



# Avaliação de estratégias de calibração para a determinação direta de fósforo em rochas fosfatadas usando laser-induced breakdown spectroscopy e imagens digitais Diego V. Babos\* (PQ)<sup>1,2</sup>; Vitor S. Freitas (PQ)<sup>2</sup>; Jéssica F. K. Ramos (PG)<sup>3</sup>; Vinícius M. Benites (PQ)<sup>3</sup>; Débora M. B. P. Milori (PQ)<sup>2</sup>.

<sup>1</sup>Universidade Federal de Uberlândia, campus Patos de Minas/MG, Instituto de Química; <sup>2</sup>Embrapa Instrumentação, São Carlos/SP, <sup>3</sup>Embrapa Solos, Rio de Janeiro/RJ. \*diego.babos@ufu.br

## **RESUMO**

Rochas fosfatadas são muito importantes para a agricultura, pois são usadas na obtenção de fertilizantes e são fontes do macronutriente fósforo (P), essencial para a agricultura. Contudo, os métodos convencionais de análise de rochas fosfatadas, para determinação de P total, requerem morosos preparos de amostra. Nesse contexto, avaliamos o uso da laser-induced breakdown spectroscopy (LIBS) e de imagens digitais para a determinação direta de P total em 26 amostras com teores entre 0,16 a 46,96% P<sub>2</sub>O<sub>5</sub>. Estratégias de calibrações univariadas e multivariadas foram avaliadas na determinação de P total nas amostras sólidas pastilhadas. Dentre as calibrações univariadas, a padronização interna com regressão inversa possibilitou obter os menores valores de erros de calibração, validação e absoluto médio (EAM): 6,8; 4,7 e 3,5% P<sub>2</sub>O<sub>5</sub>, respectivamente. A estratégia multivariada: fusão de dados LIBS e imagens digitais se destaca pelos menores erros de calibração (4,0%), validação (4,9%) e EAM (4,1%).

Palavras-chave: fertilizantes, análise direta de sólidos, modelagem, fusão de dados, quimiometria.

## Introdução

Rochas fosfatadas são muito importantes para a agricultura, pois são usadas na obtenção de fertilizantes ou adicionadas diretamente nos solos como fontes do macronutriente fósforo (P). O P é um macronutriente, essencial para o bom desenvolvimento de uma cultura e obtenção de alta produtividade agrícola (1). O conhecimento do teor de P total em fertilizantes fosfatados é imprescindível para realizar a correta fertilização das plantas via aplicação no solo e/ou foliar. Contudo, os métodos convencionais de análise de rochas fosfatadas requerem o preparo de amostra moroso e laborioso. Nessa etapa, é necessário o uso de ácidos inorgânicos oxidantes e complexantes (HNO3, HCl, HF, entre outros) com aquecimento para a extração ou digestão total das amostras (2).

Técnicas espectroanalíticas que possibilitam a análise de amostras de forma rápida, com mínimo preparo, análise de amostras sólidas, sem geração de resíduos pós-análise e com determinação multielementar, podem ser uma alternativa aos métodos convencionais de análise. Assim, a laser-induced breakdown spectroscopy (LIBS) é uma técnica promissora para esse fim. Com um pulso de laser de alta potência, microgramas de amostra de rocha fosfatada sólida podem ser abladas e analisadas. A partir da interação laser-amostra, um microplasma é gerado na superfície da amostra, cuja temperatura no momento da coleta de dados pode estar próxima de 10000 C. Essa temperatura promove a excitação dos átomos, íons e moléculas diatômicas presentes no plasma intrínseco da amostra. As espécies excitadas ao retornarem ao estado fundamental emitem radiação característica, e a partir da análise do comprimento de onda de emissão e da intensidade de emissão é possível realizar a análise qualitativa e quantitativa, respectivamente (3).

Ademais, o uso de imagens digitais também pode contribuir na

aquisição de informações químicas e física de amostras sólidas. Os canais R (red), G (green) e B (blue) podem ser utilizados como sinais analíticos e correlacionar com a composição química das amostras sólidas analisadas (4).

Contudo, na LIBS, analitos e matriz são analisados integralmente na mesma porção de amostra ablada. E efeitos de matriz físico-químicos podem comprometer a determinação elementar, devido desvios de relação sinal analítico (intensidade de emissão) -concentração elementar. Desse modo a avaliação de estratégias de calibração univariadas e multivariadas são imprescindíveis em métodos de análise de amostras sólidas com LIBS. Cada estratégia de calibração do método, apresenta vantagens e limitações que podem contornar os efeitos de matriz e influenciar significativamente a magnitude dos erros de calibração e predição (3).

Avaliamos as estratégias de calibração: i) compatibilização de matriz com regressão direta (MMC-D), ii) compatibilização de matriz com regressão inversa (MMC-I), iii) padronização interna com regressão direta (IS-D), iv) padronização interna com regressão inversa (IS-I), v) regressão linear múltipla (MLR) e vi) fusão de dados (LIBS e imagens digitais via MLR) para a determinação de P total em rochas fosfatadas.

# **Experimental**

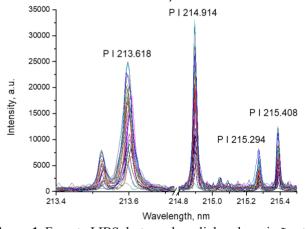
Amostras e método de referência

Vinte e seis amostras de rochas fosfatadas com teores de P total no entre 0,16 a 46,96 % P<sub>2</sub>O<sub>5</sub> foram obtidas de diferentes locais. Essas amostras foram analisadas pelo método colorimétrico convencional denomidado Método Murphy & Riley (1962).

Análise direta das amostras usando LIBS e imagens digitais

As amostras de rochas (400 mg) foram pastilhadas (n=3) utilizando




uma prensa hidráulica. Um espectrômetro LIBS com laser Nd:YAG emitindo em 1064 nm, energia do pulso de 43,5 mJ, foi utilizado na análise das amostras pastilhadas. Foram utilizados um *delay time* do espectrômetro de 0,9 μs, com *gate width* de 22 μs. Para cada amostra foram obtidos 50 espectros, em diferentes regiões da pastilha, na janela espectral de 175 a 341 nm. A aquisição das imagens digitais (32x32 pixel spot) (n=3) foi feita das amostras pastilhadas utilizando um smartphone Xiaomi Redmi Note 8 smartphone (modelo M1908C3JH), câmera 48 MP (megapixels) com LED flash. As imagens foram processadas utilizando o software PhotoMetrix.

Estratégias de calibração univaridadas e multivariadas

Foram selecionados dois conjuntos de amostras: 70% de amostras para calibração e 30% validação. Diferentes estratégias de calibração foram avaliadas: i) MMC-D, ii) MMC-I), iii) IS-D, iv) IS-I, v) MLR e vi) fusão de dados, para a determinação de P total em rochas fosfatadas. Parâmetros de desempenho foram calculados: coeficiente de determinação (R²), erro quadrático médio de calibração (RMSEC), erro quadrático médio de predição (RMSEP) e erro absoluto médio (EAM), usando o Microsoft Excel.

#### Resultados e Discussão

Linhas de emissão para o P foram observadas na região espectral de 213,5 a 215,5 nm, Figura 1. A área e a altura dessas 4 linhas foram calculadas, após a correção da linha de base; e utilizadas como sinais analíticos nos modelos de calibração.



**Figura 1.** Especto LIBS destacando as linhas de emissão atômica do fósforo (P).

As imagens digitais foram obtidas pela câmera do celular, Figura 2. Observe que as amostras apresentam diferentes colorações devido a sua composição e origem mineralógica intrínseca. Além da composição elementar, as imagens digitais podem ser fonte de informações relacionadas a granulometria das amostras, que podem ser utilizadas nos modelos de calibração a fim de contornar os efeitos de matriz físicos. Os modelos de calibração univariados apresentaram, de modo geral, os maiores valores de RMSEC, RMSEP e EAM, uma vez que não conseguiam contornar eficientemente os efeitos de matriz, Tabela 1. A estratégia multivariada: fusão de dados LIBS e imagens digitais se destaca pelos menores erros de calibração (4,0%), validação (4,9%) e EAM (4,1%) dentre as estratégias multivariadas.

A fusão de dados relacionados a composição elementar, obtidos pela LIBS, e de coloração da amostra/matriz, pelas imagens digitais, aumentou as informações analíticas e permitiram obter modelos (R<sup>2</sup>> 0,86) adequados e com menores erros na determinação direta de P total.





**Figura 2.** Imagem digital de 26 amostras de rochas fosfatadas pastilhadas que foram analisadas no estudo.

**Tabela 1.** Parâmetros de desempenho analítico para a determinação de P total utilizando diferentes estratégias de calibração.

| Calibração  | $\mathbb{R}^2$ | RMSEC | RMSEP | EAM | Variável                                            |
|-------------|----------------|-------|-------|-----|-----------------------------------------------------|
| MMC-D       | 0,4728         | 13,0  | 7,6   | 6,2 | P 215,2<br>(Área)                                   |
| MMC-I       | 0,5441         | 8,1   | 4,5   | 3,4 | P 215,2                                             |
| IS-D        | 0,7075         | 7,9   | 5,8   | 4,7 | P215.2/                                             |
| IS-I        | 0,7075         | 6,8   | 4,7   | 3,5 | Mg 279.5                                            |
| MLR         | 0,8651         | 4,1   | 5,2   | 4,6 | P 213.6,<br>P 214.9,<br>P 215.2,<br>P 215.4         |
| Data fusion | 0,8700         | 4,0   | 4,9   | 4,1 | P 213.6,<br>P 214.9,<br>P 215.2,<br>P 215.4,<br>RGB |

# Conclusões

A fusão de dados (LIBS e imagens digitais) permitiram contornar os efeitos de matriz e determinar o teor de P total em amostras de rochas fosfatadas usando a análise direta de amostras sólidas com satisfatória exatidão.

# Agradecimentos

Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (440226/2021-0, 381503/2022-4); Embrapa Instrumentação, Laboratório Nacional de Agrofotônica (LANAF), Embrapa Solos, FAPEMIG e CAPES.

# Referências

- 1. S. Suh; S. Yee, Chemosphere. 2011, 84 (6), 806-813.
- I. Aydin, F. Aydin, A. Saydut, E. G. Bakirdere, and C. Hamamci, *Microchem. J.* 2010, 96, 247–251.
- D. V. Babos, J. F. K. Ramos, G. C. Francisco, V. M. Benites, D. M. B. P Milori, *J. Optical Soc. Am. B.* 2023, 40(3), 654-660.
- 4. V. C. Costa, D. B. Babos, J. P. Castro, D. F. Andrade, R. R. Gamela, et al. *J. Braz. Chem. Soc.* **2020**, 31(12), 2439-2451.