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ARTICLE INFO ABSTRACT

Keywords: This paper presents a new string term structured model with stochastic volatility calibrated with
Interest Rate Derivatives; futures and options market data. I use interest rate options to build a time series of the variance
Macroeconomic Uncertainty; of the factors that drive the interest rates (level, slope, and curvature). In addition, the variance
Financial Economics. of the factors is governed by a mean-reverting stochastic volatility process, whose model’s

parameters are estimated within a new framework through the minimization of the distance
between the moments of the gamma distribution. I show the empirical application of the model
in Brazil’s derivative market, where I present empirical evidence that the Interbank Deposit (DI)
future market provides good predictive power for interest rates considering short- and mid-term
maturities. However, for long-term maturities, the DI future market does not capture the posterior
level of interest rates, suggesting an upward bias due to the hypothetical risk premium embedded
in this market.

1. Introduction

In this paper, I develop a multi-factor term structure model assuming that overnight interest rates evolve according
to the string-market model of Longstaff, Santa-Clara and Schwartz (2001)." T introduce stochastic volatility in the
string-market model and apply a new framework to estimate the model’s parameters, assuming that the stochastic
volatility factors follow the gamma distribution. I minimize the distance between the historical distribution’s moments
of the variance of the principal components that drive the interest rate and the gamma distribution’s moments (mean,
variance, skewness, and kurtosis) to find the model’s parameters.

Using a few factors, the model can capture the volatility smile in the DI interest rate options market and hedge
hundreds of instruments. When the implied volatility increases, the model changes the interest rate’s distribution,
increasing the probability of left and right tail events, coinciding with the rise of option prices, especially for those that
offer protection against extreme events (for illustration, out-of-the-money (OTM) options).

I show the empirical application of the model in the Brazil’s derivative market. Brazil Stock Exchange (B3) traded
more than 500 interest rate options daily with different maturities. Interestingly, two related interbank deposit (DI)
instruments are traded in the Brazilian stock market: (i) the option on IDI, and (ii) the option on DI futures.?

As the two options have the same underlying variable (the DI rate), the options theory of Merton et al. (1973)
suggest that the relationship between them may be driven primarily by the correlation structure of the forward rates.
Consequently, a no-arbitrage relationship may exist.’

The second contribution relates to a new method that uses options data to obtain the market expectations of interest
rates. Empirical evidence shows that the expectations provided by the OTM put option had an impressive forecasting
power for the DI rate considering short-term maturities, while for mid-term maturities, futures market rates showed
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IThis model combines the market-model framework of Brace, G, atarek and Musiela (1997) with the string-shock framework of Goldstein
(2000), Santa-Clara and Sornette (2001), and Longstaff et al. (2001). The market-model framework arises from the fact that a set of forward rates
that are directly observable in the futures market are used to calibrate the model. On the other hand, in the string-market model, each point of the
forward curve has proper dynamics.

2DI and IDI, from the acronyms in Portuguese used by the B3, are the average one-day rate of interbank lending and the average one-day
interbank deposit rate index, respectively. More details are provided in Section 2.

3 According to the Futures International Association (FIA), global trading of interest rate products is dominated by exchanges in Europe and
North America, which, in 2019, accounted for 79% of worldwide volume in this category. However, in the 2019 ranking of the most traded interest
rate products, DI futures contracts (476 million contracts) were second only to Eurodollar futures contracts (687 million contracts). Meanwhile, IDI
options (also called IDI index options) appeared in the sixth position (214 million contracts).
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higher prediction power.* However, for long-term maturities, the options and the DI future market does not captured
the level of future interest rates, suggesting a upward bias due to hypothetical risk premium embed in the future market.

Finally, based on the market expectation and volatility series, this paper empirically shows that the term premia rise
when Brazil’s volatility soars. In contrast, the literature indicates that the term premia fall when volatility increases in
advanced economies. For example, Cieslak and Povala (2016) found that interest rates in the U.S. become progressively
volatile in anticipation of recessions, and consequently, term premia fall. On the other hand, my findings are consistent
with Neumeyer and Perri (2005) and Horvath (2018), who argue that interest rates in emerging economies are
countercyclical and lead the business cycle.

Brazil had had one of the most prolonged episodes of hyperinflation in the twenty century, only stabilized in 1994
(see Dornbusch and Cline (1997)). Therefore, investors might be worried about inflation returns due to significant
budget deficits and governments with weak fiscal control. Conversely, the central bank’s lack of credibility could be
one of the reasons for the term premia increases in moments of high volatility.

The rest of this work is organized as follows. Section 2 presents the financial instruments and the payoffs used in the
empirical analysis. Section 3 describes the data used. Section 4 describes the option price model. Section 5 describes
the methodology to recover the market expectation. Finally, Section 6 concludes the paper.

2. The Interbank Deposit Rates Derivatives Market

This section introduces the options traded on the DI interest rate, i.e., the options on DI futures and IDD.

2.1. Option on DI Futures

The option on DI futures has underlying it the DI futures contract. On the exercise day, if the option is in-the-money
(ITM), the owner receives a position in a DI futures contract at the agreed interest rate (i.e., the strike). Consequently,
the product traded is the interest rate expectation between the option’s maturity and the maturity of the underlying DI
futures contract. In other words, the forward interest rate lies between those two maturities. The futures contract has
daily liquidity, so quitting the position immediately after exercising the option is possible.

Below I present the payoff of the derivative. Let T be the option’s exercise date, and let T, be the maturity date of
the futures contract. The option payoff can be expressed in 77 as follows:

100, 000
,-T,
exp (k (55))
where Q is the contract quantity, cp is the variable that defines if the option is a call or put option, and FUTy,
is the notional value of the futures contract at time 7| with maturity in 7,. The futures contract will have a notional
value of R$ 100,000 at maturity (75 ).

After some algebraic manipulations, it is possible to transform the payoff in Eq. (1) to the payoff of a swap option
(swaption) and so reduce the computational burden (see Carreira and Brostowicz Jr (2016)),

payoff [Tl] = (0 Xmax|cp - FUTy, 1, |,0], 1)

payoff [T, =
100,000 X(Q—n
e k() \ 22

where the interest rate R?”w represents the implicit linear DI rate between 7} and T,. K™ is the strike of the
option transformed to the linear rate®.

(074

> % max (Cp [Riinear _ Klinea.r] i 0) ’ 2)

“4For interest rates forecasts in Brazil, see Lima, Luduvice, Tabak et al. (2006), Pinheiro, Almeida and Vicente (2007), Barbedo and de Melo
(2012), and Baghestani and Marchon (2012).

5In the Appendix, I provide a more detailed explanation about the interbank deposit rate and the DI future contract.

T transform the continuous exponential rates into linear rates as follows, where k, and r, are the strikes and the DI rate in continuous time
capitalization, respectively:

o [ To =T, T, - T,
1+K}‘“e‘"<—2252]> = exp (k,< 5 ')) 3
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2.2. Option on IDI

The option on IDI trades the average DI interest rate between the trade date and the tenor of the option. Underlying
it is the DI rate index. This index launched on 1 February 2009 with a value of R$ 100,000.00 and is updated daily by
the DI interest rate (using the bank’s annual calendar of 252 business days). To obtain the index for any date T', I use
the expression below, following Carreira and Brostowicz Jr (2016):

T
L
IDI; = IDlyqe J] (1+DI)=. Q)

t;=basedate

The option on IDI is also European’s type, and the strike is expressed in R$. The option is exercised at maturity if
the DI index remains above the strike for the call option, i.e., the buyer receives payment if the interest rate exceeds the
agreed implicit rate in the strike price. In contrast, the put option is exercised if the DI index remains below the strike.

This instrument resembles the caps and floors traded in international markets, mainly used to protect buyers against
fluctuations in interest rates. Indeed, options on IDI can offer a similar hedge mechanism for different periods, primarily
associated with monetary policy uncertainty.

The option on IDI payoff at T' maturity date is given by,

payoffr, | = O X max (cp [IDIT - K] ,0) , 6)

where Q is the number of contracts, K is the option strike, and cp is the variable that defines whether the option is
call or put. Note that the DI rate on any given day is released at the end of the same day, which means that the index
price at T can be known only in T’ + 1.

The payoff can also be expressed with a continuous-time interest rate,

payoff;, | = O X max (cp [IDI, X exp (rt (%)) - K] ,0> . @)

3. Data

Table 1 summarizes the main features of the IDI options data, which covers October 2015 to January 2019. In Panel
A, the options are sorted by the tenor in bank calendar days. The average price of put options exceeds call options by a
substantial margin (nearly six-fold). The average daily number of options shows that most contracts have a tenor below
300 business days (approximately one calendar year). In Panel B, ATM options are sorted by moneyness, defined as
the ratio of the strike to the forward price. The average price and number of ATM put options per trading day are much
larger than for ATM call options. The sample size comprises 154,190 options, and all data come from the B3.”

Table 2 summarizes the main features of options on DI futures data covering October 2015 to January 2019. Panel
A sorts the instruments by the bank calendar tenor (considering only business days). The average price of put options
exceeds call options by a considerable margin (almost two-fold). The average daily number of options shows that most
contracts have a tenor below 200 business days. In Panel B, ATM options are sorted by moneyness, defined as the ratio
of the strike to the forward price. The average price and number of ATM put options per trading day are much larger
than for ATM call options. The sample size comprises 38,930 options, and the data is from the B3 website®,

Table 3 shows descriptive statistics for the DI futures contract data covering 9 October 2015 to 18 January 2019.
The standard deviation for long tenors is less than for short maturities, reflecting notable monetary policy changes in
the period (short-term rates reached a peak of 13.82% and an annual minimum of 5.96%). The negative skewness of
the shortest tenors shows that rates stay above average for most of the sample, while the reverse occurs for long tenors.
Kurtosis increases with the tenor, showing heavy tails for the medium- and long-term rates. The data is from the B3
website.

T, T, T,-T
1 leear 2 1 — 2 1 ) 4
5 < 252 KR\ T2 @

7To avoid market microstructure effects, I use options with maturities above eight business days for the IDI options and DI futures.
8 Accessed on February 19, 2021, <http://www.b3.com.br/pt_br/market-data-e-indices/servicos-de-dados/market-data/
historico/boletins-diarios/pesquisa-por-pregao/pesquisa-por-pregao/>.
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Table 1
IDI option data.

Panel A: Sorted by time-to-maturity* [8, 150) [150, 300) [300, 450) > 450 All
Call option
Average number per trading day 430.26 336.83 165.94 113.55 1,048.42
Average price 464.34 1,360.69 1,387.42 4,283.75 1,311.69
Average maturity 75.60 218.30 367.57 563.62 220.65
Put option
Average number per trading day 538.00 420.29 196.86 164.97 1,323.72
Average price 4,562.05 4,909.93 8,993.25 13,269.41 6,418.18
Average maturity 76.20 217.54 367.54 632.09 233.88
Panel B: Sorted by moneyness K/F ATM call ATM put

< 0.99 [0.99, 1) [1, 1.04) > 1.08 All
Average number per trading day 120.47 204.63 642.56 280.33 1248.01
Average price 8052.89 1262.71 3444.05 21798.01  7654.10
Average maturity 339.38 184.31 188.66 300.48 227.61

Note: The table summarizes the IDI options data sorted by maturity and moneyness. The statistics are
from sample data covering 9 October 2015 to 18 January 2019. Panel A reports the average number of
options available per trading day. The average implied volatility is the average annual percentage of the
Black-Scholes (Black (1976)) implied volatility for each moneyness level (the ratio of the strike price K to
the forward price F). Panel B reports the same three measures for the ATM options sorted by moneyness.
The weekly data for options represent Friday closing rates. Data from the B3 website. *Business days using
the bank calendar of 252 annual workdays.

Table 2
DI futures options data.

Panel A: Sorted by time-to-maturity* [8, 50) [50, 200)  [200, 400) > 400 All
Call option
Average number per trading day 66.88 141.72 61.22 3.00 270.23
Average price 369.95 332.74 870.90 1,196.06 464.90
Average maturity 29.35 115.62 285.64 422.48 133.31
Put option
Average number per trading day 78.12 171.31 75.05 4.20 328.68
Average price 1,217.43 1,159.96 1,076.87 748.90 1,149.40
Average maturity 28.62 116.21 282.98 418.43 137.33
Panel B: Sorted by moneyness K/F ATM call ATM put

< 0.90 [0.90, 1) [1, 1.4) >14 All
Average number per trading day 32.69 35.11 168.14 77.43 313.37
Average price 1,909.68 828.40 876.41 2,888.24 1,475.94
Average maturity 169.70 147.55 133.43 113.74 133.93

Note: The table summarizes the options on DI futures data sorted by tenor and moneyness. The statistics

are from sample data covering 9 October 2015 to 18 January 2019. Panel A reports the average number
of options available per trading day. The average implied volatility is the average annual percentage of
the BSIV for each moneyness level (the ratio of the strike price K to the forward price F). Panel B
reports the same three measures for the ATM options sorted by moneyness. The weekly data for options
represent Friday closing rates. Data from the B3 website. * Business days using the bank calendar of
252 annual workdays.

Figure 1 shows the time series of the DI forward rate. I use Friday closing rates, and the sample contains data for
164 days (9 October 2015 to 31 January 2019), with approximately 40 maturity dates for each day. I obtain the forward
rates by bootstrapping the interpolated par curve. The interpolation technique is commonly used in the literature by
practitioners, namely, the piecewise polynomial interpolation (cubic spline).
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Table 3

Summary statistics for DI futures contracts.

Business day* 100 400 800 1200 1600 2000
Sample size 164 164 164 164 164 164
Mean 9.46% 9.64% 10.33% 10.69%  10.90%  10.99%
Std. Dev. 0.030 0.025 0.021 0.018 0.017 0.016
Minimum 5.96% 6.54% 7.70% 8.30% 8.61% 8.82%
25% 6.43% 7.44% 8.80% 9.34% 9.64% 9.75%
50% 8.97% 8.83% 9.63% 10.19% 10.41% 10.57%
75% 12.88% 11.78% 11.40% 11.39% 11.57% 11.62%
Maximum 13.82% 15.08% 15.39% 15.38% 15.46% 15.53%
Skewness -1.73 -0.78 0.21 0.49 0.51 1.10
Kurtosis 0.18 0.67 1.07 1.15 1.16 1.29

Note: The table summarizes the DI futures contracts. The data are sorted by the
tenor in business days (using the bank calendar of 252 annual workdays) from 9
October 2015 to 18 January 2019. The weekly data for interest rates represent
Friday closing rates in continuous-time capitalization. Data from the B3 website.

Table 3 shows that the standard deviation of the DI futures contract with maturity in 100 business days is almost
twice that of the contract with maturity in 2,000 business days. The sample comprises a period when the monetary
policy target rate changed considerably. Since the Central Bank controls the short-term section of the curve through
its monetary policy, this could explain the high standard deviation of the short-term rates.

In 2015, Brazil entered a deep recession, with an accumulated contraction of 7.5% in real GDP and a dramatic
accumulated fall in per capita income of 9.2% in just two years (2015-2016) (Nassif, Feij6 and Aradjo, 2020). After
reaching a high output gap and unemployment, the consumer inflation index converged to below-targeted levels in
2017 and 2018. Consequently, the weakened economy opened up the possibility of reducing the SELIC benchmark
interest rate. Note that turnarounds in monetary policy credibility during this period (see (Ferreira, Goes and Arruda,
2018)) also may have contributed to the interest rate fall.

4. Option Pricing Model

To capture the volatility smile, Goldstein (2000), and Santa-Clara and Sornette (2001) modeled the evolution of
the interest rate term structure as a stochastic string. In this approach, which is a generalization of the Heath, Jarrow
and Morton (1992) model, each forward rate f(z, T;, T;) has a proper dynamic, but the shocks that affect any forward
rate are correlated to the others.

To model the dynamics of the DI interest rates term structure, I applied a multi-factor string market model. When a
single factor arbitrage-free specification is applied in a multi-factor economically motivated framework, it can generate
suboptimal hedging strategies with arbitrage opportunities (Backus, Foresi and Zin (1998)). Besides that, single-factor
models, such as the widely used Black (1976) model, cannot capture the implied volatility smile.

Following Longstaff et al. (2001), the evolution of the forward rate on the risk-neutral measure is,

dF; = o Fidt + 0, Fid Z;, ®)

where «a; is an unknown drift, o; is a deterministic volatility function of the forward price, and d Z; is a Brownian
motion process. The forward rate with continuous-time capitalization is,

_ P, T) '\ 252
i (i) 7 v

In the string market model, the evolution of the bonds’ prices is based on a stochastic differential equation with two
terms, the drift extracted from the spot interest rates, and the diffusion composed by the multiplication of (i) a Jacobian
matrix of the sensitivities of the forward rates to each pair correlations, (ii) a matrix of the implied covariance, (iii) a
vector of forward rates.

Although the model is specified in terms of the forward rates, following Longstaff et al. (2001), I consider a more
efficient implementation using the vector of the bond prices. Applying Itd’s rule to the vector P of the bond prices, I
obtain its evolution in the risk-neutral measure,
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Figure 1: Dl-over future contract. The data set consists of weekly observations from October 2015 to January 2019, using
Friday closing rates. The sample contains 164 days, each with approximately 40 maturity dates. The forward rates are
computed from 100 to 1,450 business days up to maturity. | use a cubic spline to interpolate the DI future contract rates’

par curve and bootstrap the forward curve.

dP =rPdt+ J~'L,FdB, (10)
where,
_ PO ]
0 0 0
a0
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0 L _re
J = P4) P2(4) N
i _ P(}V—Z) 6
P(N-1) P2(N-1)
0 1 _P(N—l)
B P(N) P2(N) |
2
Ul O-liz GI,N—I
¥ _ 0'2’1 0'2 G2,N—1
t - . . . : ’
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where r(?) is the spot interest rate, 2, F'd Z is a vector defined by the second terms in the Eq.((8)), and J is a Jacobian
matrix obtained through the derivation of the forward vector (F|, F,, ..., F_;) concerning the discount bond price
(Py, P,...Py). The Brownian motions B are correlated through d(B;, B;) = p;;, where p,; is the historical correlation

between the forward rates that have the shocks Z; and Z;.
The model’s drift term is calibrated with the rates traded in the DI futures market. The string market model may

be interpreted as a collection of DI rates with a different dynamic depending on the forward rates spanning maturities.
However, the shocks are correlated between them. Accordingly, I start the evolution of the bond prices in equation 10,

with the rate r(¢) traded in the DI futures market.
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In the calibration of the diffusion term in equation (10), P, J, and F are also estimated from the DI futures market.
However, the estimation of %, the instantaneous variance-covariance matrix, is done through the implied volatility of
the option prices.

The main contribution of this paper is the introduction of stochastic volatility in the Longstaff et al. (2001) model.
I consider that X, = U,‘I‘,Ut’ (see Eq. (13)) and the variance of the factors (¥,) is represented by the following matrix,

2
b
<a1 Vl,r+\/TITJ> 0 0 00 0
2
b
0 <a2 v+ \/27> 0 00 0
¥, = b\ :

0 0 <a3 V3J+\/T3T,,> 00 0
H H H . H : : ,
0 0 0 0 0 (030 V30,t+ \/%)

where v; , evolves stochastically under the risk neutral measure according to,

dvi, = a0 —v; )dt+ &, /v;,dZ, i=12.30 (11)

Grasselli (2017) join the Heston-like and the 3/2-like diffusion terms in a unified framework, forming a two-factor
model. The 4/2 (i.e., 1/243/2) has instantaneous volatility of the form (a \/;t +b/ \/;I), where a and b give the weight
of each model in the volatility. For Detemple and Kitapbayev (2018), the 4/2 model has important features as the
variance is bounded away from zero (see Gatheral (2008) for this stylized fact) and fits the shapes of the implied
volatility surface. Lin, Li, Luo and Chern (2017) investigate whether the 4/2 model pricing performance of options is
better than others (3/2, Heston and Black Scholes model). According to the authors, the 4/2 model had the best overall
performance in pricing VIX’s future and its options,

The instantaneous variance is mean-reverting and is driven by v, whose parameters are a, the speed of mean
reversion, 8, the mean reversion level, and &, the volatility of volatility. Hence, the variance is a combination of a 1/2
and 3/2 processes,

2
V= <a2v, + 2 2ab> (12)
Vi
The Brownian motions Z, B are correlated through d(B, Z), = pdt, where p is the correlation factor between
underlying asset returns and the volatility. Each of «, 6, &, p are constants, and I assume that the Feller condition holds,
2a0 > 52 for each v;. With b = 0, I can recover the Heston (1993) model, and with a = 0, the 3/2 9 model of Platen
(1998).

4.0.1. Implied Covariance Matrix

This section builds a time-varying variance-covariance matrix of the DI rates using the DI future options and the
DI future contracts. This matrix, 3 (which is symmetrical and positive semi-definite), is used in my multi-factor term
structure model, as shown in Eq.(10).

Firstly, I calculate the historical sample correlation H (my sample covers five years) of the DI future market
contracts. Matrix H can be decomposed as:

H =UAU’, (13)

9The name 3/2 is due to the stochastic differential equation (SDE) in which there is the power of 3/2 in the diffusion term.
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where A is a diagonal matrix of the eigenvalues of H (non-negative), and U corresponds to the N eigenvectors.
I generate X,, assuming that it shares the same eigenvectors with the historic correlations matrix H. %, is decomposed
as follows:

2=UY,U’, (14)

where U is a constant matrix which contain the eigenvectors, conforming Eq.((13)). ¥, is a time-varying diagonal
matrix of eigenvalues with non-negative entries. The i-th diagonal element of ¥, can be interpreted as the instantaneous
variance of the i-th factor that drives the interest rate evolution.

To estimate ¥,, I build a new matrix €, using the implied volatility of the options market. Initially, I estimate an
implied volatility term structure for each sample day using the DI futures options. For each tenor, I take four calls and
four put options with strikes closest to the underlying price and find unique volatility that minimizes the error between
the Black (1976) model and the market prices of a set of options. To obtain the market-implied volatility for each tenor,
I solve the following optimization problem,

minimize F (o), =
ceERT

L 2 L 2 (15)
— ﬁ Z Ct,i(Tj’ Kilmear’ leear’ 6)—y; +m Z Pt,i(Tj’ K}mear’ leear’o_[) -y ).
i=1 i=1

where C, (T}, K linear - Rlinear 5y and P (T;,.K linear - plinear > ) are the model prices at time ¢, with maturity in T,
strike K!linear, volatility o;, and linear interest rate Rlirear and where N¢ and NP are the total number of call and put
options, respectively.

For each ¢, I then interpolate the set of volatilities with a cubic spline to build the implied volatility term structure.
In sequence, I allocate the volatilities in the diagonal of Q, and square them to obtain the variance. To obtain the
covariance, I use the historical correlation matrix and the known expression that cov(x,y) = p,,0.0,, to fill the
remaining entries of €;.

After getting Q,, I apply singular value decomposition-SVD on it,

Q =USVe", (16)

where S (diagonal matrix) contains the singular values. I consider that ¥, = S,.10 Finally,

X, =USU =UY,U’ (17)

In Figure 2, I depict, in four subplots, the time series for the variance of each of the four main factors. Between
September 2018 and October 2018, the variance increased, reaching a peak around the election period (where the first
round was on October 7, 2018, and the second round was on October 28, 2018).

4.1. Change of Measure

As in the 3/2 model, the risk-neutral paradigm’s potential failure may also occur in the 4/2 model. Lewis (2000)
extended the results of Sin (1998) furthermore, showing that the probability of an explosion under ubiquitous stochastic
volatility models is above zero (P(V;7 — o0) > 0). As a result, the process under the physical measure and the
Girsanov transformation to the risk-neutral measure may not be equivalent. There is zero probability of an explosion
in the volatility in the physical measure. Consequently, the discounted asset price is a strict local martingale under the
(putative) risk-neutral probability measure.

For the 3/2 stochastic volatility model, Drimus (2012) showed that two conditions must be satisfied to have a
well-behaved model. Using the Feller’s boundary condition, the Heston process cannot reach the zero boundaries if,

10The eigenvectors of ©Q,Q/ are in the columns of V and the eigenvectors of Q]Q, are in the columns of U. But the singular values of .S represent
the square root of the eigenvalues of Q,Q) and Q/Q,.
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Figure 2: Time series of eigenvalues. The four subplots show the eigenvalues computed weekly from September 29, 2017
to January 18, 2019. | obtain the values for each day by minimizing the errors between the model price (Black (1976))
and market price using a set of options (four call options and four put options with the strike closest to the underlying
price). Interpolating the set of implied volatilities that minimize each tenor error, | obtain the implied volatility for other
tenors of the DI futures contract and build a covariance matrix with the historical correlation matrix. Finally, | obtain this
matrix’s eigenvalues as the factors’ variances.

2a0 > £, (18)

which I denote as a condition I. If v, is a Heston process then 1 /v, is a 3/2 process (see Heston (1997), Platen (1998)).
A non-zero probability of 1/v, reaching infinity implies that a non-zero probability of v, reaches zero. Consequently,
the condition in Eq. (18) must also be satisfied for the 3/2 model.

The second condition requires that the non-explosion test for 1/v, also must be satisfied under the measure, which
takes the asset price as a numeraire. To test the martingale property for the discount asset, Grasselli (2017) made the
following change in the Brownian motion for the volatility process:

~ b
dZ,:dZ,—p(a\/v_,+ W)dl‘

Under the historical measure (Z), v solves,
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dv, = (@b + p&b — (a — pEayv,)di + E\/v,d Z,

As indicated above, in the risk-neutral probability measure, 1/v, does not reach infinity if the Feller condition is
satisfied, i.e., Eq (18). On the other hand, in the historical measure, the process 1/v, has zero probability of explosion
if the corresponding Feller condition is satisfied (condition II),

ab + 2pEb > & (19)

The correlation parameter p plays a vital role in determining if the Feller condition will be satisfied in Eq. (19).
Usually, the behavior of prices and volatility display a negative correlation. For example, volatility is typically very
high in the stock market at moments of highly negative returns. This stylized fact is also known as the leverage effect.
However, the middle- and long-term interest rates are crescent with volatility in the DI futures market. Table 4 elucidates
that the correlation between term premia and volatility is highly positive, easing the model’s implementation, given
that this facilitates the Feller condition requirement.

4.2. Model’s Parameter Estimation

I model the observed volatility according to Eq. (11). To avoid the identifiability problem, I set a = 1, as in
Escobar-Anel and Gong (2020). Consequently, the model can be interpreted as a Heston plus a fraction of the 3/2
model.

To estimate b I use the fact that Vt2 reach the infimum when v, is equal to b, where Vt2 = v, + b?/v, + 2b, is the
variance of the factors. Then, the estimator for b is,

. minV3(t;
b = T(l), 1=0,,T

I assume, following Cox, Ingersoll Jr and Ross (2005), that as t — o0, v, is asymptotically gamma distributed,

1
F0) = Ve, (20)
where the distribution parameters are # = 2a0/E% (shape parameter) and @ = 2a/&? (scale parameter).

Consequently, 1/v, is asymptotically inverse gamma distributed, and the parameters are the same in the two
distributions, !

To estimate the parameters, I use the following moments of the distribution: mean (A ;), variance (A, ;), skewness
(As,;) and kurtosis (A4 ;) of the gamma and inverse gamma distribution,

1ITo see if the parameters are the same, I apply the transformation technique, where g(X) =1/X =Y,

fro = fye™ o

dx
dy

' 12
= —(1 n y
r(’1)( /[y e

' el =
=" e
L'(n)

The inverse gamma distribution’s parametrization does not change due to the transformation; hence, the parameters are the same.

y2
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~ .

A =E v,+b—>=ﬁ+b2. @

’ v, o n—1
200 — &2

22 2 22 2
Ay =E <vt+b—> —[E[(v,+b—>] =1 45
? Vs Vy w?

2
_ 200Qa0+ &) o 4b%ab
4a2 Qab — &2)

e <[E [( ,+ZA’—2>—[E<VI+ZA’2 2]>3/2 i Vi
_ 2 +B4\/W_2
_\/W " 2a0/82 -3

£ [((V,qz)_m(v,qi))“]
4= ’ t z2+13

) (e 2) -5 (e 2)])

6(10a0/E* — 11)
"2a0/E2 = 3)(2ab/E2 — 4)

T 2a0/8

~ w?

(=11 -2)

6(5n — 11)
n=3)n-4

To obtain the parameters, I minimize the objective function for each factor,

n 2 n 2
1 A 1
F= <A - XWi- 2b>) + (A - XWi- m)z)
j=0 J=0

2
1 Zn V2 3
7 &j=0\"ri T Hi
+ A3,i_ 1 ) ) 3/2
n
[; Zj:O (th - /"i) ]
2
1 n V2 4
; Zj:O t,i — Hi
+ A4i - 2
’ 1 n 2 2
n Zj:O (Vt, - Mi)

2y

(22)

where y; is the arithmetic mean of Viz. To overcome the fact that Feller condition is often violated (see Da Fonseca
and Grasselli (2011) and Lin et al. (2017)), I estimate the parameters under the restrictions (conditions I and II), forcing
the algorithm only to search the estimators in the space outside the restrictions.
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Table 4
Diebold and Mariano (2002) and likelihood ratio statistics.

Model pairs DM stats Likelihood ratio stats

V1-V2 -1.03 3,748.87
V2-V3 -2.28 205.04

Note: The total number of cross-sectional and time
series observations (27,923 over the entire sample) times
the differences between the SSE logarithms for the two
models asymptotically follow a )(és distribution, and the
1% critical values are 94. The DM statistics, calculated
according to Eq. (25), follow an asymptotic standard
normal distribution under the null hypothesis of an equal
pricing error. A negative statistic means that the more
sophisticated model has more minor pricing errors. Bold
indicates significance at the 5% level for the DM statistics
and 1% level for the likelihood ratio test. The sample is
composed of ATM IDI options.

4.3. Stochastic Volatility Model Empirical Results

I first used an incremental likelihood ratio test to estimate the number of factors to price IDI options. I compared
nested models with one to three factors to verify statistical differences. The test is as follows: for a model with N
factors, I compute the squared errors of the differences between the market and model price and then use the exact
computation for a model with N + 1 factors. The error has a chi-square distribution with 65 degrees of freedom ( )(625)
in the one-tail test (The )(625 1% critical value is 94).

Table 4 shows the likelihood ratio test results. The model with two factors is statistically different from the model
with only one; the likelihood ratio test is 3,748.87, well above the 1% critical value (94). The model with three factors
also is statistically different from the model with two factors (the likelihood ratio test is 205.04).

I also adopt the Diebold-Mariano (DM) approach (Diebold and Mariano (2002)) to test if the two forecasting
models are statistically equal. I first define the forecast error for each ¢ and instrument i as €;, = (p;, — p; )/ P, |
take a function g(.) as a loss function, considering g(e; ;) as g(e; ) = |¢; | X 100. The loss differential between the two
models is d; , = g(eil, D g(ezt). I take the weekly sum-of-squared-errors (SSE) as v, = zl]il le;| X 100. Defining the
loss differential between the two forecasts as d, = vtl - vt2 and taking the forecasts as having equal accuracy if and only
if the loss differential has zero expectations for all t, then the null hypothesis is that both forecasts are equally accurate:
H, : Ed,) =0Vt 1If {d, }thl is covariance stationary with short memory, then:

VT = 1) ~ N(0,27£,4(0)), (23)

where d = % Ethl d,, is the sample mean of the loss differential and 4 = E(d,) is the population mean of the loss
differential. The spectral density of the loss differential at frequency 0 is as follows:

1 [s9)
ﬁ@=%<ZYMO, 24)

k=—00
- - 1
where 7,(k) = % EtT=|k|+1(df - d)(d,_|k| —d). In practice I consider M = T'3 and a good estimator is as follows,

pM=—9 25)

b
M o
Zk=7M Vd
T
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Table 5
Parameter Estimates of Stochastic Volatility Models

Svi1 SV2 SVv3
Parameter Estimate Estimate Estimate
a; 0.7467 0.7467 0.7467
a, 0.2027 0.2027
a 0.6659
0, 0.3858 0.3858 0.3858
0, 0.0841 0.0841
05 0.0838
& 0.2461 0.2461 0.2461
& 0.1360 0.1360
& 0.1364
b, 0.1038 0.1038 0.1038
by 0.0366 0.0366
by 0.0351
pl 0.4259 0.4259 0.4259
p2 0.3731 0.3731
3 0.3842
Objective function 0.1303 0.1214 0.0982

Note: This table reports parameter estimates of the one-, two-,
and three-factor stochastic volatility models (SV1, SV2 and SV3,
respectively). | obtain the estimates by minimizing Eq. (22) using the
eigenvalues of the covariance matrix observed on a weekly frequency
from September 29, 2017, to January 19, 2019. The objective
functions reported in the table are rescaled SSEs over the entire
sample at the estimated model parameters and are equal to the RMSE
of different IDI options.

As the magnitude of the IDI option price varies considerably, I adapt the DM test (Diebold and Mariano (2002)
to award the same weight to all instruments. Jarrow, Li and Zhao (2007) calculate the loss function as the square of
pricing errors. I, therefore, take a loss function defined as the absolute value of the difference between the market and
model prices divided by the market price.

Comparing the two- and three-factor models, Table 4 shows that the three-factor model is better at reducing the
pricing error, and the models are statically different from the model with two factors with a 95% level of confidence.
According to Table 4, the DM statistic shows that the two-factor model reduces the pricing error compared to the
one-factor model. However, the difference is not statically significant at the 95% level of confidence.

Table 4.3 shows the coefficients of the stochastic volatility model for the first factor (associated with the level of
the yield curve), second factor (associated with slope), and third factor (associated with curvature). Table 4.3 also
elucidates the objective function results (root mean squared error (RMSE) between the model and market price) and
shows that the three-factor model has produced more minor pricing errors.

5. Recovering Market Expectation with IDI Options

This section extracts different market expectations from different subsets of options. Carlson, Craig and Melick
(2005) used options on federal fund futures to obtain market expectations for possible outcomes of Federal Open Market
Committee (FOMC) meetings in the U.S., i.e., the market consensus view of monetary policy pathways. Sihvonen and
Vihdmaa (2014), using data from the U.K. (3-month sterling LIBOR-referenced futures options), examined whether
expectations implied by options prices were consistent with Taylor-type monetary policy rules. The authors found that
interest rate expectations implied by options prices are sensitive to the expected output gap and economic uncertainty.

To evaluate if market expectations for interest rates differ for alternative subsets of options, such as ATM and OTM
put options, I construct a measure of market expectations using the IDI option. This instrument has the most liquidity
in the interest rate portfolio of options traded in the B3. Eq. (26) illustrates the optimization problem to find market
expectations:
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N(‘
: Aok * T—1 c
a6 =3 ([1onxen (17 (F571)) - K| x D =)+
NP

Z ([Kip — IDI, X exp (rf (%))] xD[’T)_yi) , (26)

i=1

where N¢ and N7 are the number of call and put options, respectively, traded on the day ¢ and with maturity in 7'.
1 DI, is the interbank deposit rate index on date ¢, K€ is the strike of the call, and K? is the strike of the put. Segregation
between call and put options is necessary because the payoffs are different. Moreover:

1
D, - =
tT w T—t

exp (rt 5 )

For each sample day and maturity, I minimize the expression in Eq. (26) to find the expected interest rate for each
tenor. In sequence, I use a cubic spline for each traded date to interpolate the expected rates.

In my estimation of the market expectations, I regard the probability measure as the physical measure, given that
the stochastic discount factor (SDF) as used in Eq. (26) (D, ) is not the risk-free rate. Instead, I construct the SDF
with the option-implied interest rate.

To evaluate the forecasting performance of the implied market expectations regarding interest rates based on ATM
(call and put), OTM (only put), and the futures market data, I apply ordinary least squares (OLS) regression as follows,

Viter = Bo + By Xit4r T € pars (27)

where y, ;. . is the realized (ex-post) DI average rate between ¢ and 7+, and x, ., is the implied market DI rate
expectation (ex-ante) for the same period. The expectation contained in x, ., were formed through the IDI options
and futures market rates. The error term has the following specification,

Et(et,t+‘r) =0 (28)

Table 6 presents the results of the regression represented by Eq(27), where 7 is 200, 300, 400, 500, 700, and 900
business day (bd). The t-statistic (t(NW)) was obtained with the parameters’ standard errors heteroskedasticity and
autocorrelation corrected (HAC), following Newey, West et al. (1987). I use a lag length equal to 2h (to account for
the overlap), following the approach of Bollerslev, Todorov and Xu (2015).

Table 6 shows that all coefficients of the market expectation are statistically significant at the 1% level. Panel A and
B of Table 6 show that the prediction for the short-term DI rate (200, 300, and 400 bd) was highly accurate. Using the
expectations provided by OTM put, ATM, and futures market, the R> were above 0.8 for all regressions. However, as
the time horizon increase, the statistical significance diminishes. For example, the prediction for 500 bd had smaller
t(NW), especially for the OTM put options: 4.11, and the R> was 0.65. Panel C of Table 6 shows the estimation results
for 700 and 900 bd. Panel C revealed that the DI futures market had higher forecast power than ATM options for
long-term maturity, considering the R? and the T(NW) statistics.'?

The forecasting power can also be inferred from the coefficient §; value. When this coefficient is close to one,
its prediction power is high. However, for 900 bd, the coefficient is well below one (0.8813). Table 6 shows that f;
distance from one when the time horizon increase. Consequently, the DI average rate in the DI futures market was
above the real DI rate for the sample period.

Figure 3 shows the fitted values (model predictions) of the OLS regression using the model of Eq.(27) and the
parameters contained in Table 6. The ex-ante variable is the expectation formed through the DI future market. The
confidence interval of 95% practically captured the realized DI rates in the two subplots of Figure 3, the left considering

12The sample has not OTM put options with 700 and 900 bd until maturity.
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700 bd until maturity and the right considering 900 bd.!>. Interestingly, Figure 3 shows that the expectation of the future
market captured the trend of a fall in the interest rates but not it’s level. The expectation stayed above the realized DI
rate for all days, for 700 and 900 bd.

Low-interest rates have been a phenomenon in advanced economies for several decades (see Mehrotra and Sergeyev
(2021), and Whited, Wu and Xiao (2021)). According to Blanchard (2019), since 1980, interest in U.S. government
bonds has decreased steadily, and by 2021, their yield was lower than the nominal growth rate. Japan, the UK., and the
EU now have a 10-year nominal interest rate below the nominal growth rate. Brazil has had a clear downward trend in
interest rates since 1999 (see Baghestani and Marchon (2012)).

Swanson (2006), using U.S. data for 1989 to 2003, describes increased Federal Reserve transparency after the
adoption of an inflation-targeting framework for monetary policy'#. The same author concludes that private sector
forecasting errors for interest rates, contrasting with GDP and inflation rates, have fallen considerably, suggesting an
improvement in the private sector’s ability to forecast interest rates. As mentioned earlier, Federal Reserve transparency
is one of the reasons for this significant improvement. The growing transparency of Brazil’s Central Bank can be one
of the reasons for the highly accurate expectations provided by the derivative data, as seen in the regression results
presented in Tables 6.

Panel A. 700 bd (2.77 Yr) Panel A. 900 bd (3.57 Yr)
16 —— Realized 16 —— Realized
14 1 O N N In-sample fit 14 W T R B In-sample fit
AT DI Future (Expectation) DI Future (Expectation)

2

0 0
A9 AD A A6 AT AT AT AD AD A AQ A5 A6 A6 A AT AT AT AD AD AD A9
e 3o Y e 3o oY e 3o (oY e 3o e o oY oo o Y e o™ oY e 3o

Figure 3: The realized rate (blue line) is the DI average rate computed between the trading date (¢) and the tenor (7 + 1),
is the ex-post rate. The fitted values of the regression using the parameters presented in Table 6 are in the red dotted
points. The orange line represents the expected DI rate formed through DI future market, which is the ex-ante rate. The
confidence interval is 95%. Data from B3.

5.1. Correlation between Volatility and Expectation

Figure 4 shows the correlation between volatility, term premia,'”, and the interest rate expectation formed through
the OTM put options, ATM options, and the futures contract for 100, 200, 300, 400, and 2000 business days ahead. The
high positive correlation between volatility and term premia indicates that moments of financial stress are associated
with increases in the interest rate for long-term contracts.

Many authors predicted the U.S. GDP growth from the slope of the yield curve (see Laurent et al. (1988), Harvey
(1989), Stock and Watson (1989), Harvey (1991), and Hamilton and Kim (2000)). A steepening curve with significant
term premia can predict positive economic growth, while an inverted yield curve can predict recession (Campbell
(1995), and Ang, Piazzesi and Wei (2006)). On the other hand, financial market volatility can predict recession (Baker,
Bloom and Davis (2016), and Gulen and Ion (2016)). However, my findings suggest that volatility is associated with

13The expectation is the rate traded in the DI futures market. The realized DI rate is the real average rate between the trade date and the maturity,
computed in business days.

4Including regularly scheduled meetings, the announcement of changes in federal fund rate targets, the rationale for policy actions, the release
of votes of individual committee members and the preferred policy choices of any dissenters, and the announcement of policy tilts indicating most
likely future interest rate actions

I5Equivalent to the differences between the future contract with maturity in 2,000 business days and 100 business days.
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a steep curve in Brazil since term premia rise with volatility, even considering that my sample period coincided with
a monetary easing.

My results also contrast with Cieslak and Povala (2016), who found that interest rates (in the U.S.) become
progressively volatile, and term premia fall, in anticipation of recessions. However, Cieslak and Povala (2016) also
argue that the correlation between term premia and expectations is very volatile and can often switch signs. My findings
are also consistent with Neumeyer and Perri (2005) and Horvath (2018), who argue that real interest rates in emerging
economies are countercyclical and lead the business cycle.

Some factors might explain Brazil’s high correlation between term premia and volatility. Brazil had one of the
most extended episodes of hyperinflation in the 20th century, which only stabilized in 1994 (see Dornbusch and
Cline (1997)). Therefore, long-memory investors might be worried about unanchoring inflation expectations due to
significant budget deficits and weak fiscal control, possibly resulting in high-interest rates to combat inflation. On the
other hand, the Central Bank’s lack of credibility could explain the increases in expected long-term rates in moments
of high volatility.
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Figure 4: Correlation between volatility, term premia, and expected interest rates. “OTMPUT" expectation formed through
OTM put options; "ATM" expectation formed through ATM options; “FUT" expectation formed through futures contract;
and 100, 200, 300, 400, and 2000 business days.
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6. Conclusions

This paper presents a new multi-factor term structure model with stochastic volatility. The new term structure
model can price bonds and derivatives and forecast macroeconomic variables. To estimate the model’s parameters, I
show a new method derived from the gamma distribution and the distribution’s moments of the historical variance of
the factors that drive the interest rates. To illustrate the model’s empirical application, I priced options written on DI
interest rate (traded in Brazil’s stock market, B3). The model with three factors had better pricing power (related to IDI
options) than the model with two and one factors.

This study also shows that IDI options and DI future market can provide a robust but straightforward measure of
market expectations for possible outcomes of Brazilian Central Bank target interest rates (defined in COPOM meetings;
see Appendices), especially for short- and mid-term maturities (200, 300, and 400 bd). I regress the realized DI rate
(ex-post) between time ¢ until time ¢ + 7 on the market expectation (ex-ante) for the same period. However, for long-
term maturities (700 and 900 bd), the market expectation captured the fall trend in interest rates, but the level was not
captured. The expectation was above the realized DI rate for all sample days by a substantial amount.

The time series of expectations and volatility built in this paper showed some interesting empirical features. For
example, term premia rise when volatility soars in Brazil. In contrast, the literature on term structure models shows
that the first and second moments of the yield curve have a negative correlation in developed countries. That term
premia fall when volatility increases. In Brazil, particular factors might explain this phenomenon, such as episodes of
hyperinflation, which historically were associated with a lack of fiscal discipline and weak central bank credibility.

My theoretical and empirical contributions demonstrate that estimating market expectations, volatility, and options
prices can be done within a unified framework using the string-market model with stochastic volatility presented in this
paper. Future research can test the hypothesis that future market rates embed a risk premium for long-term maturities,
justifying that the traded rates in the future market were above the realized rates for all days in my sample period.
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A. Interbank Deposit Rates

The SELIC target rate is the main instrument of monetary policy in Brazil. It is defined by the Brazilian Monetary
Policy Committee (COPOM), as a central bank organ with macroeconomic price stabilization as its primary objective.
Therefore, treasury bonds issued by the federal government, which are post-fixed like the SELIC treasury bond (Letra
Financeira do Tesouro, LFT), follow variations in the SELIC rate. Given that this interest rate remunerates the safest
asset (i.e., LFTs) in Brazil, almost all interest rates used in the economy, such as loans or banking capital, are marked
by the SELIC rate.

The DI rate is the weighted average rate traded between banks in prefixed operations with a one-day maturity. The
primary collateral given by financial institutions in the interbank lending market is federal securities, essentially LFTs.
Consequently, the DI rate is directly related to the SELIC rate.

A.1. The DI Futures Contract

In 1991, the B3 launched the DI futures contract to meet the demand for hedging by banks and companies. The
interest rate futures market is vital in transferring risk among agents. The main strategies include changing a fixed rate
to a floating rate or the reverse. The underlying of the DI futures contract is the DI interest rate. This derivative is
usually used to hedge and manage risk exposure on liabilities and debt positions in the Brazilian currency (R$).

The DI futures contract mechanism is similar to a swap contract (where the traded rate at the beginning of the
contract is the agreed rate): one party receives a positive cash flow if the agreed rate remains above the market rate
(fixed leg). In contrast, the other part receives a positive cash flow if the agreed rate remains below the market rate
(float leg). One of the main differences with the swap contract is that the futures contract has daily movement on the
margin account based on differences between the market and traded rates.

The DI futures contract is one of the most volatile interest rate contracts globally, attracting much speculation and
offering arbitrage opportunities across the entire term structure. Some of the technical aspects of the futures contract
are that the notional value at maturity is R$ 100,000.00, the market quotation is expressed as an annual percentage,
compounded daily based on each year consisting of 252 business days, and the contract size is expressed in terms of
unit price (UP) in R$.

Consider a continuous trading economy with a continuum of default-free bonds traded with different maturities.
Assume bonds are traded at dates ¢t € [0, T]. I define P(¢t,T) as the bond price at time ¢ € [0, T'], with a face value of
R$ 1.00 at maturity T. Henceforth, P(T,T) = 1 and P(t,T) > O for all t € [0,T] (no default-free condition of the
bonds).

The UP of the one-day interbank deposit futures contract is defined as:

100, 000
T-n
(1+k) 252

UPt,T) = (29)

where k, is the agreed interest rate, and where the difference T — ¢ represents business days, i.e., the trading date 7,
inclusive, and the maturity date of the contract T', exclusive. As mentioned, DI futures contracts have a face value of
R$ 100,000.00 at maturity, so the UP represents R$ 100,000.00 discounted by the agreed interest rate. Since the bank
calendar in Brazil uses annual periods of 252 business days, the DI rate is computed only for this period each year.

Given two maturity dates, 7; and TJ , I define the forward interest rate f (¢, T;, T;) as the implicit interest rate between
T; and T] inferred in ¢, obtained as follows:

UP T 252
t,1; T;-T;
g > T, (30)

t, T-, T. annual _
N

VT, T/ e, T], T, < Tj, t €[0,T], where U P(t,T;) and U P(t, T;) are the UPs at time ¢ of contracts with maturity at
T; and T}, respectively.

To simplify the equations and facilitate numerical implementations of the model, I use all interest rates with
continuous-time capitalization. I use the following expressions to obtain the annual forward interest rate with
continuous-time capitalization:

f(t, Ti’ Tj)continuous — log (1 + f(t, Ti’ Tj)annual) , (31)
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VT TJ etT] T, < Tj, t € [0, T]. With the DI rates for the diverse maturities of the DI futures contract, f (¢, T;, Tj),
I obtain the bond prices that pay R$ 1.00 at maturity,

P, T = 1 s (32)
exp (f(t, t, T)%)
A4 TJ € [t,T], t € [0, T], where r(t) is the spot rate:
r(t) = f(,t,1), Vtel0,T]. (33)
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A.2. Black Option Pricing Model

The classical model for valuing interest rate options is the Black (1976) model, where the price is quoted in terms
of implied volatility. In my framework, assuming linear interest rates between T} and T, and assuming that R'"*%" has
a log-normal distribution, the pricing model for the option on DI futures is as follows (see Santos and Silva (2017)):

C =
o1 100,000 (T —T;) (Rgnz%fN(dl)—Kﬁﬂe;rN(dz)), (34)
b T,-T, 252 112 172
cxP (k ( 252 ))
and
I)t =
pr 100,000 (-Ty) (39)

linez linez
(KN (-d2) - RESEN(=d1) ),

t,T- —
e (k(5)) 2

with
Rlinear
T).T, 2 ( Ty—t
L ln<K¥ln%r)+O.56 (—252>
(3%)
252
T, —t
dz = dl - s
’ < 252 )

where C, and P, are the call and put option prices, respectively, DtCTIZ ! is the discount factor between the date ¢ and
T,, based on the curve of the DI future,

k is the option strike defined in rate, o is the annual volatility, 7, — T is the contract maturity considering the bank
. . s . ines T,-T,
calendar, N (.) is the cumulative normal distribution function, and K;E“CT‘“ = (exp < (log (1+k) % ) ) -1 )X %
_ 112 =T
and Rl}i‘e]%zr are the linear interest rates between 7} and 75.

To estimate R!™", T need to adjust the bond price present value to 7:

1.1’
L-T
P(Ty, 1) = P(t, Ty exp | f(1.6.T) { —555 (36)
Therefore, the implicit interest rate with continuous capitalization between T} and T, is:

i 1 252
continuous — 1 s 37
"r, Og<P(T1sT2)> (T, -T) Gn

and the corresponding linear interest rate is:

. . T, - T, 252
linear __ continuous 2 1 _

RT]’TZ B (exp <rT1’T2 ( 252 >> 1) T,-T, %)

For the option on IDI, the Black (1976) pricing model expression is as follows:

C, = [IDI;N(dl)—- KN(d2)|DP! (39)

1Ty
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and
P, = [KN(-d2)~IDIpN(=dDIDP/, (40)
with
IDIy 5 [Tyt
ln( e )+050’ <252)
dl = , (41)
Tt
(35)
T, —t
d2 = dl-o¢ ). 42)
252

I DIy is the DI index updated to date T with the interest rate obtained in the futures market.
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