviation of the error term for the j-th equation, and ei is the selection vector with a value of 

one as its ith element and zeros elsewhere. To calculate the spillover index using the variance 

decomposition matrix information, each entry of the variance decomposition matrix is 

normalized by dividing it by the sum of the corresponding row, as follows: 

𝜗2F
O(𝐻) =

𝜃2F
O(𝐻)

∑ 𝜃2F
O(𝐻)[

F84
																																																						(2) 

By construction, ∑ 𝜗2F
O(𝐻) = 1[

F84  and ∑ 𝜗2F
O(𝐻) = 𝑁[

2,F84 . 

To address the total spillovers, the volatility contributions of the decomposition of the 

variable are used, hence, the total volatility reversal index is constructed with the following 

procedure: 

𝑆O(𝐻) =
∑ 𝜗2F

O(𝐻)[
2,F8A
2]F

∑ 𝜗2F
O(𝐻)[

2,F84
100 =

∑ 𝜗2F
O(𝐻)[

2,F84
2]F

𝑁 100																														(3) 

The total spillover index assesses the extent of volatility shock contributions from 

four asset classes to the overall forecast error variance. This method helps us comprehend 

the dispersion of volatility shocks across significant asset classes. The generalized VAR 

approach further enables us to understand the direction of volatility spillovers within these 

major asset classes. Since generalized impulse responses and variance decompositions 

remain unaffected by variable ordering, directional spillovers are calculated using the 



normalized elements of the generalized variance decomposition matrix. This enables us to 

quantify directional volatility spillovers received by market i from all other markets j as: 

𝑆2.
O(𝐻) =

∑ 𝜗2F
O(𝐻)[

F84
F]2

∑ 𝜗2F
O(𝐻)[

2,F84
100 =

∑ 𝜗2F
O(𝐻)[

F84
F]2

𝑁 100																															(4) 

In this same measure, the directional volatility spillovers transmitted by market 𝑖 for 

all other markets 𝑗 is identified below: 

𝑆.2
O(𝐻) =

∑ 𝜗F2
O(𝐻)[

F84
F]2

∑ 𝜗2F
O(𝐻)[

2,F84
100 =

∑ 𝜗F2
O(𝐻)[

F84
F]2

𝑁 100																																(5) 

2.3 Ordinary Least Squares 

To better understand whether external or internal macroeconomic factors influenced 

the connectivity of the Brazilian economy, we estimated two ordinary least squares models: 

𝑌2 = 𝛽A + 𝛽4𝐼𝐿𝑜𝑐𝑎𝑙/ + 𝛽C𝐼𝐿𝑜𝑐𝑎𝑙/34i + 𝛽j𝐼𝐿𝑜𝑐𝑎𝑙/3jA
+𝛽k𝐼𝐿𝑜𝑐𝑎𝑙/3ki + 𝛽i𝐼𝐿𝑜𝑐𝑎𝑙/3lA + 𝜀2 (6) 

𝑌2 = 𝛽A + 𝛽4𝐼𝐺𝑙𝑜𝑏𝑎𝑙/ + 𝛽C𝐼𝐺𝑙𝑜𝑏𝑎𝑙/34i + 𝛽j𝐼𝐺𝑙𝑜𝑏𝑎𝑙/3jA
+𝛽k𝐼𝐺𝑙𝑜𝑏𝑎𝑙/3ki + 𝛽i𝐼𝐺𝑙𝑜𝑏𝑎𝑙/3lA + 𝜀2 (7) 

Where 𝑌2 is the connectivity of the Brazilian economy; 𝐼𝐿𝑜𝑐𝑎𝑙/ is the interest rate of 

the Brazilian economy at day 𝑡; 𝐼𝐿𝑜𝑐𝑎𝑙/34i is the interest rate of the Brazilian economy at 

day 𝑡 − 15 and so on for the last 30, 45 and 60 days. 𝐼𝐺𝑙𝑜𝑏𝑎𝑙/ is the interest rate of the US 

economy at day 𝑡; 𝐼𝐺𝑙𝑜𝑏𝑎𝑙/34i is the interest rate of the US economy at day 𝑡 − 15 and so 

on for the last 30, 45, and 60 days. Finally, 𝜀2 is the error term of the models.  

2.4 Baruník-Krehlík Refinement 

As in Tessmann et al. (2021), based on the construction of the volatility spillover 

index, it is partitioned into four different timeframes: very short term, short term, medium 

term, and long term, corresponding to one day, two to four days, four to thirty days and more 

than thirty days, respectively. This categorization is performed using the method developed 



by Baruník and Krehlík (2015), who proposed a comprehensive framework to analyze the 

frequency dynamics of economic variables based on the spectral representation of variance 

decompositions. 

According to the authors, frequency dynamics offer valuable information for the 

study of variable connectivity since shocks with different frequency responses create 

frequency-dependent connections of varying strength. These nuances can remain hidden 

when time-domain measurements are used. Therefore, our primary focus lies in determining 

the portion of forecast error variance at a given frequency, specifically attributing it to shocks 

in another variable. 

In this context, to effectively define frequency-dependent measures of connectivity, 

we consider the spectral counterpart of the generalized prediction error variance 

decompositions. Impulse response functions, defined in the time domain, play a central role 

in measuring connectivity and aid in quantifying these frequency-dependent relationships. 

The connectivity measure is based on impulse response functions, defined by the time 

frame. It is considered a frequency response function  Ψu𝑒32vw = ∑ 𝑒32xXΨXX  which can 

simply be obtained from the Fourier transform of the coefficients Ψ, with 𝑖 = √−1. A 

spectral density of 𝑥/ at frequency 𝑤 can then be conveniently defined as a Fourier transform 

of Moving Average or MA (∞) filtered series as: 

𝑆{(𝑤) = | 𝐸(𝑥/𝑥/3XW )𝑒32xX = Ψ(e3��
@

X83@

)|ΨW(𝑒*2x)																								(8) 

The power spectrum 𝑆{(𝜔) describes how the variation of 𝑥/ is distributed by the 

frequency components 𝜔. Using the spectral representation for covariance. For instance, 

𝐸(𝑥/𝑥/3XW ) = ∫ 𝑆{(𝜔)𝑑𝜔
�
3� , introduces the counterparts in the variance decomposition 

frequency domain. 

To define the generalized decompositions of staggered error variance in the frequency 

bands, the method uses, 𝑑 = (𝑎, 𝑏): 𝑎, 𝑏 ∈ (−𝜋, 𝜋)𝑎 < 𝑏 as: 

(𝜃�~)F,� = (𝜃�)F,�/|(𝜃@)F,�
�

																																												(9) 



Next, the frequency connection in frequency band 𝑑 is then defined as: 

𝐶�� = 100 �
∑(𝜃�~)F,�
∑(𝜃@~)F,�

−
𝑇�{𝜃�~}
∑(𝜃@~)F,�

�																																								(10) 

Lastly, the internal connection in frequency band 𝑑 is then defined as: 

𝐶�v = 100�1 −
𝑇�{𝜃�~}
∑(𝜃�~)F,�

�																																													(11) 

 In conclusion, the concept of internal connection refers to the connection effect that 

occurs within a specific frequency range, and its weighting is solely based on the power of 

the series within that frequency band. On the other hand, frequency connection involves 

breaking down the original connection into discrete components, which succinctly contribute 

to the overall original connection measurement, denoted as 𝐶@. 

4. Results 

To understand the characteristics of the time series, we estimate the Augmented 

Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) unit root tests. We 

also ran the Andrews-Zivot test, a unit root test with structural breaks. Table 3 summarizes 

these tests. 

Table 3. Unit root tests 

 ADF KPSS ZA  ADF KPSS ZA 
IBOV 0.184 0.010 0.002 ∆IBOV 0.000 0.100 0.007 
ICON 0.749 0.010 0.000 ∆ICON 0.000 0.100 0.004 
IEEX 0.350 0.010 0.000 ∆IEEX 0.000 0.100 0.001 
IFNC 0.290 0.010 0.002 ∆IFNC 0.000 0.100 0.028 
IMAT 0.553 0.010 0.008 ∆IMAT 0.000 0.100 0.002 
IMOB 0.368 0.010 0.001 ∆IMOB 0.000 0.100 0.001 
UTIL 0.336 0.010 0.000 ∆UTIL 0.000 0.100 0.016 
ICOM 0.363 0.010 0.001 ∆ICOM 0.000 0.100 0.012 
IGlobal 0.951 0.010 0.004 ∆IGlobal 0.000 0.100 0.000 
ILocal 0.010 0.010 0.000 ∆ILocal 0.000 0.100 0.010 
Conn 0.010 0.013 0.000 ∆Conn 0.000 0.100 0.009 

Source: Elaborated by authors. 



Table 4 shows the general spillover index for Brazilian financial and non-financial 

sectoral indices. It is possible to note the general connectivity of the market, the extent to 

which each index transmits and receives spillovers of returns from the market as a whole and 

the price connectivity between each pair of indices. 

Table 4. Spillover index 
 IBOV ICON IEEX IFNC IMAT IMOB UTIL ICOM FROM 
IBOV 19.83 14.82 12.88 16.63 9.69 12.72 13.38 0.05 10.02 
ICON 16.55 22.21 13.08 13.12 5.67 15.77 13.56 0.04 9.72 
IEEX 14.22 12.90 22.21 12.80 4.43 12.86 20.52 0.04 9.72 
IFNC 18.89 13.36 13.10 22.35 5.24 13.51 13.49 0.05 9.71 
IMAT 19.14 9.98 8.04 9.15 38.87 6.58 8.21 0.03 7.64 
IMOB 14.89 16.48 13.57 13.97 3.91 23.23 13.90 0.04 9.60 
UTIL 14.53 13.14 20.14 12.96 4.45 12.94 21.78 0.05 9.78 
ICOM 0.20 0.31 0.05 0.05 0.36 0.18 0.05 98.80 0.15 
TO  12.30 10.12 10.11 9.84 4.22 9.32 10.39 0.04 66.34 

Source: Elaborated by authors. 

The spillover index assesses the degree of interdependence among asset prices and 

can be represented on a scale from 0 to 100, with the results interpreted as percentages. The 

tables provide a comprehensive representation of the transmissions that each asset's returns 

send to the market, the amount of feedback each asset receives from the market, and the 

interconnectedness between pairs of assets. Table 2 lists the total spillover indices, that is, 

without the frequency bands. 

We can observe that the transmission of volatility between assets is high. For 

example, IEEX (Energy) transmits 20.14 (line 7, column 3) to UTIL (Public Utility), which 

can be explained by the fact that some companies that are part of the UTIL index act as 

energy transmitters, waste management, water and sewage services etc. Another example: 

the IBOV index transmits 12.30 to the entire market (row 9, column 1). ICON (Retail and 

Consumer) prices affect other sectors by 10.12, due to two of the most important Brazilian 

retail companies having faced difficulties in the period, due to the drop in sales, the Covid-

19 pandemic and the rise the country's basic interest rate. The asset IMAT (Raw Materials) 

receives 7.64 from price effects from other sectors, due to the fact that this sector is made up 

of shares highly influenced by the low dynamism of Brazilian industrial GDP in the period 

studied. Due to this low dynamism, the Brazilian government launched the “Nova Indústria 

Brasil” Program in January 2024, with the aim of boosting the national industry until 2033. 



This program will use traditional public policy instruments, such as subsidies, loans with 

reduced interest and expansion of federal investments, in addition to tax incentives and 

special funds to stimulate some sectors of the industry. Finally, at the bottom edge of the 

table, we can see the total market-to-market connectivity at 66.34 (row 9, column 9). 

The table without frequency bands shows considerable return spillovers between 

assets. Notably, we can see how the IBOV index connects considerably to all other indices. 

In the index-to-index transmission: IEEX (Energy), for reasons already mentioned, impacts 

UTIL (Public Utility) by 20.14; IFNC (Financial) transmits 16.63 for IBOV (which is a clear 

sign of high banking concentration, as the 4 largest banks concentrated 59% of the credit 

supply in 2023); and ICON (Retail and Consumption) transmits 16.48 to IMOB (Real Estate), 

both sectors being traditionally affected, worldwide, by interest rates. Figure 1 shows the 

trajectory of inter-indices connectivity in the period constructed using bootstrap. 

During the period, the Brazilian stock market recorded several significant peaks of 

uncertainty. When uncertainty increases, the connectivity or interdependence among stock 

prices also gets a boost. The first notable event occurred in 2015 with the beginning of the 

impeachment process against former president Dilma Rousseff, which ended in 2016 with 

her removal from office. Her government was marked by a rapid increase in the gross 

debt/GDP ratio, rising real interest rates and unemployment, corruption scandals involving 

her Workers' Party (Partido dos Trabalhadores) and double-digit inflation. The next 

government of Micher Temer, who was Dilma Rousseff's vice-president, quickly controlled 

inflation and reduced the basic interest rate, in 2018, to the lowest level until then reached in 

its monthly time series. In 2019, then-president-elect Jair Bolsonaro's pro-market agenda may 

have inspired investor confidence. These factors generated a smoothing in the price 

connectivity trajectory of the sectoral indices researched for most of 2018.  At least until the 

period of the electoral campaign for the presidency of the republic, when the candidate who 

won the elections, Jair Bolsonaro, suffers an assassination attempt (September 6, 2018). At 

this point, we have a new peak of uncertainty/connectivity (figure 1). 

We also note that the lowest point of price connectivity in the period studied was at 

the beginning of 2020 (57% connectivity). At this time, Brazil was experiencing one of the 

lowest interest rates in its history and the prospect of approval by the national congress of 



structural reforms that would possibly bring greater productivity and stability to the Brazilian 

economy. 

However, the outbreak of the COVID-19 pandemic, which began in Brazil on 

February 26, 2020 with the confirmation of the first case in the city of São Paulo, caused a 

global recession. Government interventions and the exponential increase in uncertainty 

caused a spike of 83% in connectivity. From figure 1, we observe that the trajectory of 

connectivity only returns to normal levels when the vaccination process becomes widespread 

and economic activity begins to react, that is, in the first half of 2021. However, the increase 

in fuel prices and inflation , in the last quarter of 2021 and the first half of 2022 generates a 

new peak of unfavorable expectations that only attenuates in the second half of 2022. 

 

Figure 1. Brazilian stock market connectivity trajectory 

 
  Source: Elaborated by authors. 

 
We estimate two ordinary least squares models to assess how external and local 

factors affect the connectivity of the Brazilian capital market. We use ten-year future interest 

rates in the United States and Brazil as explanatory variables. Taking into account the results 



of the unit root tests, all the time series were estimated in first difference. Table 5 shows the 

results of both models. 

The effect of 30- and 60-day interest rates on return spillovers is linked to the two 

sub-periods of contractionary monetary policy with high basic interest rates that the Central 

Bank of Brazil promoted. The first sub-period was the four-year period from 2015 to 2018, 

when the average annual basic interest rate (SELIC at the end of the period) was 10.38%. 

The second was the biennium of 2022 and 2023, when this rate reached 12.75%1.  

The monthly series of effective federal funds rates, which follow the Fed's target, 

were low throughout most of the period examined. In April 2015 they were at 0.12%. In 

March 2019 it reached a peak of 2.41%. In April 2020 it reached a minimum of 0.05%, at the 

height of the Covid-19 pandemic. In October 2023, it reached a high 5.33%, the highest level 

since September 20072.  

Table 5. OLS results 
Dependent variable: 

𝑌/ 
𝐼𝐿𝑜𝑐𝑎𝑙/ -0.000030 𝐼𝐺𝑙𝑜𝑏𝑎𝑙/ 0.000609 

 (0.000104)  (0.004932) 
𝐼𝐿𝑜𝑐𝑎𝑙/34i -0.000009 𝐼𝐺𝑙𝑜𝑏𝑎𝑙/34i 0.004851 

 (0.000104)  (0.004930) 
𝐼𝐿𝑜𝑐𝑎𝑙/3jA -0.000267** 𝐼𝐺𝑙𝑜𝑏𝑎𝑙/3jA 0.002316 

 (0.000104)  (0.004926) 
𝐼𝐿𝑜𝑐𝑎𝑙/3ki 0.000013 𝐼𝐺𝑙𝑜𝑏𝑎𝑙/3ki -0.004522 

 (0.000104)  (0.004920) 
𝐼𝐿𝑜𝑐𝑎𝑙/3lA -0.000191* 𝐼𝐺𝑙𝑜𝑏𝑎𝑙/3lA 0.005560 

 (0.000104)  (0.004918) 
Intercept -0.000001 Intercept -0.000004 

 (0.000164)  (0.000165) 

Source: Elaborated by authors. 
 

However, most Brazilian companies listed on the São Paulo Stock Exchange (B3) do 

not only lend resources from international financial institutions. In reality, the capital 

structure of most of them is composed, for the most part, of long-term resources from national 

banks (development banks, such as BNDES - National Bank for Economic and Social 

Development, investment and multiple banks with investment portfolio). This is the main 

	
1 Source: Central Bank of Brazil and IPEADATA (http://www.ipeadata.gov.br).  
2 Federal Reserve Board of Governors via FRED, January 2024 (https://www.bankrate.com/banking/federal-
reserve/history-of-federal-funds-rate/).	



reason why the analyzed assets have not been affected by US interest rates. Only the largest 

Brazilian companies have a broad access to resources from international banks that charge 

interest rates relatively closer to the effective US federal funds rates. 

As robustness measures, the total spillover index was reestimated by randomly 

removing two sectoral indices. Table 6 shows the general spillover index without the IFNC 

and table 7 without the IBOV. 

When we randomly removed the IFNC from the sample, the results were not affected 

as much, because the composition of this index - as well as most of the credit supply in Brazil 

- is very concentrated in just 7 bank shares. Furthermore, Brazilian banks, due to the high 

concentration of the sector, are very profitable and their share prices are very little volatile 

and highly resilient to shocks (table 6). 

Table 6. Spillover’ index without IFNC 
 IBOV ICON IFNC IMAT IMOB UTIL ICOM From 
IBOV 22.76 17.02 19.09 11.11 14.61 15.36 0.05 11.03 
ICON 19.84 25.56 15.09 6.52 18.14 15.61 0.04 10.63 
IFNC 21.74 15.37 25.72 6.03 15.56 15.53 0.06 10.61 
IMAT 20.81 10.85 9.94 42.28 7.15 8.93 0.03 8.25 
IMOB 17.23 19.06 16.18 4.53 26.88 16.08 0.05 10.45 
UTIL 18.29 16.46 16.24 5.57 16.21 27.27 0.06 10.39 
ICOM 0.20 0.31 0.05 0.36 0.18 0.05 98.86 0.16 
To 13.89 11.30 10.94 4.87 10.26 10.22 0.04 61.53 

Source: Elaborated by authors. 

 
 

Table 7. Spillover’ index without IBOV 
 ICON IEEX IFNC IMAT IMOB UTIL ICOM From 
ICON 26.62 15.67 15.72 6.79 18.89 16.25 0.05 10.48 
IEEX 15.04 25.91 14.92 5.16 14.99 23.93 0.05 10.58 
IFNC 16.47 16.15 27.56 6.46 16.66 16.63 0.07 10.35 
IMAT 12.34 9.94 11.32 48.08 8.14 10.15 0.04 7.42 
IMOB 19.37 15.94 16.42 4.60 27.31 16.32 0.05 10.38 
UTIL 19.38 23.58 15.17 5.20 15.13 25.50 0.06 10.64 
ICOM 0.31 0.05 0.05 0.36 0.18 0.05 99.00 0.14 
To 11.27 11.62 10.51 4.08 10.57 11.90 0.04 60.00 

Source: Elaborated by authors. 
 

When IBOV was removed from the sample, the impact on the results was also small. 

This occurred because it is a very broad index that reflects the Brazilian stock market as a 

whole. The very scope of IBOV prevents price fluctuations from being strongly transmitted 



to other sectoral indices. In fact, the opposite situation would be expected, if we take one of 

the representative sectoral indices from the sample: this could have a stronger impact on the 

IBOV closing prices (table 7).  

The total spillovers index is then partitioned into different frequency bands that 

denote periods, making it possible to assess the persistence of the effects of a shock suffered 

by one sector of Brazilian stock market in others over time. Table 8 presents the transmission 

of volatility in the very short term, from one day to the next, table 9 presents in the short 

term, from one to four days, table 10 presents in the medium term, from four to thirty days, 

and table 11 presents the transmission of long-term volatility, more than thirty days. 

 

Table 8. Overnight 
 IBOV ICON IEEX IFNC IMAT IMOB UTIL ICOM From 
IBOV 7.88 6.15 5.58 6.42 3.87 5.16 5.66 0.01 4.10 
ICON 6.60 8.65 5.53 5.03 2.48 6.21 5.71 0.01 3.95 
IEEX 4.99 4.71 7.83 4.32 1.55 4.58 7.20 0.02 3.42 
IFNC 7.35 5.43 5.47 8.33 2.15 5.29 5.53 0.01 3.90 
IMAT 7.53 4.36 3.58 3.75 13.62 2.88 3.66 0.01 3.22 
IMOB 5.49 6.01 5.31 4.93 1.66 8.27 5.36 0.01 3.59 
UTIL 5.26 4.92 7.31 4.48 1.66 4.67 7.82 0.01 3.54 
ICOM 0.04 0.09 0.03 0.01 0.11 0.06 0.02 34.08 0.04 
To 4.66 3.96 4.09 3.62 1.68 3.61 4.14 0.01 25.76 

Source: Elaborated by authors. 

 
Table 9. From 1 to 4 days 

 IBOV ICON IEEX IFNC IMAT IMOB UTIL ICOM From 
IBOV 7.94 5.85 5.07 6.72 3.86 5.05 5.28 0.02 3.98 
ICON 6.64 8.92 5.19 5.33 2.23 6.33 5.39 0.02 3.89 
IEEX 5.83 5.25 9.13 5.30 1.80 5.26 8.43 0.02 3.99 
IFNC 7.61 5.30 5.20 9.12 2.08 5.41 5.38 0.02 3.88 
IMAT 7.66 3.89 3.12 3.65 15.91 2.56 3.18 0.01 3.01 
IMOB 6.11 6.74 5.53 5.79 1.58 9.56 5.67 0.02 3.93 
UTIL 5.91 5.31 8.22 5.34 1.78 5.26 8.90 0.02 3.98 
ICOM 0.09 0.14 0.02 0.02 0.15 0.08 0.02 40.87 0.07 
To 4.98 4.06 4.04 4.02 1.69 3.74 4.17 0.02 25.72 

Source: Elaborated by authors. 

 

 

 

 

 



Table 10. From 4 to 30 days 
 IBOV ICON IEEX IFNC IMAT IMOB UTIL ICOM From 
IBOV 3.55 2.50 2.04 3.07 1.72 2.22 2.16 0.01 1.72 
ICON 2.92 4.10 2.09 2.43 0.85 2.85 2.18 0.01 1.67 
IEEX 2.99 2.59 4.63 2.80 0.95 2.66 4.31 0.01 2.04 
IFNC 3.47 2.32 2.15 4.32 0.89 2.48 2.28 0.01 1.70 
IMAT 3.48 1.53 1.19 1.55 8.21 1.01 1.21 0.01 1.25 
IMOB 2.90 3.29 2.42 2.87 0.60 4.76 2.53 0.01 1.83 
UTIL 2.95 2.57 4.06 2.76 0.88 2.65 4.46 0.01 1.99 
ICOM 0.06 0.08 0.00 0.01 0.08 0.04 0.01 21.00 0.04 
To 2.35 1.86 1.74 1.94 0.75 1.74 1.84 0.01 12.22 

Source: Elaborated by authors. 

 

 
Table 11. More than 30 days 

 IBOV ICON IEEX IFNC IMAT IMOB UTIL ICOM From 
IBOV 0.47 0.33 0.27 0.41 0.23 0.29 0.28 0.00 0.23 
ICON 0.39 0.55 0.27 0.32 0.11 0.38 0.29 0.00 0.22 
IEEX 0.41 0.35 0.63 0.38 0.13 0.36 0.59 0.00 0.28 
IFNC 0.46 0.31 0.28 0.58 0.12 0.33 0.30 0.00 0.23 
IMAT 0.47 0.20 0.15 0.20 1.12 0.13 0.16 0.00 0.16 
IMOB 0.39 0.44 0.32 0.39 0.08 0.64 0.34 0.00 0.24 
UTIL 0.40 0.35 0.55 0.38 0.12 0.36 0.60 0.00 0.27 
ICOM 0.01 0.01 0.00 0.00 0.01 0.01 0.00 2.85 0.00 
TO 0.32 0.25 0.23 0.26 0.10 0.23 0.24 0.00 1.63 

Source: Elaborated by authors. 

 

The same way of interpreting table 4 can be used to interpret tables 8 to 11. Table 8 

illustrates the transmission of market prices for several indices, excluding the commodity 

index, in the shortest time interval. Notably, considerable price’s transmissions can be 

observed in all indices except the commodities index (column 10). On the other hand, when 

examining line 10, a contrasting pattern emerges, where the indices show significant 

transmissions to the market. Specifically, in line 10, the IBOV, IEEX (Energy) and UTIL 

(Public Utility) indices stand out. 

Next, we move on to table 9, where we can see that the IBOV index transmits a lot of 

price effects to the entire market. In this context, we can notice considerable transmissions 

of returns from ICON (Consumption) and IEEX (Energy). Vice versa, the entire market also 

imparts considerable repercussions to all indices excluding commodities (see column 10). In 

table 10, excluding IMAT (Basic Materials) and ICOM (Commodities), all indices transmit 



significant price spillovers to the market. On the other hand, the entire market affect all 

indices, excluding the ICOM (see row 10 and column 10). 

In the period of more than 30 days, in table 11, we can observe a pattern like to that 

of table 5, in which all indices reflect on the market, excluding IMAT and ICOM. In that 

same context, the market passes price information to all indices, again, excluding IMAT and 

ICOM. 

We note that market price signaling affects most of the indices analyzed, however, 

Commodities is the index class that presents greater resilience to price-effects. Finally, the 

IBOV, Energy, and Public Utility are the most affected by volatility. The connectivity and 

price repercussion among indices can be classified based on the main external factors that 

influence these phenomena. Umar et al. (2021) found that total connectivity tends to peak 

during major episodes of economic instability, such as the Covid-19 pandemic. In this 

context, according to Costa et al. (2021), total market connectivity during the Covid-19 

pandemic increased to 84.5%, compared to the pre-Covid period which was 65.9%. 

These researchers propose that behavioral factors, political events, and pandemic-

specific circumstances all have a significant impact on overall market sentiment. These 

findings are consistent with previous studies by Bouri et al. (2017) and Vardar et al. (2018), 

who also suggests that volatility spillovers increase during periods of economic instability, 

uncertainty, and post-crisis phases compared to pre-crisis periods. Consequently, these 

findings could explain the gradual increase in volatility in the years leading up to the Covid-

19 pandemic, marked by numerous political scandals in Brazil as it reached its highest peak 

in 2020. In other words, we can say that volatility accumulated over the years before the 

Covid-19 pandemic until it reached its record high. 

Furthermore, financial news plays a substantial role in influencing volatility, either 

directly or indirectly, depending on the specific case. For example, studies by Hassan and 

Malik (2007) revealed that the energy sector is directly affected by news from its sector and 

indirectly influenced by news from the industrial sector. In the Brazilian case, there was a 

significant role of the press in influencing public opinion and policy formulation. Notable 

episodes were the car wash operation (series of corruption scandals involving politicians), 



coverage of the impeachment process of former president Dilma Rousseff and the Covid-19 

pandemic. 

In this context, we seek to understand why commodities have shown greater resilience 

in the face of volatility. According to Nazlioglu et al. (2013), their findings from the pre-

crisis period of 2008 indicate that there was no significant spillover of volatility from oil 

returns to agricultural commodity returns, except for wheat. Likewise, there was no 

substantial spillover of volatility from agricultural commodity returns to oil returns, except 

for wheat. These results suggest that commodities tend to operate as volatility transmitters 

rather than receivers. 

It is possible to observe that the repercussion of returns from ICOM to other indices 

did not show significant levels. However, it is important to emphasize that in our work oil 

was not included, therefore, we cannot fully determine the impact of oil prices on the other 

indices studied here. With commodities considered, the volatility of the ICOM appears to be 

resistant to the price changes of other indices. 

Furthermore, Vardar et al. (2018) explain that not all stock markets have volatility 

links to commodity markets, indicating that there is regional variation in stock market 

responses to commodity market volatility shocks. Furthermore, evidence indicates that 

commodities cannot easily be aggregated into a homogeneous asset class, with each 

commodity being influenced by common macroeconomic developments and market 

determinants. Given this, the ICOM may not represent an adequate benchmark, as it covers 

a wide range of commodities with different behaviors and responses to volatility. 

The results from the different periods also bring important insights into the dynamic 

transmissions of volatility. Around 40% of the total volatility is transmitted in the short term, 

with overnight market connectivity being 25.76% and falling to 25.72% when considering 

the period of one to four days. With the highest intensity of spillovers occurring on the first 

day, it is possible to verify the intensity of information flows in the market, as the volatility 

caused by the shock suffered by an index is transmitted to others quickly. 

When analyzing the period that represents the medium term - four to thirty days - the 

connectivity of the economy drops to 12.22% and reaches 1.63% for the period after thirty 

days, with the same being verified in the existing relations between each index pair. These 



results are in line with those of Baruník and Krehlík (2015) and Tessmann et al. (2021), in 

which they denote that the market assimilates shocks as time passes and their effects dissipate 

over time, where in the long term the effects tend not to be perceived anymore. 

4. Final remarks 

We measure the connectivity of the indices of financial and non-financial sectors of 

the Brazilian stock market in the short, medium and long term. We use the dynamic 

connectivity method of spillovers from the closing prices of these assets on the São Paulo 

Stock Exchange (B3). To achieve this, we combine two distinct but complementary 

econometric methods: the decomposition of variance into Diebold-Yilmaz spillover indices 

and the partitioning of these indices into frequency bands of the Barunik-Krehlink refinement 

process that segment such price repercussions into different time frames. . The period studied 

was from March 3, 2015 to June 21, 2023.  

The results we obtained showed a degree of total connectivity between such sectoral 

indices of 66%, with records of several peaks of uncertainty, in which the repercussions of 

the price-effects among these assets increased. The first notable event was the impeachment 

proceedings against former President Dilma Rousseff in 2015, followed by a period of 

political restructuring and economic reforms, led initially by former president Michel Temer, 

who, as vice president of Dilma Rousseff, replaced her.  

The election of Jair Bolsonaro, who governed from January 2019 to December 2022, 

signaled the continuity and deepening of the pro-market reforms initiated by Michel Temer 

(labor reform and the "Spending Ceiling", to control the growth of the deficit and gross 

debt/GDP, above all). These signals reduced the degree of repercussion of inter-asset price 

variations to its lowest level: 57%. However, the outbreak of the COVID-19 pandemic in 

2020 led to these spillovers peaking. This peak was 83%, aggravated by the ineffective 

government management of the health crisis and the effects of the global recession. With the 

economic recovery and advances in the vaccination process, there was a gradual reduction in 

the systemic effects of these price fluctuations, starting in mid-2021. 

We also observed that the results for the different representative periods of short, 

medium and long term indicated that, over time, the trajectories of inter-index connections 



tended towards smoothing. This denotes an intense flow of information in the market and 

shows that the effects of a shock suffered by a certain sector were gradually dissipating.  

The peaks of connectivity of price fluctuations in the sectoral indices of the São Paulo 

Stock Exchange experienced can be attributed, therefore, to three sources of disturbance: (i) 

economic crisis motivated by fiscal dominance (the years 2015-2016 marked by stagflation 

Dilma Rousseff's government); (ii) corruption scandals; political crisis and attempted 

assassination of Jair Bolsonaro in the period 2016-2018, years that preceded the Covid-19 

crisis; and (iii) impact of important news on economic agents, mainly investors. 

Most sectoral indices, except commodities, were significantly affected by the 

repercussions of price changes in the market as a whole. The resilience of commodity indices 

to price shocks can be explained by the fact that they generally act as transmitters of these 

shocks rather than as receivers. Especially when we look at individual classes of 

commodities, like oil, rather than looking at an index. Therefore, the commodity index may 

not be fully reliable as an active agent of shocks capable of affecting a broader spectrum of 

this asset class. 

We diagnosed the presence of a reasonable level of serial autocorrelation in the 

model. Unfortunately, it is not that rare to have this problem in samples with high frequency 

data. Engle (1996) assert that the transition towards higher frequency econometrics is 

predominantly a consequence of the heightened availability of data featuring finer temporal 

resolutions. This affords researchers more frequent measurements of economic phenomena. 

Although an intuitive expectation may exist for an ongoing progression towards even higher 

observation frequencies, a cursory reflection reveals the impracticality of such an 

anticipation. In many instances, the ultimate constraint is encountered when meticulously 

recording all transactions, particularly within the domain of financial market data. The 

identification of economic variables amenable to measurement at arbitrarily high frequencies 

presents a significant challenge for researchers and econometricians.  

In a somewhat similar way to what happened with Schorfheide et al. (2018), they 

conducted a study employing a Long Run Risks (LRR) model with high-frequency data on 

cash flows. This model incorporates measurement errors and three volatility processes to 

enhance its fit. The authors also introduce an additional process for variation in the time rate 



of preference, generating risk-free rate variation independent of cash flows, resulting in an 

improved fit for the risk-free rate. Notably, his LRR model demonstrates a pronounced 

autocorrelation in the persistent cash-flow component. 

Finally, we believe in the informative potential of this article and its usefulness for 

policy makers, investors, investment portfolio managers, investment consultants and 

researchers interested in the connectivity between emerging market stock indices. 
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