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Abstract

This paper investigates how shifts in risk parameters influence
asset prices, focusing on binary changes in investor beliefs akin to
the Peso Problem. We develop a theoretical framework for stochastic
discount factors (SDF) under binary regime changes and use the
Fama/French European Three Factors dataset (daily data from July
1990 to January 2025) to identify distinct risk regimes empirically.
Applying a Gaussian mixture model (GMM), we find that abrupt
changes, such as financial crises, lead to significant shifts in risk
pricing, indicating that systematic risk is not uniformly priced over
time.
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1 Introduction

Because asset prices result from forward-looking behaviour, they
reflect investors’ expectations about future economic conditions and the
likelihood of events influencing them. Most economic models assume a
single probability distribution for future states of the world. The seminal
Arrow-Debreu model, for instance, assigns a unique probability to each
distinct payoff, which is assumed to be known and agreed upon by all agents.
This framework implies that market participants form expectations based
on a single set of possible outcomes and their respective probabilities, which
are incorporated into asset prices via the stochastic discount factor.

The Peso Problem, introduced by Rogoff (1977) and Rogoff (1980),
describes situations in which anticipated shifts in the probability distribution
of economic fundamentals affect asset prices (see, for instance, Evans, 1996).
Some authors, such as Barro and Liao (2021), interpret it as the influence
of rare disasters or extreme events with disproportionate payoffs.1 Venturi
et al. (2023), for instance, adopts the former view and refers to cases in
which agents assign distinct binary probabilities to each potential outcome
in every state of nature as “binary uncertainty”. This paper adopts the
latter interpretation.

Shifts in the probability distribution of fundamentals should be
reflected in asset prices. Investors adjust excess demand based on their
perception of these probabilities, effectively embedding them into market
values (see, for instance, Almeida and Freire, 2022). Certain binary events
can substantially reshape these distributions and significantly influence
market dynamics. Examples include tight elections (especially second
rounds or in bipartisan systems), central bank decisions on when to begin a
new cycle of interest rate hikes or cuts — such as those involving the Federal
Reserve or the European Central Bank — political or economic referendums,
and crucial legislative votes. This study examines how systematic risk
exposure evolves during such episodes of market uncertainty.

The related literature has explored the idea that risk perceptions
may shift across distinct regimes. Several studies, including Burnside et al.
(2011), Ferreira et al. (2022) and Venturi et al. (2023) examine asset price
variations driven by changes in stochastic discount factors under shifting
“Peso” probability regimes. This paper contributes to that literature by
addressing a different question: how do anticipated shifts — particularly
binary ones — affect systematic risk exposure? More specifically, given
that portfolio betas aggregate linearly under standard asset pricing models,

1Explicitly or implicitly referring to the Peso Problem, many studies — including
Backus et al. (2011), Gao et al. (2019), and Cortes et al. (2022) — examine the effects of
rare disasters on asset prices.
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it investigates how changes in market expectations alter the pricing of
systematic risk — that is, how they affect risk premia and expected returns

— and, consequently, the dynamics of asset prices.
Understanding how changes in probability distributions affect sys-

tematic risk is essential for the financial sector. It allows practitioners
to anticipate fluctuations in excess returns and manage the uncertainty
surrounding asset price volatility. Shifts in risk perceptions can also be both
a response to anticipated events and a driver of financial cycles. Hence,
understanding these effects enables policymakers to make more informed
decisions, essential to economic and financial stability.

This paper examines how changes in risk parameters influence asset
pricing, particularly when binary shifts in investor beliefs occur, similar to
the Peso Problem. To address this question, we develop a theoretical model
based on the Arrow-Debreu framework, capturing the dynamics of stochastic
discount factors under regime shifts. For empirical implementation, we use
the Fama/French European Three Factors dataset, covering daily data from
July 1990 to January 2025. We apply a Gaussian mixture model (GMM) to
identify distinct risk regimes for the HML and SMB factors, revealing that
abrupt and often unanticipated changes, such as financial crises, can lead
to significant shifts in risk pricing. These results suggest that systematic
risk exposure evolves dynamically, particularly during periods of heightened
economic uncertainty.

The rest of the paper is structured as follows: Section 2 develops
a theoretical framework within a general equilibrium model incorporating
foreign exchange markets to illustrate how changes in risk parameter dis-
tributions affect asset prices and excess returns. Section 3 outlines the
empirical methodology. We start with estimating the systematic risk pa-
rameters and then specifying a mixture model to capture the dynamics
of risk sub-distributions. Section 4 presents the results. Finally, Section
5 provides concluding remarks, summarising the study’s key findings and
their broader implications.

2 The Model

This section introduces a model that builds on the Consumption
Capital Asset Pricing Model (CCAPM) framework to examine the interac-
tion between risky assets and exchange rates internationally. Our approach
is motivated by the objective of developing a more general version of the
CCAPM that incorporates equity returns and exchange rate dynamics,
capturing the broader structure of international risk premia. This extension
is consistent with the concept of uncovered equity parity (UEP) as proposed
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by Hau and Rey (2006). Unlike the uncovered interest parity (UIP), which
focuses solely on bond returns, the UEP generalises the relationship by
including equity returns and exchange rate movements. Therefore, it is
essential to adequately model risky assets in both the H and F economies
alongside the exchange rate to capture the dynamics of cross-border risk
premia.

To this end, we present a simple Arrow–Debreu model that demon-
strates how stochastic discount factors are influenced by the probability of
anticipated binary events, as in the Peso Problem. These changes affect
asset prices, including equities, exchange rates, bond yields, and associated
excess returns and risks.

We begin by outlining the basic structure of the market in a world
economy with two representative agents: a domestic agent, H, and a foreign
agent, F . For empirical implementation later, the H agent is assumed to be
a US resident, while the F agent resides in the Euro area. Both agents live
for two periods, t and t + 1. The world output in period t, denoted by yW

t ,
consists of two perishable, exogenously given, country-specific homogeneous
goods, and is defined as:

yW
t = yt + Qt y∗

t ,

where yt and y∗
t are the domestic and foreign real endowments, respectively,

and Qt is the real exchange rate (i.e., the price of the foreign good in
domestic units). We assume that yt, y∗

t ∈ R++.
In period t, each agent receives its respective endowment. Un-

certainty arises solely from the realization of future states. In period
t + 1, if state j ∈ {1, 2, . . . , J} occurs, the domestic and foreign agents ob-
tain state-contingent endowments2 yt+1(j) and y∗

t+1(j), respectively, where
yt+1(j), y∗

t+1(j) ∈ R++, and the corresponding world output in state j is
given by

yW
t+1(j) = yt+1(j) + Qt+1 y∗

t+1(j).

In what follows, we focus on the H agent, as the model is symmetric,
and the same applies to the F agent.

2We focus on real uncertainty arising from endowment shocks, abstracting from
investment and production decisions. While one could imagine a setting in which
technological shocks affect the production process — viewing technology as part of
the productive capacity that determines endowments — we deliberately leave out such
mechanisms and any monetary considerations. This allows us to isolate the impact of
the Peso Problem on the stochastic discount factor and maintain a simple, purely real
model. Naturally, a more comprehensive framework could incorporate both real and
monetary shocks.
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Preferences. The period utility function u : R2
++ → R, is strictly increas-

ing and strictly concave in both arguments. Here, ct and c∗
t denote domestic

and foreign consumption in period t, respectively, and ct+1(j) and c∗
t+1(j)

represent consumption in period t+1, contingent on state j. Lifetime utility
is assumed to be additively separable over time and is given by

U = u
(

ct, c∗
t

)
+ β

J∑
j=1

π(j) u
(

ct+1(j), c∗
t+1(j)

)
,

where β ∈ (0, 1) is the discount factor, and {π(j)}J
j=1 represents the proba-

bility distribution over future states, satisfying

π(j) ≥ 0, ∀j ∈ {1, . . . , J}, and
J∑

j=1
π(j) = 1.

Budget Constraints. The domestic agent chooses current consumption,
represented by the bundle (ct, c∗

t ) (with ct measured in domestic units and
c∗

t in foreign units), and finances state-contingent future consumption by
purchasing Arrow–Debreu (AD) securities. Let Qt denote the real exchange
rate (the price of the foreign good in domestic units), so that the current
consumption bundle expressed in domestic units is ct + Qt c∗

t .
Let pt(j) denote the price at time t (in domestic consumption units)

of an AD security that pays one unit of domestic currency in state j. Denote
by b(j) the net quantity of AD securities purchased for state j. The domestic
agent’s saving decision must then satisfy

J∑
j=1

pt(j) b(j) ≤ yt −
(

ct + Qt c∗
t

)
. (1)

In each state j at time t+1, the agent’s resources (in domestic units)
consist of the state-contingent endowment yt+1(j) plus any returns from the
AD securities, b(j). These resources are allocated between the consumption
of domestic and foreign goods. When consumption of foreign goods is
converted into domestic units using the state-contingent real exchange rate
Qt+1(j), the resource constraint in state j is

ct+1(j) + Qt+1(j) c∗
t+1(j) ≤ yt+1(j) + b(j), ∀ j ∈ {1, . . . , J}. (2)

Under the usual assumption of strictly increasing utility, the inequal-
ities (1) and (2) bind at the optimum. Consequently, substituting these
conditions into the intertemporal framework yields, in equilibrium, the
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consolidated budget constraint expressed in domestic consumption units:

ct + Qt c∗
t +

J∑
j=1

pt(j)
[
ct+1(j) + Qt+1(j) c∗

t+1(j)
]

= yt +
J∑

j=1
pt(j) yt+1(j).

(3)

Optimization Problem and First-Order Conditions. The domestic
agent maximizes expected lifetime utility by choosing her current consump-
tion bundle (ct, c∗

t ) and state-contingent future consumption {(ct+1(j), c∗
t+1(j))}J

j=1,
subject to the consolidated intertemporal budget constraint, (3). Necessary
first-order conditions (FOCs) imply

u2(ct, c∗
t )

u1(ct, c∗
t )

= Qt, (4)

so that the marginal rate of substitution between foreign and domestic
consumption equals the real exchange rate. In addition, FOCs yields, for
each state j,

pt(j) = β π(j) u1(ct+1(j), c∗
t+1(j))

u1(ct, c∗
t )

, (5)

and
pt(j) Qt+1(j) = β π(j) Qt u2(ct+1(j), c∗

t+1(j))
u2(ct, c∗

t )
, ∀ j. (6)

Together, equations (5) and (6) characterise the intertemporal allocation for
the domestic agent. By symmetry, the foreign agent’s optimality conditions
take analogous forms. Denote her current consumption bundle by (cF

t , cF ∗
t )

and her state-contingent future consumption by {(cF
t+1(j), cF ∗

t+1(j))}J
j=1. Her

intratemporal condition is

u2(cF
t , cF ∗

t )
u1(cF

t , cF ∗
t ) = 1

Qt

,

and her intertemporal Euler equations are, for each j,

p∗
t (j) = β π(j) u1(cF

t+1(j), cF ∗
t+1(j))

u1(cF
t , cF ∗

t ) ,

p∗
t (j) Q−1

t+1(j) = β π(j) Q−1
t u2(cF

t+1(j), cF ∗
t+1(j))

u2(cF
t , cF ∗

t ) , ∀ j.

These conditions for the foreign agent mirror those of the domestic agent
given in (4)–(6).

The law of one price ensures the absence of arbitrage, imposing the
condition pt(j) = Qt p∗

t (j) for any state j.
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Market clearing requires that total consumption equals total output
in each period. In period t, this condition is ct + c∗

t + cF
t + cF ∗

t = yt + y∗
t .

In each state j at t + 1, market clearing implies

ct+1(j) + c∗
t+1(j) + cF

t+1(j) + cF ∗
t+1(j) = yt+1(j) + y∗

t+1(j).

The foreign agent satisfies a similar budget constraint,

cF
t + Q−1

t cF ∗
t +

J∑
j=1

p∗
t (j)

[
cF

t+1(j) + Q−1
t+1(j)cF ∗

t+1(j)
]

= y∗
t +

J∑
j=1

p∗
t (j)y∗

t+1(j).

Together, these conditions determine the equilibrium allocation of
consumption, the pricing of contingent claims, and the real exchange rate
dynamics.

Assets and Bonds Pricing. Asset pricing stems from each agent’s
stochastic discount factor (SDF) in this setting. For the domestic agent, the
first-order conditions imply that the real price of an Arrow–Debreu security
paying one unit of domestic consumption in state j is

p(j) = βπ(j)
u′

(
ct+1(j)

)
u′(ct)

.

Define the domestic state-specific SDF as

Mt+1(j) ≡ β
u′

(
ct+1(j)

)
u′(ct)

,

so that

p(j) = π(j) Mt+1(j). (7)

Definition 1 (Risky Asset). Asset i delivers a payoff xi(j) in each future
state j ∈ {1, . . . , J}. It is classified as risky if its payoff varies across states;
that is, there exist at least two states j1 ̸= j2 such that xi(j1) ̸= xi(j2).

Total Asset Price. Let pi denote the current total price of acquiring all
future payoffs {xi(j)}J

j=1. Since Arrow–Debreu securities are priced at p(j)
per unit of payoff in state j, the cost of obtaining these payoffs is

pi =
J∑

j=1
p(j) xi(j). (8)
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We define the gross return on this asset in state j as

R̃i
t+1(j) ≡ xi(j)

pi

.

Substituting xi(j) = pi R̃i
t+1(j) into (8) and applying the expectation

operator to this relation yields the standard asset pricing equation:

Et

[
Mt+1 R̃i

t+1

]
= 1. (9)

Domestic Risk-Free Bond. Consider a domestic risk-free bond that
pays exactly 1 unit of domestic consumption at time t + 1, regardless of
the state. Let P B

t denote its price at time t. By construction, this constant
payoff can be replicated via a portfolio of Arrow–Debreu securities. Hence,
no-arbitrage implies:

P B
t =

J∑
j=1

p(j),

where p(j) is the Arrow–Debreu price of one unit of domestic consumption
in state j. From (7), we know:

P B
t =

J∑
j=1

π(j) Mt+1(j). (10)

If the bond pays one unit in every state, its gross return is Rt+1 ≡
1

P B
t

. Combining this definition with (10) yields

Et

[
Mt+1 Rt+1

]
= 1. (11)

Since Rt+1 is risk-free, we have Et

[
Mt+1

]
= 1

Rt+1
= 1

1+rt+1
, where

rt+1 is the net risk free return in the H economy.

Excess Return and the SDF. Let ri
t+1 denote the net return of asset i

in the H economy. From the perspective of the F agent, the gross return
on this asset, when converted into F goods, is given by:

R̃i
t+1(j) = (1 + ri

t+1(j)) Qt

Qt+1(j) .

Or, equivalently,
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R̃i
t+1(j) = (1 + ri

t+1(j))
(1 + ∆qt+1(j)) , (12)

where ∆qt+1(j) ≡ ∆Qt+1(j)
Qt

. The excess return on the risky i asset in H,
relative to the F risk-free bond, is then

R̃e,i
t+1(j) ≡ R̃i

t+1(j) − R∗
t+1, (13)

which can also be written as:

R̃e,i
t+1(j) = (1 + ri

t+1(j))
(1 + ∆qt+1(j)) −

(
1 + r∗

t+1

)
,

or, approximately, R̃e,i
t+1(j) ≈ ri

t+1(j) − r∗
t+1 − ∆qt+1(j). From the general

pricing condition (9) and (10), it follows that3:

Et

[
Mt+1 R̃e,i

t+1

]
= 0, (14)

which implies:

Et

[
R̃e,i

t+1

]
= −

Covt

(
Mt+1, R̃e,i

t+1

)
Et

[
Mt+1

] . (15)

Since the stochastic discount factor Mt+1 reflects agents’ intertem-
poral marginal rates of substitution, a negative covariance between R̃e,i

t+1
and Mt+1 raises the expected return required to hold the H asset. Thus, all
risky assets with state-dependent payoffs are priced relative to the risk-free
benchmark (11) via the stochastic discount factor.

Binary Probability Structure. We assume that the probability of state
j follows a mixture model,

πt(j) = (1 − Pt)ϕN(j) + PtϕP (j),

where ϕN(j) represents the probability mass function under the normal
regime, ϕP (j) represents the probability mass function under the “Peso”
regime, and Pt ∈ [0, 1] denotes the probability weight assigned to the “Peso”

3The state index j vanishes because we aggregate over all states when computing the
expectation, resulting in a pricing relation that applies to the entire excess return rather
than individual states.
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regime in the mixture distribution. Characterized by a different probability
distribution, the “Peso” regime affects expectations accordingly. Under this
probability structure, the expectation of the stochastic discount factor is
given by

Et[Mt+1] = (1 − Pt)EN
t [Mt+1] + PtEP

t [Mt+1],

where

EN
t [Mt+1] =

J∑
j=1

ϕN(j)Mt+1(j), EP
t [Mt+1] =

J∑
j=1

ϕP (j)Mt+1(j).

Risk Decomposition. Using (15), we can write

Covt

(
Mt+1, R̃e,i

t+1

)
= −

{
(1 − Pt)EN

t [Mt+1] + PtEP
t [Mt+1]

}
Et[R̃e,i

t+1].

Dividing both sides by V ar(Mt+1) yields

βi,t = −

{
(1 − Pt)EN

t [Mt+1] + PtEP
t [Mt+1]

}
Et[R̃e,i

t+1]
V ar(Mt+1)

.

where βi,t = −
Covt

(
Mt+1, R̃e,i

t+1

)
V ar(Mt+1) is the risk parameter.

3 Empirical Implementation

To capture the idea that agents may assign different probabilities
to alternative regimes, we assume that the unobserved risk parameter βi,t

follows a mixture of two normal distributions. This specification reflects
the possibility that market participants anticipate a binary shift in risk
conditions — for instance, due to expected policy decisions or institutional
events. Formally, its distribution is given by:

f(βi,t; θ) = (1 − Pt) ϕ
(
βi,t; µN , σ2

N

)
+ Pt ϕ

(
βi,t; µP , σ2

P

)
,

where ϕ(·, ; µ, σ2) denotes the normal density function with mean µ and
variance σ2. The time-varying parameter Pt captures the probability of
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being in the Peso regime and serves as an empirical analogue to the
shift in beliefs discussed in the theoretical model. The parameter vec-
tor θ = (µN , σ2

N , µP , σ2
P , Pt) is estimated by maximum likelihood, via the

Expectation-Maximization (EM) algorithm, using observed estimates β̂i,t

as inputs.
This approach assigns to each observation a probability of being

drawn from either regime. When Pt is low, the data are more consistent with
the normal regime. As Pt increases, the likelihood of a shift in expectations
rises. This represents a tractable empirical method to detect and interpret
regime-dependent deviations from the excess return pricing condition in
equation (14).

The Linear Factor Model. We first estimate a time series of risk
parameters to apply the mixture model. For this purpose, we use the
“Fama/French European Three Factors” dataset, which includes the excess
return (defined as the return on a European value-weighted market portfolio
minus the United States one-month Treasury bill rate), the HMLt factor
(the return spread between portfolios of high and low book-to-market stocks),
and the SMBt factor (the return spread between portfolios of small and
large stocks).

We adopt the Fama/French European three-factor model as our
baseline specification because it captures the main sources of systematic risk
in equity markets: market, size, and value effects. The model is widely used
in empirical asset pricing, offering a parsimonious framework that allows
for estimating time-varying risk parameters in international markets. Its
simplicity and interpretability make it especially well-suited for identifying
shifts in systematic risk regimes.

Within this framework, we specify the following linear model for
U.S. real excess returns, R̃e,i

t , from the perspective of a domestic investor
holding European stocks:

R̃e,i
t = αt + βhml,t · HMLt + βsmb,t · SMBt + ϵt, (16)

where αt is the intercept, βhml,t and βsmb,t are the time-varying risk param-
eters associated with the value and size factors, respectively, and ϵt, is an
idiosyncratic error term with variance σ2

n.

The Mixture Model Specification. We thus model the risk parameters
βhml,t and βsmb,t as draws from a two-component Gaussian mixture. At
each point in time, an observation is assumed to originate from one of two
normal distributions: the “Peso regime” with probability Pt, or the “normal
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regime” with probability 1 − Pt. After estimating the sub-distributions, it is
essential to determine which component corresponds to the Peso regime and
to identify the time periods in which the transition between regimes occurs.
Because the parameters of the sub-distributions are unknown ex ante, they
are estimated from the data using the following general specification for
each risk parameter:

f(βi; θ) = Pt·N (βi; µ1, σ2
1)+(1−Pt)·N (βi; µ2, σ2

2), i = {hml; smb}, (17)

where f(βi; θ) represents the density of βi with parameter θ, βi denotes
the variable to be modelled by the mixture model and N (βi; µ, σ2) is the
normal distribution with mean µ and variance σ2. As previously mentioned,
we apply the mixture model to the parameters risk: βhml,t and βsmb,t.

Expectation-Maximization (EM) algorithm. To estimate the mix-
ture model parameters, θ = (P, µ1, σ2

1, µ2, σ2
2), we maximise the following

likelihood function, using the EM algorithm:

L(θ) =
∞∏

t=1
[Pt · N (βi; µ1, σ2

1) + (1 − Pt) · N (βi; µ2, σ2
2)].

After starting with an initial guess for the parameters, the EM
algorithm alternates between two steps. In the Expectation Step (E-Step),
the expected value of the log-likelihood function is computed, given the
observed data and the current parameter estimates. This step incorporates
the latent variable structure of the model. In the Maximisation Step (M-
Step), the parameter estimates are updated by maximising the expected
log-likelihood obtained in the E-Step. These steps are repeated iteratively
until convergence, which is typically determined when changes in parameter
estimates fall below a predefined threshold or when the likelihood function
stabilises.

The next section reports the empirical results. We begin by de-
scribing the dataset used to estimate the time series of risk parameters
βhml,t and βsmb,t, based on rolling regressions. We then present the results
from applying the Gaussian mixture model to these series, along with the
corresponding descriptive statistics and interpretation.
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4 Results

This section provides an overview of the data and presents the
main empirical findings. We start by describing the construction of the
dataset, including sources and sample characteristics. We then estimate
the time-varying risk parameters using rolling regressions and analyse their
dynamics. Finally, we report the results of the mixture model applied to
these parameters, highlighting the temporal evolution of regime shifts in
systematic risk.

The Fama-French Dataset. As mentioned earlier, the data on nominal
Treasury bill rates, excess returns, and the HML and SMB factors are
drawn from the “Fama/French European Three Factors” dataset. These vari-
ables were constructed using European stock return data from Bloomberg.
All returns are denominated in U.S. dollars and include both dividends and
capital gains. Daily excess returns are computed as the return on a Euro-
pean value-weighted market portfolio minus the one-month U.S. Treasury
bill rate.

The European diversified portfolios were constructed using stock
data from 16 developed European markets: Austria, Belgium, Denmark,
Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Norway,
Portugal, Spain, Sweden, Switzerland, and the United Kingdom. Stocks
were sorted based on size (market capitalisation) and the ratio of book
equity to market equity.

The construction of the HML and SMB factors involved sorting
European stocks into two market capitalisation groups: large stocks (the
top 90% of June market capitalisation) and small stocks (the bottom 10%).
Three book-to-market (B/M) equity groups were then established at the
end of each June using breakpoints at the 30th and 70th percentiles of B/M
for the large stocks.

The sample period extends from July 1990 to January 2025. De-
scriptive statistics for the key variables are presented in Table 1.

As can be visually inferred from Figure 1, the excess return and factor
series display stationary behaviour, fluctuating around near-zero means
throughout the sample. However, episodes of heightened volatility are visible
and tend to coincide with major global events. All three series—excess
returns, HML, and SMB—exhibit marked spikes during economic or financial
distress periods, such as the early 2000s recession, the 2008 global financial
crisis, and the COVID-19 pandemic. These periods are highlighted in the
graphs by the shadows representing NBER-dated recessions. Furthermore,
in contrast to the results of Fama and French (2012), value premiums are
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Table 1: Descriptive Statistics of Returns and Factors Series.

Statistic Mean St. Dev. Min Max
Excess Return: R̃e,i

t 0.02 1.13 −12.00 10.72
SMB −0.005 0.57 −5.18 3.30
HML 0.01 0.47 −4.14 4.38
Treasury Bill Rate: RF

t 0.01 0.01 0.00 0.03

Notes: The table presents descriptive statistics (Mean, St. Dev., Minimum, and
Maximum) for the data from the “Fama/French European 3 Factors” dataset—Excess
Returns (European value-weighted market portfolio minus the U.S. one-month Trea-
sury Bill rate), SMB, HML, and the Treasury Bill rate—used to estimate the risk
parameters βhml,t and βsmb,t via the rolling regression specified in equation (16). The
data are daily, denominated in U.S. dollars, and cover the period from July 1990 to
January 2025.

larger for big stocks than for small stocks.
These volatility spikes may reflect changing market perceptions

of systematic risk. Although many of these events—such as the 2008
financial crisis or the COVID-19 pandemic—were largely unanticipated,
they demonstrate how abrupt shifts in market conditions can reshape the
pricing of systematic factors, creating a form of uncertainty that resembles
the Peso Problem or binary regime changes. This will be later investigated.
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Figure 1: Daily Series: Excess Returns, HML, and SMB Factors
.

Notes: The figure displays, from top to bottom, the daily series of Excess Returns, HML,
and SMB factors from the “Fama/French European 3 Factors” dataset. The excess return
corresponds to the return on a European value-weighted market portfolio minus the U.S.
one-month Treasury bill rate. The HML factor reflects the return spread between portfolios
of high and low book-to-market European stocks. The SMB factor captures the return
difference between small and large-cap European portfolios. All returns are expressed in U.S.
dollars. The graphs present the period from January 1999 to January 2025. Shading denotes
NBER-dated recessions.
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Risk Estimation. To estimate the series of risk parameters (βhml,t and
βsmb,t), we employed OLS regressions using a rolling window of 504 observa-
tions (equivalent to approximately two years of trading days). On average,
a unit change in HML explains a change of 0.20 in excess return, whereas a
unit change in SMB explains a -1.04 variation in excess return (Table 2).

Table 2: Descriptive Statistics of the Risk Parameters
.

Statistic Mean St. Dev. Min Max
βhml,t 0.20 0.49 −0.83 1.15
βsmb,t −1.04 0.34 −1.81 −0.34

Notes: The Table presents descriptive statistics (Mean, St. Dev., Maximum and
Minimum) for the risk parameters estimated, βhml,t and βsmb,t, by OLS Rolling
Regression specified in equation (16). The rolling regression was employed with a
rolling window of 504 observations (equivalent to approximately two years of trading
days). The data of these parameters are daily and the sample period extends from
July 1992 to January 2025.

Similarly, Fama and French (2012) report a positive βhml; however,
in contrast to our findings, they do not observe a negative βsmb. This
divergence may stem from their focus on global average returns, where
SMB spreads favour small-cap stocks, based on the global three-factor
model and data from November 1989 to March 2011. VERDELHAN (2018)
employs a carry trade HML factor, constructed from country portfolios
sorted by interest rates, to explain monthly exchange rate fluctuations,
finding predominantly positive βhml values. Schulte et al. (2011) and Lang
and Scholz (2015) examine the European real estate equity market using
Fama–French factors. Schulte et al. (2011) identifies a generally negative
impact of SMB and a positive (in up-markets) or negative (in down-markets)
impact of HML, whereas Lang and Scholz (2015) provides further evidence
of a positive βhml and negative βsmb.

The contrasting dynamics between βhml,t and βsmb,t in Figure 2 reflect
the cross-border risk premia from a US investor’s perspective. Typically,
βhml,t is positive, indicating a systematic risk component associated with
value stocks. In contrast, βsmb,t is consistently negative, suggesting a hedging
role linked to small-cap stocks.

During the 2001 recession, both betas remained relatively stable,
indicating that perceived cross-border risk did not change significantly.
However, before the 2008 financial crisis, βhml,t decreased considerably,
reflecting a reduced risk premium for value stocks, but then rose abruptly
in the middle of the recession, indicating heightened risk. In contrast,
βsmb,t became even more negative throughout the recession, suggesting
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Figure 2: βhml,t and βsmb,t time series.

Notes: The figure shows the series of the risk parameters estimated, βhml and βsmb

by OLS Rolling Regression specified in equation (16). The rolling regression was
employed with a rolling window of 504 observations (equivalent to approximately
two years of trading days). The data of these parameters are daily and the graphs
period extends from January 1999 to January 2025. Shading denotes NBER-dated
recessions.

that small-cap stocks increasingly acted as a hedge. A similar divergence
appears during the COVID-19 pandemic: βhml,t increased sharply, while
βsmb,t became more negative.

This pattern reflects the joint impact of changes in European stock
prices and movements in the USD/EUR exchange rate. During US recessions,
the dollar often appreciates, which can either amplify or offset the decline in
European asset returns from a US investor’s perspective. The consistently
negative βsmb,t indicates that small-cap stocks tend to act as a hedge against
these risks, while the positive βhml,t shows that value stocks carry a more
systematic risk component, which becomes pronounced during periods of
economic uncertainty.

17



Mixture Model Estimation. According to equation (17), the risk pa-
rameters βhml,t and βsmb,t are modelled over time as a weighted mixture of
two distinct sub-distributions from the general population. The parameters
of equation (17) were empirically estimated using the EM algorithm and
their significance was tested.

Furthermore, the observations were divided into quarterly periods,
and the two distributions were estimated for each quarter to analyse the
behaviour of the model parameters over time.

Estimation of quarterly averages: µ̂1 and µ̂2. An analysis of the
mixture model applied to βhml,t reveals the existence of two regimes or
sub-distributions that reflect distinct market risk perceptions. The mean
series of the two regimes exhibit similar dynamics, although a consistent
numerical difference between them is observable. Turning to the mixture
model applied to βsmb,t, a similar two-regime pattern emerges, although the
dynamics tend to oppose those of βhml,t in most quarters. Both for βhml,t

and βsmb,t, the mean series of the two regimes exhibit similar behaviour,
albeit with a modest but consistent numerical difference between them.

Absolute difference (|µ̂1 − µ̂2|). While the mean series for βhml,t and
βsmb,t generally exhibit opposing trends, the absolute differences between
µ1 and µ2 for βhml,t and βsmb,t tend to increase during periods of market
turbulence, reflecting heightened market uncertainty. This absolute differ-
ence begins to rise slightly before the onset of recessions and intensifies
further during these periods, particularly for βhml. This finding reinforces
the notion that market stress leads to greater divergence in risk perceptions,
regardless of whether the factors move in opposite directions. (Figure 3).
The absolute difference between the mean series of the two sub-distributions
for βhml,t increases substantially. For instance, the most pronounced diver-
gence in the mean series for βhml,t occurs at the onset of the COVID-19
pandemic, whereas the largest discrepancy for βsmb,t is observed during
the 2008 financial crisis, highlighting the market’s heightened sensitivity to
risk during these periods. Furthermore, the absolute difference for βhml,t

remains consistently greater throughout the analysis period. It becomes
even more pronounced during times of crisis, suggesting that the HML
factor is associated with greater market uncertainty.
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Figure 3: Absolute Difference series (|µ̂1,t − µ̂2,t|) for βhml,t and βsmb,t

.

Notes: The figure shows the behaviour of the absolute difference between the
estimated parameters µ̂1 and µ̂2 from the mixture model specified in equation (17),
considering two sub-distributions of βhml and βsmb per quarter over the period from
1999:Q1 to 2025:Q1.
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Estimation of quarterly variances: σ̂2
1 and σ̂2

2. Periods of increasing
divergence in the mean series tend to coincide with heightened variance
in βhml,t and βsmb,t in at least one of the regimes. For instance, during
the 2008 financial crisis, the variance of the first regime of βhml,t increased
substantially, whereas, during the COVID-19 pandemic, the variance of the
second regime became more pronounced. In the case of βsmb,t, the variance
of the second sub-distribution rose sharply during the 2008 financial crisis,
while the variance of the first sub-distribution increased significantly during
the COVID-19 pandemic. This pattern suggests that market uncertainty
tends to manifest as heightened volatility in one of the sub-distributions,
depending on the nature of the crisis. Moreover, this contrasting pattern
further supports the hypothesis that distinct market regimes influence risk
perceptions differently over time (Figure 4).
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Figure 4: Series of Estimated Parameters: σ̂2
1,t and σ̂2

2,t for βhml,t and
βsmb,t

.

Notes: The figure illustrates the behaviour of the estimated parameters σ̂1 and σ̂2
from the mixture model specified in equation (17), considering two sub-distributions
of βhml and βsmb per quarter over the period from 1999:Q1 to 2025:Q1.

21



Estimation of the regime weights. Certain periods are characterised by
the predominance of one of the regimes, which causes the overall distribution
to align more closely with the dominant regime during specific years or
quarters. This predominance is captured by the estimated probability
distribution (Figure 5), which reflects the probability associated with the
first regime (Pt). The probability associated with the second regime is given
by (1−Pt). This dynamic implies that the overall risk parameter βi,t reflects
a weighted mixture of two distinct sub-distributions, whose influence varies
over time based on market conditions.

Figure 5: Series of Estimated Parameters: P̂t for βhml,t and βsmb,t

.

Notes: The figure shows the behaviour of the estimated parameter P̂ from the
mixture model specified in equation (17), considering two sub-distributions of βhml

and βsmb per quarter over the period from 1999:Q1 to 2025:Q1.
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5 Concluding Remarks

This paper investigates how shifts in the distribution of risk param-
eters influence asset pricing, focusing on binary changes in investor beliefs
akin to the Peso Problem. While the Peso Problem typically addresses antic-
ipated changes that affect risk pricing, our findings suggest that abrupt and
unanticipated changes—such as financial crises or political disruptions—can
also give rise to perceptions of distinct risk regimes. This dynamic highlights
how unexpected events can create binary shifts in systematic risk exposure,
complementing the conventional understanding of the Peso Problem as
strictly related to expected changes.

To examine this phenomenon, we develop a theoretical framework
based on a simple Arrow–Debreu model that captures the dynamics of
stochastic discount factors under regime shifts. The empirical analysis
leverages the Fama/French European Three Factors dataset, which covers
daily data from July 1990 to January 2025. The dataset includes excess
returns on a European value-weighted market portfolio (in USD) and the
HML and SMB factors constructed from 16 developed European markets.
Using a rolling regression approach with a window of approximately two
years, we estimate time-varying risk parameters, which are then analysed
through Gaussian mixture models to detect shifts in perceived risk regimes.

Our findings indicate that systematic risk is not priced uniformly
over time. Instead, changes in the probability assigned to different regimes
affect the mean and volatility of the estimated betas. The results reveal two
distinct risk regimes for HML and SMB factors, reflecting heterogeneous
market responses to changes in perceived risk. These shifts become more
pronounced before and during economic downturns, suggesting that market
stress amplifies divergences in risk perceptions. The empirical evidence
indicates that abrupt, often unanticipated changes—such as the 2008 finan-
cial crisis and the COVID-19 pandemic—lead to significant shifts in the
structure of risk pricing.

The contrasting behaviour of the HML and SMB betas suggests that
value stocks (HML) tend to carry a systematic risk component, particularly
during crises, while small-cap stocks (SMB) consistently act as a hedge.
This pattern reflects the combined effect of fluctuations in European stock
prices and movements in the USD/EUR exchange rate from a US investor’s
perspective. As the dollar typically appreciates during US recessions, it can
amplify or mitigate the decline in European asset returns, influencing the
risk premia regime.

By linking binary expectation shifts to variations in risk exposure,
this study complements the traditional interpretation of the Peso Problem
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by highlighting that not only anticipated changes but also unexpected,
abrupt events can lead to more pronounced regime perceptions. Future
research could expand this framework by exploring other asset classes and
risk factors.
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