

Síntese de ésteres semissintéticos derivados de fenóis naturais e solketal com potencial herbicida

Julianne A. Bruno (PG)^{1*}; Guilherme de O. Ferraz (PG)¹; Jorge L. Pereira (PG)¹; Milene M. Praça-Fontes (PQ)²; Maira C.M. Fonseca (PQ)¹ Francisco C. L; de Freitas (PQ)¹; Patrícia F. Pinheiro (PQ)¹

¹ Universidade Federal de Viçosa, Viçosa, MG, Brasil. ² Universidade Federal do Espírito Santo, Alto Universitário, Alegre, ES, Brasil. * e-mail: julianne.bruno@ufv.br

RESUMO

Plantas daninhas são espécies indesejáveis que competem com as culturas agrícolas, podendo reduzir significativamente a produtividade das lavouras. Compostos naturais da classe dos fenóis, como carvacrol, timol, guaiacol e eugenol, presentes em óleos essenciais, possuem atividade fitotóxica comprovada e podem servir de base para novos herbicidas. O glicerol, subproduto da indústria do biodiesel, pode ser convertido em solketal, um intermediário promissor na síntese orgânica. Este trabalho teve como objetivo sintetizar e avaliar o potencial fitotóxico de ésteres semissintéticos derivados de fenóis naturais e solketal. Assim, foram obtidos ácidos fenoxiacéticos à partir dos fenóis citados, posteriormente esterificados com solketal (presença de EDC e DMAP). Os compostos foram caracterizados por CG-EM, RMN e FTIR e também passaram por ensaios biológicos in vivo. Os resultados são promissores e indicam o potencial para o desenvolvimento de herbicidas sustentáveis.

Palavras-chave: Semissintéticos, Glicerol, Fénois naturais, Esterificação.

Introdução

O crescimento da população mundial tem impulsionado a demanda por alimentos, exigindo, consequentemente, o aumento da produtividade agrícola (1). Essa produtividade pode ser maximizada através do desenvolvimento de novas culturas de alto rendimento, mecanização agrícola e da intensificação do uso de fertilizantes e pesticidas (1). No entanto, a aplicação contínua desses compostos tem resultado no desenvolvimento de resistência por parte das espécies infestantes, além de acarretar impactos adversos ao meio ambiente e à saúde humana. Tais fatores evidenciam a necessidade de desenvolvimento de novas moléculas herbicidas que apresentem menor toxicidade (2). Para diminuir esses desafios, se apresenta como solução viável a síntese de moléculas semissintéticas originadas de produtos naturais (3).

Concomitantemente,, destaca-se a importância do aproveitamento de resíduos industriais, como o glicerol, subproduto da produção de biodiesel (4). O glicerol pode ser convertido em solketal, o qual reage com ácidos para originar ésteres contendo o grupo solketila. Esse processo favorece a síntese de compostos com maior polaridade, característica desejável, visto que a solubilidade no meio celular é um dos fatores limitantes da atividade biológica de compostos bioativos.

Dessa forma, objetivou-se com este trabalho sintetizar ésteres inspirados na molécula do primeiro herbicida seletivo comercializado, o ácido diclorofenoxiacético (2,4-D). Esta síntese será realizada através do aproveitamento do glicerol em uma reação com derivados de fenóis obtidos de produtos naturais (carvacrol, timol, guaiacol, eugenol).

Experimental

Em um balão bitubulado acoplado a um condensador foi adicionado guaiacol (0,04 mol) dissolvido em 20 mL de etanol e NaOH (0,04 mol) dissolvido em 20 mL de água destilada. Seguiram sob agitação por 20 minutos. Uma solução de cloroacetato de sódio (0,05 mol) dissolvido em 20 mL água destilada e pH = 9 foi transferida gota a gota para o balão. A reação seguiu em refluxo por 5 horas. Então, o meio foi acidificado e o sólido foi lavado com água destilada gelada. *Síntese de Solketal*:

A reação de acetalização do glicerol foi realizada utilizando 0,250 g (0,0027 mol) de glicerol em 4 mL de acetona com 0,0056 g (1% m/m em relação ao ácido fenoxiacético) de PTSA em um balão bitubilado sob agitação, em um banho de glicerina a 60 °C, durante 30 minutos. A razão molar de glicerol e acetona é de 1:20. Para purificação foi realizada coluna cromatográfica com hexano/acetato de etila (3:1).

Síntese dos ésteres fenoxiacetatos de solketila:

Em um tubo selado, é colocado sob agitação em temperatura ambiente 0,96 mmol do ácido fenoxiacético com 4 mL de diclorometano para dissolução do mesmo. Em seguida é acrescentando 0,96 mmol de EDC com 6 % m.m⁻¹ de DMAP (em relação ao ácido utilizado) e por fim 124 μL de solketal puro. A solução permanece em agitação, em temperatura ambiente por 24 h. A purificação é realizada por extração líquido-líquido com 20 mL de água gelada (10X) e uma extração com NaHCO₃ (20 mL). A caracteriazação foi feita por CG-EM, RMN de ¹H, RMN de ¹³C e FTIR.

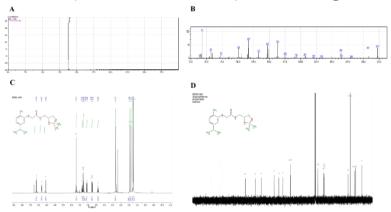
Ensaio biológico:

- Teste pré-emergente:

O substrato tratado com 10 mL de solução do éster + surfactante nas concentrações desejadas foi homogeneizado separadamente e distribuído em 5 potes de 150 mL. Em cada pote, foram semeadas

Síntese dos ácidos fenoxiacéticos:

cinco sementes, com posterior desbaste para três plântulas. A avaliação dos efeitos fitotóxicos ocorreu 21 dias após a aplicação. Os controles positivos foram H_2O e H_2O + Tween 20 0,5 % e o controle negativo foi 2,4 – D na mesma concentração do tratamento.


Análise estatística:

Os resultados foram submetidos à análise de variância (ANOVA), e os valores médios ao Teste de Tukey ($p \le 0.05$), utilizando o software R, versão 4.0.0 (R Core Team 2024) (5).

Resultados e Discussão

Síntese e caracterização do ácido fenoxiacéticos e ésteres:

Foram sintetizados 5 ácidos fenoxiacéticos (ácidos carvacroxiacético, timoxiacético, guaiacoxiacético, eugenoxiacético, fenóxiacetico) com rendimentos que variaram de 22 a 72% e os 5 estéres correspondentes que ainda seguem em processo de otimização da síntese. A caraceterização para o primeiro éster sintetizado (carvacroxiacetato de solketila) é mostrada na **Figura 1**.

Figura 1. Caracterizações para o éster derivado do fenol natural carvacrol – Carvacroxiacetato de solketila. **A)** Cromatograma; **B)** espectro de massas; **C)** RMN de ¹H e **D)** RMN de ¹³C em CDCl₃.

Ensaios biológicos:

O éster (EC) identificado na **Figura 1**, foi submetido aos testes *in vivo* e os melhores resultados foram obtidos no teste pré-emergente. As plântulas de sorgo (**Figura 2A**) e pepino (**Figura 2B**) foram comparadas visualmente com os controles H₂O e H₂O e tween.

Figura 2. Plântulas de sorgo (**A**) e pepino (**B**) submetidas ao teste pré-emergente com EC (1) H_2O (2), H_2O e tween (3).

Na **Figura 2** é possíver notar a diferença da raiz e da parte aérea de ambas as plântulas em comparação ao tratamento com H₂O e H₂O + Tween (branco). Tanto as raízes (R) como a parte aérea (PA) não

desenvolveram da mesma forma que os controles, dando indícios do potencial herbicida. O resultado estatístico é apresentado na **Tabela** 1.

Tabela 1. Dados do teste fitotóxico realizado em sorgo e pepino.

	Sorgo				Pepino			
Tratamento	CPA (cm)	CR (cm)	MSPA (g)	MSR (g)	CPA (cm)	CR (cm)	MSPA (g)	MSR (g)
2,4D - 1	2,14 ^b	0,72 ^b	0,01162 ^b	0,01904ª	0 ^e	0 ^b	O ^d	O _p
2,4D - 2	1,58 ^b	0,63 ^b	0,00646 ^b	0,01906ª	1,08 ^e	0,29 ^b	0,011 ^d	0,01 ^b
2,4D - 3	2,36 ^b	1,08 ^b	0,01078 ^b	0,02472 ^a	3,87 ^{cde}	0,87 ^b	0,04 ^{cd}	0,03 ^{ab}
2,4D - 4	4,4 ^b	1 ^b	0,02372 ^{ab}	0,06042ª	2,73 ^{de}	1,24 ^b	0,05 ^{cd}	0,03 ^{ab}
EC - 1	9,31 ^{ab}	9,12ª	0,08212 ^{ab}	0,04732ª	7,33 ^{bcd}	13,18ª	0,40 ^{bc}	0,04 ^{ab}
EC - 2	8,97 ^{ab}	11,98ª	0,07072 ^{ab}	0,05036ª	7,66 ^{bc}	7,8ª	0,47 ^b	0,06 ^{ab}
EC - 3	11,02 ^{ab}	13,06ª	0,09266 ^{ab}	0,05514ª	10,04 ^{ab}	10,79°	0,53 ^b	0,07 ^{ab}
EC - 4	16,54ª	12,68ª	0,22204 ^a	0,07338ª	13,7ª	10,82ª	0,94ª	0,09ª
H ₂ O	26,80	17,46	0,42	0,31	15,12	14,55	0,95	0,17
H ₂ O + Tween	22,36	14,58	0,38	0,21	13,78	16,05	0,68	0,16

CPA: Comprimento de parte aérea; CR: comprimento da raiz MSPA: massa seca da parte aérea. MSR: massa seca da raiz.

Pelo teste de Tukey é confirmado que há diferenças estatisticamente significativas entre os tratamentos, sendo que tratamentos que não diferem do controle negativo (2,4-D) indicam potencial fitotóxico e são identificados pela mesma letra. De forma geral, o sorgo mostrouse mais tolerante aos tratamentos do que o pepino, indicando uma possível seletividade de toxicidade. Sendo a EC-1 (maior concentração de éster) e EC – 2 com os melhores resultados.

Conclusões

As metodologias adotadas demonstraram-se eficazes na síntese dos compostos propostos, embora ainda exijam otimização devido aos baixos rendimentos obtidos. Os resultados preliminares do ensaio pré-emergente com o éster derivado do ácido carvacroxiacético revelam potencial fitotóxico promissor, reforçando a continuidade da investigação. Assim, este estudo contribui para o desenvolvimento de um herbicida inovador, com perfil ambientalmente mais sustentável, além de promover o aproveitamento de resíduos industriais como fonte alternativa para moléculas bioativas.

Agradecimentos

Referências

- (1) F. Sopena; C. Maqueda; E. Morillo, *Cienci. Inv. Agr*, **2009**, 36(1), 27-42.
- (2) F.F. Barcelos in Anais da Academia Brasileira de Ciências, [S.L.], 2023, Vol. 95, 1-15.
- (3) P. F. Pinheiro *et al.*, *Journal of Agricultural and Food Chemistry*, **2017**, 66(1), 323-330.
- (4) S. Ao; S. L. Rokhum, Journal of Chemistry, 2022, 1-18.
- (5) R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.