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Abstract: Anthropogenic activities such as industrialization, urbanization, mining, and waste disposal release toxic metals
into marine ecosystems, posing long-term threats to biodiversity and human health. These contaminants can persist,
bioaccumulate in aquatic organisms, and biomagnify along the food web. Biomonitoring, using organisms capable of
indicating and quantifying environmental contaminants, is essential for assessing pollution levels and guiding mitigation
strategies. Polychaetes—benthic marine worms that inhabit and feed within sediments—are effective biomonitors of toxic
metals, as these pollutants are often adsorbed onto sediments and accumulate in their tissues. In this study, polychaetes from
the families Chaetopteridae, and Spionidae/FEunicidae were collected in Todos os Santos Bay (BTS), near Salvador, Bahia,
Brazil, to monitor mercury contamination in the region.
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1. Introduction

The potential effects of anthropogenic
emissions of toxic metals, along with their long-
term consequences for marine ecosystems, have
emerged as a key concern in environmental
biomonitoring studies [1-2]. Activities such as
industrialization, urbanization, municipal waste
disposal, urban and agricultural runoff, mining,
and sewage discharge are important sources of
toxic metal release into marine ecosystems [3].
Biomonitoring studies are essential for assessing
pollution levels and identifying potential risks to
human health arising from daily exposure to
high concentrations of toxic metals [4-5].
Among toxic metals, mercury is considered

extremely harmful even at low concentrations

due to its ability to bioaccumulate in different

organisms [6—7]. Total mercury (THg) occurs in
environmental substrates and can contaminate
other organisms through dietary intake,
accumulating in their tissues and transferring
through  successive  trophic  levels via
biomagnification [8].

Once introduced into marine environments,
mercury can persist for long periods,
bioaccumulating in aquatic organisms [9-10].
These processes threaten biodiversity and pose

significant risks to human populations that rely

on seafood as a dietary staple [11-12].
Understanding the pathways, accumulation
patterns, and ecological effects of these

contaminants is therefore crucial for developing

effective mitigation strategies and guiding

environmental policies [13—14].
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In this context, the use of organisms—
collectively referred to as biota—emerges as an
effective approach for providing detailed
information on the

[12-13].

integrity of aquatic
ecosystems According to Markert
(2007), bioindicators are species capable of
retaining specific contaminants; however, they
lack the capacity to bioaccumulate them at
levels sufficient for quantification by
conventional analytical methods [14]. Thus,
bioindicators can only signal the presence of a
[15]. In

contaminant in the environment

contrast, biomonitors are capable of both
indicating and quantifying contaminants to
which an ecosystem is exposed [16].
Polychaetes are marine worms widely
distributed across diverse habitats, including
sandy beaches near shallow waters, and exhibit
remarkable morphological and
[17]. These benthic

inhabit sediments, where they feed on stored

ecological
diversity invertebrates
organic matter and contribute to nutrient cycling
between sediments and the water column [18].
Contaminants of anthropogenic origin, such as
toxic metals, which are often adsorbed onto
marine sediments, can accumulate in their
tissues [19-21].

A wide range of marine organisms serve as
biomonitors for aquatic pollution, including
amphibians, fish, mollusks, and sea sponges, as
well as microorganisms and crustaceans for

monitoring soil and water parameters [22-25].

In this study, polychaetes were collected in the

Todos os Santos Bay (BTS) region, near the city
of Salvador, Bahia State, Brazil. Specifically,
polychaetes from the families Chaetopteridae,
Spionidae, and FEunicidae were used as
biomonitors of mercury in the BTS region
(Figure 1).

Figure 1. Polychaetes samples familys: a)

Chaetopteridae. b) Spionidae/Eunicidae.
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2.1. Metodology

2.1.1 Site description and collection of

samples

The study was conducted in the BTS
region, located between two zones: the North
Littoral of Bahia (LN) and the Marat
Peninsula (PM) (Figure 2).

Figure 2. Zones of BTS, LN and PM regions.
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Polychaetes were collected from five distinct
beaches within Todos os Santos Bay: Aratu
(ARA), Itaparica (ITA), Madre de Deus (MD),
Paripe (PAR), and Ribeira (RIB).

Table 1. Geographic coordinates of the
sampling sites.

Sites Lat Long
ARA -12.911 -38.497
Samples ITA -12.741 -38.606
MD -12.885 -38.675
PAR -12.814 -38.488
RIB -12.835 -38.476

After verifying the optimal tide conditions
(close to zero), approximately 20 individuals
were collected from surface sediments at a depth

of about 10 cm using aluminum sieves.

2.1.2 Sample preparation

The collected polychaetes were transferred to

pre-cleaned  glass  recipients  containing
approximately 50 mL of seawater from the same
region, placed in a refrigerated thermal box, and
transported to the laboratory, where they were
stored in a freezer at -20 °C [29]. After that, the
samples were freeze dried using an SL-404

lyophilizer (SOLAB, Brazil).

2.1.3 Chemical analysis

Total mercury (THg) determinations in
samples from the investigated biota were
performed using a DMA-80 Tri Cell Direct
Mercury Analyzer (Milestone, Sorisolev (BG),
Italy). This methodology was like that used by

Menezes et al. (2023) [30]. Each biota was
analyzed directly, with approximately 20 to 100
mg of sample placed in nickel sample
boats/crucibles. The boats and other metal
instruments were previously cleaned in an
ultrasonic bath with a 4% Extran solution for 10
minutes, washed with Milli-Q water, dried, and
then subjected to a muffle furnace at 700°C for
10 minutes. For mercury determination, three
calibration curves were generated, with
coefficients of determination (R?) of 0.9994,
0.9991, and 0.9990, respectively. Calibration
was performed using three standard solutions
prepared in different volumes, as instructed by

the equipment manufacturer, using Table 2 as a

reference.

Table 2. Data used to calibrate the Direct Mercury
Analyzer DMA-80 Tri Cell instrument (Milestone,
Sorisolev (BQ), Italy).

Para calibrar

para Hg (ng)
0.5 (low range)

Concentracgao do
padrio de Hg
5 uL of 100 PPB

1.0 (low range) 10 uL of 100 PPB
20 pL of 100 PPB

30 puL of 100 PPB

2.0 (low range)
3.0 (low range)
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5.0 (Medium range)
10 (Medium range)
20 (Medium range)
50 (High range)
100 (High range)
200 (High range)
500 (High range)
700 (High range)
1000 (High range)

50 pL of 100 PPB
100 pL of 100 PPB
20 uL of 1 PPM
50 uL of 1 PPM
100 uL of 1 PPM
200 uL of 1 PPM
50 pL of 10 PPM
70 pL of 10 PPM
100 pL of 10 PPM
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The limits of detection (LOD) and
quantification (LOQ) were calculated based on
the standard deviation of the blank replicates,

using the equations [30]:
LOD =3 x (SD)/a (1)
LOQ =10 x ( D)/, (2)

Where o represents the slope of the
calibration curve. The values obtained were
LOD = 0.004 ng and LOQ = 0.012 ng. The
accuracy of the method was evaluated using
certified reference materials: marine sediment
(MESS-3) and fish protein (DORM-4), both
supplied by the National Research Council
(NRCC), Canada. The certified values were
0.091 + 0.009 mg kg™ and 0.410 = 0.055 mg
kg™, respectively. The results obtained by the
DMA method were 0.086 + 0.003 mg kg for
marine sediment (95% agreement) and 0.414 +
0.003 mg kg! for fish protein (101% recovery).

Intra- and interday precision was
assessed by analyzing the certified reference
materials. Approximately 40 samples were
processed per day, with calibration checks
performed every 10 measurements. Intraday
precision was estimated with four replicates on
the same day, while interday precision was
calculated over four consecutive days, with four
replicates per day, all performed under the same
experimental conditions. The coefficient of
variation (CV) found was 1.1% for marine

sediment and 2.3% for fish protein (intraday)

and 5.6% and 5.3% for sediment and fish

protein, respectively (interday) [31-32].

2. Results and discussion

From the results, polychaetes collected at

the ITA site exhibited the highest Hg

concentration, exceeding 130 ng g', which
indicate a influence of

may stronger

anthropogenic sources such as boating
activity, fishing, or nearby urban discharge
[26]. ARA (Aratu) showed intermediate
concentrations (around 60 ng g'), consistent
with its proximity to industrial and port areas,
which are known potential contributors of
mercury to aquatic ecosystems. PAR (Paripe)
and MD (Madre de Deus) presented lower
values, between 20 and 40 ng g', suggesting
reduced contamination compared to ITA and
ARA. The lowest concentration was recorded
at RIB (Ribeira), near 10 ng g', possibly due
to less direct exposure to Hg sources or more
conditions  for

favorable environmental

mercury dispersion and dilution (Figure 2).

Figure 2. Mean mercury (Hg) concentrations
(ng g™).
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Overall, the radar plot illustrates the spatial
distribution of mercury concentrations in
polychaetes at the five sampled sites, revealing
marked spatial variability, particularly at ITA
(125 ng g'), while the other sites displayed
values below 60 ng g'. Such variability may be
related to differences in local contamination
sources,  hydrodynamics, and  sediment
characteristics influencing the bioavailability
and bioaccumulation of Hg in polychaetes.

In the study conducted by Sola et al. (2022),
eight polychaetes species were collected in BTS,
with mean Hg concentrations ranging from 46.1
to 740 ng g, indicating a strong potential for

Hg bioaccumulation in these organisms.
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A comparison between the mercury (Hg)
concentrations reported by Sola ef al. (2022) and
those obtained in this study reveals significant
differences in both central tendency and
dispersion. The Hg levels reported by Sola et al.

present a notably higher median and a much

wider range, with values reaching approximately
740 ng g, indicating substantial variability and
possibly high contamination in the environment
or in the sampled organisms. In contrast, the
data from this work show considerably lower
median Hg concentrations, with a narrower
interquartile range and fewer extreme values,
suggesting lower contamination levels.

These marked differences between the two
studies may be attributed to several factors,
including variations in the polychaetes species
analyzed, differences in collection sites, or
seasonal variations in sampling. The greater
dispersion and higher outliers in the Sola et al.
(2022) dataset may also reflect localized
pollution hotspots or episodic contamination
events. Conversely, the data from the present
study were more constrained, with lower
maximum values than those observed by Sola et
al. (2022), which may indicate that the studied

area was less impacted by Hg contamination.

4. CONCLUSION
Anthropogenic activities such as
industrialization, urbanization, mining, and

waste disposal release toxic metals into marine
threats to

These

ecosystems, posing long-term

biodiversity and human health.
contaminants can persist, bioaccumulate in
aquatic organisms, and biomagnify along the
food web. Biomonitoring, using organisms
capable of

indicating and  quantifying
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environmental contaminants, is essential for
assessing pollution levels and guiding mitigation
strategies. Polychaetes—benthic marine worms
that inhabit and feed within sediments—are
effective biomonitors of toxic metals, as these
pollutants are often adsorbed onto sediments and
accumulate in their tissues. In this study,
polychaetes from the families Chaetopteridae,
Spionidae, and Eunicidae were collected in
Todos os Santos Bay (BTS), near Salvador,
Babhia, Brazil, to monitor mercury contamination
in the region.

in  marine

Although mercury detection

ecosystems has been previously reported,
continuous monitoring remains of paramount
importance. The values reported by Sola et al.
were considerably higher, reinforcing the need
for frequent biomonitoring to track variations in
this toxic metal. Such monitoring enables timely
alerts to the competent regulatory authorities and
supports the development of public policies
aimed at mitigating the deleterious effects of
mercury on ecosystems, biota, and human

health.
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