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Abstract

We study how aggregate liquidity conditions driven by quantitative monetary
policy affect banks’ funding choices and their fragility. Our global game approach
allows us to analyze banks’ trade-off between reducing the chance of inefficient
runs and the cost of stable funding (time deposits), targeted at agents with lower
liquidity needs. Abundant reserves and low rates may induce banks to increase
their liquidity promises. In contrast, a flat yield curve encourages stable funding.
The net stability effect depends on both yield curve policy and aggregate reserves.
The model rationalizes evidence that the rapid reserve expansion in 2020-21 led
banks to increase their liquidity mismatch.
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1 Introduction

For more than a decade, large-scale quantitative easing (QE) and tightening (QT)

have shaped financial market conditions. Following the extensive response to the 2008

financial crisis, central banks again acted on a massive scale in 2020 to address the

global COVID-19 pandemic. The sharp increase in reserves pushed the yield curve

toward its lower bound, and boosted liquidity across financial markets.

As inflation rose in late 2021 and more markedly in 2022, central banks shifted to a

tightening phase, rapidly raising interest rates (Du et al., 2024). Higher rates improved

bank profits but caused capital losses, leaving many banks vulnerable to runs (Jiang

et al. 2023). Capital losses on security holdings contributed to significant bank runs

in March 2023 and large defaults. Acharya and Rajan (2024) suggest that the rapid

rise in reserves incentivized banks to issue more runnable claims (Figure 1), raising

concerns that a quantitative cycle may create “liquidity dependence,” increasing run

risk when monetary policy tightens.

To shed light on these concerns, we examine banks’ choices regarding liquidity mis-

match in response to exogenous aggregate liquidity conditions shaped by quantitative

monetary policy (QMP).2 Our partial equilibrium framework allows us to study a con-

text where aggregate liquidity conditions are exogenous to the banking sector. Such

conditions arise when QMP is a response to large real shocks (such as the COVID-19

pandemic in 2020-2022), rather than from QE policy enacted in response to financial

distress, as in 2009.

In a regime of reserve scarcity, interest rates are determined in equilibrium by

reserve policy. In contrast, under QMP, the central bank is able to operate on the

yield curve separately by large open market operations and by paying interest on

2We focus on banks’ funding composition, while Acharya and Rajan (2024) model the scaling-up
effects of QE within a simplified macroeconomic framework.
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reserves. Accordingly, we treat both reserves and yields as exogenous and independent

variables. Adopting a simple global-games framework allows us to derive unique run

equilibria, and the underlying run frequency, in closed form. As in Goldstein and

Pauzner (2005), some runs arise from poor fundamentals, while others result from

strategic complementarities among depositors. We analyze when more stable funding

(e.g., time deposits) can be optimal. Although the stable funding equilibrium is socially

optimal, banks face a trade-off when choosing their liquidity mismatch –defined as asset

liquidity minus runnable claims such as demandable debt– balancing lower funding

costs against the risk of more frequent inefficient runs.

A bank’s choice of liquidity mismatch depends on factors such as the volume of

liquid reserves, market liquidity, and the slope of the yield curve. Taking QMP as

given, we examine its impact on bank liquidity mismatch and run risk.3 Banks choose

their liquidity mismatch, fully aware of its impact on run frequency. We show that

banks’ decisions regarding stable funding involve a trade-off between its higher fund-

ing cost and the lower default probability. Stable funding can be secured by offering

time deposits to agents with low liquidity needs. Its cost is influenced by term premia

and market liquidity, both of which are shaped by the prevailing phase of Quantitative

Easing (QE) or Quantitative Tightening (QT) policies. The benefits of stable funding

include reduced strategic complementarities, fewer inefficient runs, and a more effec-

tive allocation of scarce liquidity during runs to those who need it most. Banks are

more likely to prefer stable funding when their assets are illiquid, as runs under such

circumstances are both costlier and more frequent. This preference becomes especially

pronounced when reserves and market liquidity are low.

Both a run-prone and a stable funding equilibrium are possible during QE and QT

phases. The incentives for stable funding in each phase depend on the balance between

3Through targeted asset purchases and yield curve guidance, central banks can influence reserves
and term premia with some degree of independence.
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term premia and market liquidity. The QE phase of the reserve cycle in 2020-2022

resulted in a yield curve flattened to its lower bound and elevated market liquidity.

Figure 1 illustrates how U.S. banks responded to the vast expansion of reserves by

increasing runnable liquidity promises. It is not surprising that as banks absorb more

reserves, they may extend additional liquidity promises to the economy. However, when

the aggregate liquidity effect begins to outweigh its pricing effect, banks may further

amplify their liquidity mismatch.

While most bank defaults result from poor fundamentals, some may arise from self-

fulfilling runs on illiquid banks (Diamond and Dybvig, 1983). Such “inessential runs”

are most likely when a bank’s liquidity mismatch is elevated.4 As Kashyap et al. (2024)

note, “most banking models ... neglect how bank fragility endogenously affects the

structure of bank balance sheets and vice versa.” They identify key trade-offs in capital

and liquidity norms within a general framework that features unique run equilibria.

We contribute to this literature by examining endogenous bank exposure to runs

in response to aggregate liquidity conditions. Earlier work on cyclical run risk has

primarily focused on changing fundamentals over the business cycle (e.g., Jacklin and

Bhattacharya (1988); Chari and Jagannathan (1988); Allen and Gale (1998)). In

contrast, our approach emphasizes endogenous bank run risk under aggregate liquidity

conditions, which are typically influenced by central bank reserve cycles and the phases

of QE and QT.

1.1 The central bank reserve cycle

Since only banks can hold reserves, the rapid expansion of asset purchases during

the COVID-19 pandemic led to a significant shift in bank sector liquidity. Purchases

4Allen and Gale (2003) show that large runs can sometimes be optimal for reallocating consumption
across time.
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rapidly reduced interest rates and term premia, resulting in a flat yield curve. Large

purchases also enhanced trading conditions, considerably improving asset liquidity.

In a QT phase, these trends are reversed, with reduced market liquidity and higher

interest rates.5 However, the impact of the current QT phase appears far more muted

than that of an outright QE reversal, primarily because the reduction in purchases

has been more gradual and distributed over time. While interest rates could be raised

rapidly by increasing the reward on reserves, the cross-country evidence by Du et al.

(2024) suggests that the impact of QT on market liquidity so far has been very modest.

Ultimately, liquidity risk incentives are influenced by the balance between rising term

premia and changes in asset market liquidity. As term deposit rates rise, banks are less

inclined to adopt stable funding. However, lower reserves decrease market liquidity,

making runs more costly and frequent, thereby increasing the value of stable funding.

Thus, the stability implications of central bank policy depend on both price (term

premia) and quantity (reserves boosting market liquidity) dimensions. Time deposits

reduce withdrawal incentives and direct liquidity toward those who value it most. On

both counts, the stable funding equilibrium is socially optimal. Banks are more likely

to choose stable funding when their assets are illiquid, as, for any given funding struc-

ture, runs become costlier and more probable. Moreover, banks are more likely to opt

for stable funding when preference heterogeneity is substantial, allowing stable funding

to be raised at a lower cost due to easier discrimination across depositor types.

An expansionary QE policy, characterized by a flat yield curve and high market

liquidity, places banks in a stability trade-off. While low-term premia encourage a

stable funding equilibrium, abundant market liquidity increases the liquidation value

of bank assets. This reduces the likelihood of runs and incentivizes banks to scale

up their liquidity promises. In contrast, the QT phase, marked by rising rates and

5Recent episodes of illiquidity also reflect the significantly larger public debt market (Copeland et
al. 2022).
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declining reserves, reverses these dynamics. The net effect on bank stability depends on

the interplay between market liquidity and yield curve effects. In a context of “excess

reserves,” banks may increase their liquidity risk, as concerns about runs diminish.

However, a shift to a QT phase brings higher term premia, making stable funding more

costly. When market liquidity remains elevated, banks may prefer greater liquidity

mismatch. A threshold effect can arise when reserves exceed the amount needed to

flatten the yield curve, amplifying banks’ liquidity risk-taking behavior. Introducing

primary and secondary demands for liquidity allows for modeling the pricing of time

deposits under competition with non-bank entities.6

The outline of the paper is as follows. Section 2 introduces the main model, where

banks design optimal funding claims facing a heterogeneous liquidity demand. Section

3 solves for the run probability under any funding structure. Section 4 describes the

possible funding equilibria. Section 5 derives the private bank choice, which may differ

from the socially optimal stable funding. Section 6 examines the comparative statics on

funding stability as aggregate liquidity conditions change, such as across the different

phases of the reserve cycle. Section 7 offers some conclusions.

6During the QT phase, banks’ reluctance to adjust deposit rates led to significant time deposit
outflows to non-banks. Money market fund (MMF) assets rose from $4 trillion in March 2020 to $6.5
trillion over four years (OFR, 2024), adding to competitive pressure from online banks offering higher
rates (Erel et al., 2023).
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2 Model Setup

Environment. We consider an economy that lasts for three periods, t ∈ {0, 1, 2},

and it is populated by a unit mass of liquidity seekers (LS) with a unit endowment,

and a bank (B) funded by risk-neutral shareholders. LS can invest in claims issued by

the bank (derived below). Alternatively, LS can invest in an asset that returns y in

period t = 2 (outside option). We assume that there is no safe storage from period

t = 0 to period t = 1.

Liquidity Seekers. The utility function of LS is given by:

ULS = u(c1, χ) + c2,

where

u(c1, χ) =

 c1 if c1 ≥ 1

c1 − χτ if c1 < 1,

where ct is the consumption at t ∈ {1, 2} and χ ∈ {0, 1} indicates whether the in-

vestor is hit by a liquidity shock at t = 1. When hit by a shock, investors face an

urgent consumption need of one unit. The parameter τ represents the cost incurred

by investors when they are hit by a shock and unable to consume one unit. We allow

for heterogeneity in liquidity needs, that is, τ ∈ {τL, τH} (where τL < τH) which is

investors’ private information at t = 0. We denote by HLS liquidity seekers with high

(τ = τH) needs, and by LLS liquidity seekers with low (τ = τL) needs.

It is common knowledge that Pr (τ = τH) = mH and Pr (τ = τL) = mL = 1 −

mH . The probability of a liquidity shock at t = 1 is common knowledge and equals

Pr (χ = 1) = α. The type of LS and the liquidity shock are independently distributed

and there is no aggregate uncertainty. Finally, we assume that the bank cannot observe

the liquidity preferences of its clients.
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Bank assets. The bank can invest in assets comprising a liquid and an illiquid

component. In particular, a fraction k is liquid and provides a gross return of 1 at

all dates. A fraction 1 − k is illiquid and yields a gross return of yt (θ) if liquidated

at t ∈ {1, 2}. The state θ ∼ U [0, 1] at t = 1 reflects asset fundamentals, specifically

the chance of a high return. If allowed to mature, the illiquid asset component yields

y2 = r > 1 with probability θ and y2 = 0 with probability 1− θ. If liquidated early, it

generates y1 = ℓ ∈ (1, r) when θ > θ and y1 = ℓ ∈ (0, 1) when θ ≤ θ.

Bank funding. The bank chooses its funding composition (stable versus runnable) in

period t = 0 to maximize its profit subject to incentive compatibility and participation

constraints of investors. A claim j is characterized by (pj, sj): pj is the probability of

being paid one unit at t = 1 conditional on demanding withdrawal. The value of pj

depends on the priority of claim j; that is, if claim j has payment priority over claim

z, either pj = 1 and pz < 1 or pj < 1 and pz = 0, whereas in the absence of priority

pj = pz; sj > 0 is the share of remaining assets if the holder waits until t = 2 when

pj > 0.

The global game approach, which allows us to derive a unique equilibrium and

explore its properties, requires that bank claims satisfy the lower and upper dominance

region constraints. In our model, the lower dominance region constraint is satisfied if

pj > 0. As becomes clear below, the upper dominance region constraint is satisfied if

sj >
ℓ

r(1−k)(ℓ−1)
.

Interim information. The state θ is unknown at t = 0. At t = 1 each holder i

of claim j receives a private noisy signal on the state, xi = θ + σηi, where σ > 0 is

arbitrarily small, ηi are i.i.d. with continuous density fji(·) with support on
[
−1

2
, 1
2

]
,

and ji is the claim held by agent i. This means that signals on asset fundamentals may

differ depending on the claim type.
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3 Probability of a Bank Run

This section derives the run probability under different funding and liquidity condi-

tions. The next section characterizes the funding structure that maximizes expected

bank profits. We focus on the case where the bank aims to attract both types of

liquidity seekers, and focus on its chosen funding structure.

The bank finds it optimal to issue up to two types of deposits, j ∈ {1, 2}.7 Let

mj be the mass of claim j, with
∑2

j=1mj = 1. When the bank issues deposits with

different priorities (m1 > 0, m2 > 0, and p1 = 1 > p2 > 0), we refer to deposits j = 1

as demandable deposits, while j = 2 represents time deposits with a lower payment

priority. We show later that in this equilibrium demandable deposits are safe while

time deposits are risky with a higher expected return. If the bank chooses to issue only

claims with the same priority (m1 = 0, m2 > 0, and p2 ∈ (0, 1)), we refer to them as

risky-liquidity demandable deposit. Table 1 summarizes the feasible claims and their

equilibrium properties.

Claim Liquidity at t = 1 Return at t = 2
(Risky-liquidity) DD likely low & risky
(Safe-liquidity) DD certain very low & risky
Time deposits unlikely high & risky

Table 1: Funding claims and their induced run frequency

If all depositors seek to withdraw at t = 1, the bank is liquidated when θ ≤ θ, that

is,
∑2

j=1mjpj = m ≡ k + (1− k)ℓ.

Under our assumptions, LS hit by a liquidity shock will unconditionally seek to with-

draw at t = 1. Let fj be the fraction of investors not hit by liquidity shocks that choose

to withdraw their claim j. The fraction of deposits withdrawn is f ≡ m1p1f1+m2p2f2
m

∈
7We can show that secured debt is never optimal in this setting.
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[0, 1]. Thus, the overall measure of withdrawals is w(f) ≡ αm + (1 − α)mf =

m[α + (1− α)f ].

The net rollover payoff at t = 1 of LS holding deposits j ∈ {1, 2} when they are

not hit by a liquidity shock is

Πj (f, θ) =


sj [(1− k)θr + k − w(f)]− pj, if w(f) ≤ k

sj

{
θr

[
(1− k)− w(f)−k

y1(θ)

]}
− pj, if k < w(f) ≤ m

. (1)

Πj is increasing in θ (state monotonicity), decreasing in f (action monotonicity),

and negative for all f if θ is in the lower dominance region. As we explained above,

we are interested in claims that satisfy the upper dominance region restriction, since

a depositor strictly prefers to roll over when the state is good enough; and strictly

prefers to withdraw when the state is sufficiently low. However, depositors who receive

an intermediate signal are subject to strategic complementarities. Their decision to

withdraw depends on both their beliefs about the state θ (fundamental uncertainty)

and the fraction of other depositors who withdraw (strategic uncertainty).

As shown by Steiner and Sakovics (2012) in a global-games approach with hetero-

geneous payoffs, there is a unique equilibrium in which holder i of claim j rolls over if

the signal xi is not lower than the threshold x∗
j and withdraws if otherwise. Moreover,

as signals become nearly precise (i.e., σ → 0), the cutoffs x∗
j of all claims converge to a

state threshold θ∗ such that
∫ 1

0
Πj(f, θ

∗)dAj(f) = 0 for all j, where Aj(f) is the prob-

ability that a holder of claim j with the threshold signal x∗
j assigns that the fraction

of withdrawals is less than f . Furthermore, the average of strategic beliefs is uniform

on [0, 1], that is,
∑2

j=1
mjpj
m

Aj(f) = f . This allows us to obtain a closed-form solution

for θ∗. Let us define v(f, θ) as that value of remaining assets at t = 2. It follows that
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θ∗ is the unique solution to

2∑
j=1

mjpj
m

pj
sj

=
2∑

j=1

mjpj
m

∫ 1

0

v(f, θ∗)dAj(f) =

∫ 1

0

v(f, θ∗)
2∑

j=1

mjpj
m

dAj(f) =

∫ 1

0

v(f, θ∗)df.

(2)

We formalize this in the following proposition.

Proposition 1. In the limit as σ → 0, there is a unique equilibrium where depositors

with no liquidity needs withdraw at t = 1 if θ < θ∗, else wait till t = 2 where

θ∗ =
1

r

∑2
j=1

mjpj
m

pj
sj
− (k−mα)2

2(1−α)m

(1− k)
[
1
2
+ k−mα

2(1−α)m

] . (3)

Corollary 1. The run cutoff has the following implications:

1. The impact of a higher mass of deposits j on θ∗ is increasing in its withdrawal

priority, ∂θ∗

∂mj∂pj
> 0, and decreasing in its share of remaining assets, ∂θ∗

∂mj∂sj
< 0.

2. The influence of the term sj on θ∗ is increasing in its mass, ∂θ∗

∂(p2j/sj)∂mj
> 0.

According to Corollary 1, deposits with larger mass (mj) are more influential in

bank runs. In addition, deposits with higher withdrawal priority (captured by a higher

value of pj) and lower share of remaining assets (captured by a lower value of sj)

contribute to more frequent runs. Intuitively, the bank can reduce the risk of a bank

run by increasing the share of lower priority funding (i.e., time deposits), at the cost

of lower profits in the absence of a run (as time deposits promise a higher expected

return in the absence of a run).
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4 Run-prone vs stable funding equilibrium

4.1 Pooling Equilibrium

We start by characterizing in Proposition 2 the optimal funding structure when the

bank does not seek to separate low and high liquidity needs (recall that τ is investors’

private information). In this case, the bank issues a single claim targeting both HLS

and LLS (i.e., pooling equilibrium). The optimality of pooling is explored in Section 5.

Proposition 2 builds on two observations. First, note that demandability allows

investors to withdraw in period t = 1 and consume with probability p. Therefore, the

bank finds it optimal to offer demandable deposits up to an amount p∗ that does not

exceed the liquidation proceeds in period t = 1, which equals k + (1 − k)ℓ. Second,

note that all else equal, HLS have a stronger incentive to invest in demandable de-

posits because they value consumption in period t = 1 more (as τH > τL), while they

value consumption in period t = 2 as much as LLS. Hence, it is more costly for the

bank to attract LLS; thus, their participation constraint binds in equilibrium, while

the participation constraint of HLS is slack, implying that the latter extract a positive

surplus in equilibrium. As a result, the optimal value s∗ is determined by their bind-

ing participation constraint of LLS, conditional that this satisfies the upper dominate

region constraint, i.e., s∗ > ℓ
r(1−k)(ℓ−1)

.

Proposition 2. In a pooling equilibrium, the bank offers only demandable deposits,

held by both types of liquidity seekers. In equilibrium p∗ = k + (1 − k)ℓ, and s∗ is the

minimum value of s solving the participation constraint of low liquidity seekers (A.7).

The implied run probability is given by equation (3), for p1 = p2 = p∗ and s1 = s2 = s∗.

Proof. See Appendix.
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4.2 Separating Equilibrium

We now characterize the optimal funding structure in a separating equilibrium, that is,

when the bank screens the two types of LS by offering a menu of claims; the optimality

of screening LS is explored in Section 5.

As becomes clear below, the bank offers safe-liquidity demandable deposits (p∗1 = 1)

targeting HLS, which dominate in terms of period t = 1 consumption, and risky time

deposits (p∗2 < 1) targeting LLS, which dominate in terms of period t = 2 consumption.

In what follows, we explain the main steps of the proof and the underlying intuition.

The bank offers a menu of two claims ⟨p1, s1⟩ and ⟨p2, s2⟩ to screen the two types of

LS. As τ is investors’ private information, the optimal funding structure should satisfy

their period t = 0 participation and incentive compatibility constraints:

ULS(p1, s1|τH) ≥ ŪτH

ULS(p2, s2|τL) ≥ ŪτL

ULS(p1, s1|τH) ≥ U(p2, s2|τH)

ULS(p2, s2|τL) ≥ U(p1, s1|τL)

where LS’ outside option of not accepting any claim offered by the bank is given by:

Ūτ ≡ −ατ + y. (4)

As in the pooling equilibrium, the banks’ optimal funding is such that the promised

liquidity (i.e., mHp1 +mLp2) takes its maximum feasible value. Note that HLS have

an incentive to mimic LLS since time deposits earn (in expectation) more. Thus, to

achieve separation at the lowest cost, the bank chooses to offer claims for which the

difference between p1 and p2 is maximized. By combining these two insights, we derive
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optimal values of p∗1 and p∗2, that is, p
∗
1 = 1 and p∗2 solves mH +mLp2 = k + (1− k)ℓ.

Furthermore, as LLS suffers less from failing to satisfy her liquidity needs, under

the optimal capital structure, their period t = 0 participation constraint binds, and

together with the binding incentive compatibility constraint of HLS, determine the

optimal values s∗1 and s∗2, conditional that these values satisfy the upper dominate

region constraint, i.e., s∗1 >
ℓ

r(1−k)(ℓ−1)
(as s∗2 > s∗1). Proposition 3 summarizes.

Proposition 3. In a separating equilibrium, the bank offers safe-liquidity demandable

deposits and time deposits, which are held by investors with high and low liquidity needs

respectively. In equilibrium, p∗1 = 1, p∗2 =
(k+(1−k)ℓ)−mH

mL
, and s∗1 and s∗2 are the minimum

values of s1 and s2 solving the incentive compatibility constraint of high liquidity seekers

(A.8) and the participation constraint of low liquidity seekers (A.9) and it holds that

s∗1 < s∗2. The run probability is given by (3), for p1 = p∗1, p2 = p∗2, s1 = s∗1, s2 = s∗2.

Proof. See Appendix.

5 Bank’s choice of liquidity mismatch

Before we study the bank’s choice between a pooling and a separating funding equi-

librium, we explore the implications of each equilibrium for the run incentives. The

latter helps us highlight the underlying trade-off in the bank’s funding choice.

Proposition 4 shows that a separating equilibrium with time deposits leads to a

lower run probability, limiting deadweight losses of inefficient runs. The underlying

intuition is that LLS, who hold time deposits, have a weaker incentive to run, because

they have a lower priority in period t = 1, and they are promised a larger share of the

realized return of remaining assets in period t = 2. Interestingly, HLS also exhibit a

lower incentive to run, for two reasons related to strategic complementarities. First,

HLS have higher priority compared to LLS, which reduces the likelihood that the bank’s
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liquidation proceeds will be insufficient to repay them if they choose to run. Second,

as noted earlier, LLS have a weaker incentive to run.

Proposition 4. When the bank offers both safe-liquidity demandable deposits and time

deposits (as in Proposition 3), the probability of an inefficient run is lower than in the

pooling funding equilibrium, where the bank offers only risky demandable deposits (as

in Proposition 2).

Proof. See Appendix.

Following Proposition 4, we can interpret the pooling equilibrium as the “run-

prone” funding structure, while the separating equilibrium as the “stable” funding

structure.

Next, we shed light on when the separating equilibrium is more or less likely to

arise under the optimal funding structure. Lemma 1 summarizes.

Lemma 1. Under the optimal funding structure, a separating (stable funding) equilib-

rium is more likely to arise when the liquidation proceeds in period t = 1 are limited,

and the heterogeneity in liquidity needs is substantial.

First, recall that the banks’ funding choice involves a trade-off between its higher

funding cost and the lower default probability. Note that if the liquidation proceeds

in period t = 1, m = k + (1 − k)ℓ, are limited, the default probability if the bank

offers only risky demandable deposits (i.e., pooling equilibrium), all else equal, will be

large, and the bank has to promise a significant share of the realized value at t = 2

to satisfy LS’ participation constraint. In that case, the bank finds optimal sway from

risky demandable deposits to a mix of safe-liquidity demandable deposits and time

deposits associated with a smaller default probability.

Next, an essential determinant of whether a pooling or separating equilibrium is

more likely to arise under the optimal funding structure is the heterogeneity among LS,
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which is captured by the difference τH − τL. Recall that in a separating equilibrium,

the binding incentive compatibility constraint is ICτH , i.e., HLS should be indifferent

between safe-liquidity demandable deposits, which they are expected to hold in equi-

librium, and time deposits, which target LLS. Note that if τH − τL is relatively small,

i.e., low heterogeneity, HLS has a strong incentive to mimic LLS, and the bank, to

eliminate these mimicking incentives should offer to HLS a higher share s2 of the real-

ized value at t = 2. The latter increases the overall cost of implementing a separating

equilibrium, which can result in the bank opting for a pooling equilibrium, which can

have a higher default probability but allows the bank to maintain a higher share of the

realized value in period t = 2.

5.1 Planner’s preferred funding structure

In our setting, social welfare is defined as the sum of the expected utility of depositors

and the bank’s profit, given that the bank’s equity is held by risk-neutral investors.

Proposition 5 shows that a separating (stable funding) equilibrium is socially more

efficient than the pooling equilibrium. There are two reasons. First, a separating

equilibrium offers a more efficient allocation of proceeds in period t = 1, as more

liquidity is provided to investors who value it more (since HLS hold safer demandable

deposits and LLS hold time deposits). Second, as Proposition 4 shows, a separating

equilibrium corresponds to a lower run probability, fewer inessential runs and more

efficient continuation of long term project.

Proposition 5. The welfare-maximizing bank funding structure consists of demandable

deposits held by high liquidity need investors, and enough time deposits (held by low

liquidity need investors) to ensure safety of demandable deposits.

Proof. See Appendix.
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6 The impact of central bank policy

Building on the insights from Lemma 1, this section analyzes how the central bank’s

quantitative policy affects the funding structure of banks. Central bank reserves di-

rectly influence banks’ reserves k and indirectly affect asset liquidation values ℓ (market

liquidity), increasing the liquidity of bank balance sheets. Quantitative policy also tar-

gets interest rates and the slope of the yield curve. Accordingly, we treat these variables

as exogenous variables for the bank funding choice, reflecting external conditions driven

by the central bank’s Quantitative Easing (QE) or Quantitative Tightening (QT) policy

stance.

Consider, first, the effect of high market liquidity under QE. In that case, the bank’s

liquidation proceeds at t = 1 (equal to k+(1−k)ℓ) are high, reducing the chance of a run

under a pooling funding equilibrium. Thus the bank is less inclined to bear the higher

cost of stable funding and is tempted to adopt a more runnable funding structure.

Consider next the effect of the term premium y on bank incentives. Quantita-

tive policy influence the term structure of interest rates through large-scale security

purchases, thereby affecting the slope of the term structure.8 A lower term premium

encourages a stable funding choice. The reason is that a high term premium increases

the cost of implementing a separating (stable funding) equilibrium more than the cost

of implementing a pooling (run-prone) equilibrium.

A QE phase may be associated with stable funding due to its flattening effect on

the yield curve. Conversely, during a QT phase, when rates and term premia rise, the

bank may respond to rising stable funding costs and shift to run-prone demandable

debt funding. Thus, a QT policy may increase equilibrium liquidity mismatch by both

reducing reserves k and increasing the scale of runnable claims. Indeed, when interest

rates rise, banks often do not fully adjust term deposit rates (Drechsel et al. 2024).

8In contrast, ordinary monetary policy primarily impacts the short-term policy rate.
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QMP Stand Reserves k Yield y Bank funding
Large scale QE Excess reserves y = 0 Pooling (DD)
Moderate QE High reserves low y Stable Funding (SF)
Moderate QT Falling reserves medium y Pooling (DD)
Tight QT Low reserves high y Stable Funding (SF)

Table 2: QE/QT stand and choice of funding equilibrium.

As a result, some investors with low liquidity need to switch to marginally less liquid

non-bank claims. Proposition 6 summarizes this effect.

Proposition 6. A higher term premium y favors a shift toward more liquidity mis-

match under demandable debt funding.

In a QT phase, a potentially stabilizing effect comes from reduced market liquidity.

A lower liquidation value increases the cost and likelihood of runs, favoring more stable

funding. Of course, this effect is weakened by expectations on a liquidity bailout in

case of distress.

In the end, the net stability effect of QE and QT depends on the relative impact of

a lower k (and thus l) versus a higher term premium y. Thus, the impact of aggregate

liquidity involves both a price effect (term premium) and a quantity effect (reserves

and market liquidity). When reserves are very abundant, banks choose to increase

their liquidity promises, raising the chance of runs.

For illustration purposes, Table 2 summarizes how quantitative monetary policy

may affect the bank’s incentive to opt for stable instead of run-prone funding. It

distinguishes between a QE policy with just enough reserves to flatten the yield curve

(denoted by k < k̂) and a more expansionary QE stance with “excess” reserves (denoted

by k > k̂). Similarly, it distinguishes between a moderate QT phase, where reserves

are not scarce and the slope of the yield curve is moderate, and a very tight QT phase

that leads to much higher rates and reduced market liquidity.
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7 Conclusion

We study the bank’s choice of liquidity mismatch in a context of heterogeneous liquidity

demand, in a context where both fundamental and inefficient runs may occur. The

private bank choice of liquidity mismatch depends on financial conditions, which are

affected by exogenous central bank quantitative monetary policy (QMP) choices on

reserves and the yield curve. Our analysis applies to reserve policy choices due to

nonfinancial causes, such as in response to 2020 COVID epidemic, rather than after

the 2008 financial crisis. The net effect of QMP on bank stability depends on a balance

of price and quantity factors. In particular, while a flatter yield curve encourages stable

funding, “excess” reserves –well beyond the scale required to achieve the target rate–

may be destabilizing, both in a QE and a QT phase.

Our framework allows us to study the trade-off between funding cost and benefits of

stable funding, in a context where aggregate liquidity conditions are exogenous to the

banking sector. Such conditions arise when QMP is implemented in response to large

real shocks, such as the COVID-19 pandemic in 2020–2022, rather than as a result of

QE policies enacted in response to financial distress, as seen in 2009.

In a regime of reserve scarcity, interest rates are determined in equilibrium by re-

serve policy. In contrast, under QMP, the central bank can influence the yield curve

independently through large open market operations and the payment of interest on

reserves. The net effect of QMP on bank liquidity mismatch depends on both a price

(term premium) and a quantity (aggregate liquidity) effect. A flat yield curve encour-

ages more stable funding, reducing liquidity mismatch by adding time deposits. Banks

may shift to run-prone funding when reserves become very abundant, boosting their

asset liquidity. In a sense, when more reserves (outside money) are injected, banks

adjust by increasing their liquidity promises to the economy (e.g., uninsured deposits
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or credit lines). The key questions are: how easy is it to reverse this process during

tightening? How does the financial system respond to less liquidity and higher rates?

We show that stable funding incentives may switch discreetly at some trigger point. A

shift to higher liquidity mismatch is more likely under “excess” reserves, tempered by

lower rates and term premia.

More work is needed to understand liquidity risk incentives across aggregate cir-

cumstances. Our approach takes credit risk as given to focus on endogenous liquidity

risk. A full treatment should include the role of bank capital in promoting risk control,

as discussed in Kashyap et al. (2024).

This work aims to contribute to the debate at a time of heightened awareness of run

risk, even in viable banks. Recent work has highlighted how self-reinforcing outflows

can be contained by settlement rules such as gating and swing pricing (Schilling 2023;

Matta and Perotti 2024; Matta, Perotti, and Oostdam 2024). Containing outflows is

essential to grant authorities a chance to pursue credible recovery steps in a timely

manner (Martino et al. 2024; Martinova et al. 2022).
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Figure 1: The reserve cycle (source Acharya and Rajan (2024)).
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Appendix

A.1 Proof of Proposition 1

Proof. Steiner and Sakovics (2012) provide this result in their proof for Proposition

1 within a more general class of global games with heterogeneous payoffs that satisfy

the following conditions: (a) Πj (f, θ) is nondecreasing in θ and nonincreasing in f ; (b)

there exist θ and θ with σ
2
< min

{
1− θ, θ

}
such that Πj (f, θ) < 0 for all f ∈ [0, 1]

and θ < θ and Πj (f, θ) > 0 for all f ∈ [0, 1] and θ ≥ θ; (c) Πj (f, θ) is bounded; (d)

Πj (f, θ) is Lipschitz continuous in θ ∈ [0, θ) ∪ [θ, 1]; (e) there exists a function v(f, θ)

and positive functions sj(θ) and pj(θ) such that Πj (f, θ) = sj(θ)v(f, θ)−pj(θ) for all j.

Our model clearly satisfies all these conditions. The proof is derived from the following

four results provided by Steiner and Sakovics (2012) — including the Online Appendix

— using our notation.

Lemma 6 (Unique Equilibrium). There is a unique Bayes-Nash equilibrium in which

the holder of depositsj not hit by a liquidity shock rolls over if xi > x∗
j and withdraws

if x < x∗
j .

Lemma 7 (Convergence of Equilibrium as σ → 0). As σ → 0, the cutoffs x∗
j converge

to θ∗, which is the unique solution to
∫ 1

0
Πj(f, θ

∗)dAj(f) = 0 for all j, where Aj(f) is the

probability that a holder of claim j assigns that the fraction of withdrawals is less than f .

Lemma 8 (The Belief Constraint). The weighted average strategic beliefs is the uni-

form belief on [0, 1]:
∑2

j=1
mjpj
m

Aj(f) = f .

Proposition 3 (Unique Solution). As σ → 0, the threshold θ∗ is the unique solution

to
∑2

j=1
mjpj
m

pj
sj

=
∫ 1

0
v(f, θ∗)df .

This concludes the proof.
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A.2 Proof of Proposition 2

Proof. First, note that the outside option of LS of type τ = {τH , τL} is given by

Ūτ ≡ −ατ + y. (A.1)

Given the run cutoff θ∗, the expected utility of LS of type τ = {τH , τL} with claim

⟨p, s⟩ is

ULS(p, s|τ) ≡
∫ 1

θ∗
{α[p− (1− p)τ ] + (1− α)s [(1− k)θr + k −mα]} dθ (A.2)

+

∫ θ∗

0

[p− α(1− p)τ ]dθ.

Finally, the expected profit of the bank is

UB ≡
∫ 1

θ∗

{[
1− (1− α)

2∑
j=1

mjsj

]
[(1− k)θr + k −mα]

}
dθ. (A.3)

In a pooling equilibrium, the participation constraint of both types should be sat-

isfied, i.e., for τ = {τH , τL}, it should hold

ULS(p, s|τ) ≥ Ūτ . (A.4)

With the optimal claim, LS fail to satisfy their liquidity needs with probability (1−p),

whereas if they follow their outside option, the related probability is 1. The latter

implies that for a given claim ⟨p, s⟩, HLS has more to gain (compared to LLS) from

accepting this claim compared to her outside option, that is,

ULS(p, s|τH)− ŪτH > ULS(p, s|τL)− ŪτL . (A.5)
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The previous relationship implies that, under the optimal funding structure, the par-

ticipation constraint of HLS, PCτH , cannot be binding (that is, the left-hand-side of

relationship (A.5) is equal to zero), because then the participation constraint of LLS,

PCτL , would be violated (that is, the right-hand-side of relationship (A.5) is negative).

Hence, PCτH is slack under the optimal funding structure. Finally, under the optimal

funding structure ⟨p, s⟩, PCτL should be binding, i.e.,

ULS(p, s|τL) = ŪτL . (A.6)

Furthermore, among the combination p and s for which PCτL binds, the bank will

always find it optimal to offer the one that corresponds to the highest credible p, as,

in contrast to equity holders, LS derive additional utility from consumption at t = 1

if they are hit by a shock. Hence, focusing on pooling equilibria, the optimal value of

p is p∗ = k + (1 − k)ℓ. Note that p∗ cannot be larger than the maximum liquidation

proceeds at t = 1, k+(1− k)ℓ, as this would not be consistent in equilibrium. Finally,

given that p∗ = k + (1− k)ℓ, the optimal value of s, s∗, is the minimum value of s for

which PCτL binds. Thus, s∗ is the minimum value of s solving:

(1− θ∗)((1− α)s(k − αm) + α(p∗ − (1− p∗)τL)) +
1

2
(1− α)(1− k)rs

(
1− θ∗2

)
+ θ∗(p∗ − α(1− p∗)τL) =

− ατL + y, (A.7)

where θ∗ is given in equation (3).
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A.3 Proof of Proposition 3

Proof. In what follows, we derive the optimal values p∗1, p
∗
2, s

∗
1, and s∗2. To this end,

we need to determine which incentive and participation constraints will be binding

under the optimal funding structure. We start by explaining why ICτH and PCτL

bind, whereas ICτL and PCτH are slack. First, note that in a separating equilibrium,

it is always optimal that p1 > p2, as HLS derives a higher utility from consuming in

period t = 1 when a liquidity shock hits her. Second, note that for p1 = 1, if PCτH

binds, then LLS never have an incentive to mimic HLS because mimicking implies an

expected utility that is smaller than their outside option ŪτL as

ULS(p1, s1|τL) = ULS(p1, s1|τH) = ŪτH ,

and ŪτL > ŪτH . Note that the incentive of HLS to mimic LLS is minimized when p2

is the lowest feasible and p1 is the highest feasible, conditional that mHp1 + mLp2 =

k+(1− k)ℓ, which implies that p∗1 = 1 and p∗2 =
(k+(1−k)ℓ)−mH

mL
< 1. Also, s∗1 and s∗2 are

the minimum s1 and s2 solving the binding ICτH and PCτL constraints, given by

(1− θ∗)((1− α)s1(k − αm) + α(p∗1 − (1− p∗1)τH))

+
1

2
(1− α)(1− k)rs1

(
1− θ∗2

)
+ θ∗(p∗1 − α(1− p∗1)τH) =

(1− θ∗)((1− α)s2(k − αm) + α(p∗2 − (1− p∗2)τH))

+
1

2
(1− α)(1− k)rs2

(
1− θ∗2

)
+ θ∗(p∗2 − α(1− p∗2)τH) (A.8)
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(1− θ∗)((1− α)s2(k − αm) + α(p∗2 − (1− p∗2)τL))

+
1

2
(1− α)(1− k)rs2

(
1− θ∗2

)
+ θ∗(p∗2 − α(1− p∗2)τL) =

− ατL + y (A.9)

where θ∗ is given in equation (3). Finally, as HLS should be indifferent between the

two claims, and given that p∗1 > p∗2, then s∗1 < s∗2.

A.4 Proof of Proposition 4

Proof. To see why a separating equilibrium corresponds to a lower run probability than

a pooling equilibrium, consider the following example. Suppose that the bank wishes to

switch from a pooling equilibrium, where the optimal claim is ⟨p∗, s∗⟩ (characterized in

Proposition 2) to a separating equilibrium where the two claims offered are ⟨p1 = p∗, s∗⟩,

targeting HLS, and ⟨p2 = p∗ − ϵ, sL⟩, targeting LLS, where ϵ is arbitrarily small. Note

that to continue to attract LLS, the bank should compensate LLS for the lower expected

consumption at t = 1 by offering a larger share of the remaining assets if there is no

default, i.e., sL > s∗. Following Proposition 1, the probabilities of default for the

aforementioned pooling and separating equilibrium are given by

θ∗pool =
1

r

p∗2

s∗
− (k−mα)2

2(1−α)m

(1− k)
[
1
2
+ k−mα

2(1−α)m

] . (A.10)

θ∗sepa =
1

r

mH

m
p∗2

s∗
+ (1−mH)

m
p∗−ϵ∗

sL
− (k−mα)2

2(1−α)m

(1− k)
[
1
2
+ k−mα

2(1−α)m

] . (A.11)

Comparing (A.10) with (A.11), we obtain that for sL > s∗ and ϵ > 0, θ∗sepa < θ∗pool,

which is consistent with the discussion following Proposition 1 that highlights that

deposits with lower withdrawal priority (captured by lower p) and higher share (cap-
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tured by higher s) of realized return of the remaining assets at t = 2 contribute to less

frequent runs.

A.5 Proof of Proposition 5

Proof. Given that the separating equilibrium, by definition, leads to a more efficient al-

location of (the same) liquidity proceeds, and, thus, higher overall utility, it is sufficient

to focus on the second channel. In what follows, we show that welfare is decreasing

in the run probability, which, combined with Proposition 4, proves that a mix of safe-

liquidity demandable deposits and time deposits is welfare-maximizing. Note that by

adding up the utility of investors and the bank’s profit, we obtain that welfare is given

by

W =

∫ 1

θ∗
{(1−k)θr+k−αm+Σ2

j=1mjα[pj + (1− pj)τj]︸ ︷︷ ︸
≡A1

}dθ+
∫ θ∗

0

Σ2
j=1mj[pj + α(1− pj)τj]︸ ︷︷ ︸

≡A2

dθ

(A.12)

where m1 = mH and m2 = mL = 1−mH . Note that A1 and A2 are simplified to:

A1 = α(m− Σ2
j=1mjτj + Σ2

j=1mjpjτj), (A.13)

A2 = m− αΣ2
j=1mjτj + αΣ2

j=1mjpjτj. (A.14)

By adding and subtracting (1 − k)ℓ in the first term of eq. (A.12), we can re-write it

as follows:

W =

∫ 1

θ∗
{(1− k)(θr − ℓ) + k − αm+ (1− k)ℓ+ A1}dθ +

∫ θ∗

0

A2dθ. (A.15)
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Also, given that w = k + (1− k)ℓ, we re-write the previous equation as:

W =

∫ 1

θ∗
{(1− k)(θr − ℓ) +m(1− α) + A1︸ ︷︷ ︸

A3

}dθ +
∫ θ∗

0

A2dθ, (A.16)

which can be simplified further to

W =

∫ 1

θ∗
{(1− k)(θr − ℓ)dθ︸ ︷︷ ︸

A4

+

∫ 1

θ∗
A3dθ +

∫ θ∗

0

A2dθ, (A.17)

which is equivalent to

W = A4 + A3(1− θ∗) + θ∗A2 (A.18)

that simplifies further to

W = A4 + A3 + (A2 − A3)θ
∗. (A.19)

Note that

A2−A3 = w−αΣ2
j=1mjτj+αΣ2

j=1mjpjτj−αw+αΣ2
j=1mjτj−αΣ2

j=1mjpjτj−w+αw = 0,

(A.20)

which implies that

W = A4 + A3, (A.21)

where A4 is decreasing in θ∗, whereas A3 is independent of θ∗; thus, welfare W is

decreasing in θ∗, which completes the proof.
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A.6 Proof of Proposition 6

Proof. Effectively, a higher term premium (captured by a higher y) increases the outside

option of investors. Recall that the outside option U τ of LS is given by (A.1). The

higher term premium implies that the outside option of LLS and HLS is given by U τL

and U τH , where U τL > U τH , as τH > τL.

In what follows, we explain that both pooling and separating equilibrium are af-

fected by a higher term premium, but the separating equilibrium is affected more,

which can lead banks to favor the pooling equilibrium, which is more fragile than the

separating equilibrium.

We first consider the case in which the bank issues demandable debt targeting

both types of LS (pooling equilibrium). As shown in the proof of Proposition 2, in a

pooling equilibrium, PCτL is binding, and PCτH is slack. Hence, a higher term premium

implies that the bank has to increase the share s to continue attracting investors, which

decreases bank profitability. Furthermore, suppose that U τL is sufficiently large. In

that case, the bank will find it suboptimal to attract LLS, which decreases the amount

of liquidity proceeds in period t = 1, and increases the run incentives, and, therefore,

the run probability.

We now consider the case in which the bank issues safe-liquidity demandable de-

posits and time deposits (separating equilibrium). As shown in the proof of Proposition

3, in a separating equilibrium, PCτL is binding, and PCτH is slack. If the bank wishes

to continue attracting LLS, it has to increase s2. However, the latter will strengthen

the incentive of HLS to mimic LLS – to prevent that, the bank will have to increase

s1. The previous discussion highlights that a higher term premium significantly in-

creases the cost of implementing a separating equilibrium, which can result in the

bank switching to a pooling equilibrium by issuing risky demandable deposits only,

which are associated with higher run probability.
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