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Abstract: Continuous-variable quantum key distribution (CV-QKD) is a leading technology for secure com-
munication, whose security guarantees fundamentally rely on the quantum nature of the transmitted states
and the measurement process. However, real-world detectors invariably suffer from limitations, such as in-
efficiency, which affects the overall security and performance of the system. Here, we investigate the impact
of detector efficiency on remote state preparation in the context of entanglement-based CV-QKD. Specif-
ically, by using the Wigner function formalism and starting from a two-mode squeezed vacuum state, we
derive the analytical form of the quantum state of one mode conditioned on a homodyne measurement per-
formed on the other mode. Our analysis explicitly contrasts the ideal case of unit efficiency (η=1), which
prepares a pure, displaced squeezed state, with the non-ideal scenario. For η < 1, we demonstrate that the
preparation result is a mixed state characterized by increased noise and degraded squeezing. We calculate
the exact analytical expressions for the conditional state’s variance and mean displacement, quantifying
their dependence on both the efficiency η and the initial squeezing parameter.
Keywords: Wigner function, efficiency detection, noise detector
Abbreviations: Continous-variable quantum key distribution, CV-QKD; discrete-variable quantum key
distribution, CV-QKD; Einstein-Podolsky-Rosen, EPR; Frédéric Grosshans and Philippe Grangier 2002,
GG02

1. Introduction

Continuous-variable quantum key distribution

(CV-QKD) represents one of the most promis-

ing approaches in secure quantum communica-

tion. Unlike discrete-variable QKD, CV-QKD en-

codes information in the quadratures of electro-

magnetic fields. This approach offers significant

advantages, such as compatibility with standard

telecommunication components, potentially high

secret key rates and straightforward integration

with existing optical fiber infrastructures [1, 2].

In entanglement-based CV-QKD, the protocol be-

gins with the sender, Alice, generating pairs of en-

tangled continuous-variable states, typically two-

mode squeezed vacuum states. She then keeps

one mode to herself and sends the other mode to

the receiver, Bob. Both parties independently per-

form quadrature measurements (homodyne or het-

erodyne detection) on their respective entangled

modes, obtaining correlated measurement results.

After this quantum phase, Alice and Bob perform

standard post-processing procedures to extract a

symmetric secure secret key: they perform param-

eter estimation, then apply error correction and

privacy amplification. Generally, the security and

performance of this protocol is affected by the de-

tector’s noise and efficiency [1, 3].

In this work, we investigate theoretically the im-

pact of Alice’s homodyne detection efficiency on

the remote preparation of Bob’s state. Theoret-

ically, such a detector can be modeled by plac-

ing a beam splitter with transmittance η before

the homodyne detector [4, 5, 6, 7, 8]. For this

purpose, we employ the phase-space formalism

of the Wigner function, a powerful tool that pro-
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vides a quasi-probabilistic and intuitive represen-

tation of quantum states [9]. We start from a two-

mode squeezed vacuum state, a fundamental re-

source for generating continuous-variable entan-

glement. We analyze the quantum state of Bob’s

mode b conditioned on the outcome of a homo-

dyne measurement performed on Alice’s mode a.

By calculating and visualizing the Wigner func-

tion of the conditioned state in mode b, we graph-

ically demonstrate how measurement inefficiency

modify properties of the state, such as its degree

of squeezing. In the ideal case of unit efficiency

(η=1), Alice projects Bob’s state into a pure, dis-

placed squeezed state. For η < 1, we show that the

preparation result is a mixed state characterized by

increased noise and degraded squeezing.

2. Wigner function formalism

The Wigner function, W (x, p), is the main tool

of the phase-space formalism. It is a quasi-

probability function that maps the density opera-

tor of a quantum state, ρ̂ , onto a real function in

the classical phase space defined by the variables

(x, p). In the one-dimensional case, it is defined

as the Fourier transform of the displaced density

operator in the position representation [10, 9]:

Wρ̂(x, p) =
1

2πℏ

∫
e−

ipy
ℏ ⟨x− y

2
| ρ̂ |x+ y

2
⟩ dy (1)

This equation maps the density matrix, defined in

Hilbert space, to a function in the one-dimensional

phase space, thus providing an equivalent way of

describing the quantum state of the physical sys-

tem under study [11, 8, 9]. The Wigner func-

tion formalism is complete in the sense that it re-

produces all quantum-mechanical results obtained

through the traditional Hilbert-space approach.

[11]

Just as in the traditional formalism, where mea-

surements are described by Hermitian operators,

the phase-space formalism also allows such opera-

tors to be represented by functions in phase space.

This mapping from operators to functions is for-

mally known as the Weyl symbol and is defined as

[12]:

WÂ(x, p) =
∫

e−
ipy
ℏ ⟨x− y

2
| Â |x+ y

2
⟩ dy, (2)

where Â is an arbitrary operator.

Equations Eq. 1 and Eq. 2 are structurally very

similar. The first includes a constant factor ensur-

ing normalization, as physically realizable states

must be normalized.

If Â is Hermitian, the result of Eq. 2 is a real-

valued function in phase space [12]. In the liter-

ature, the Weyl symbol is also commonly referred

to as the Wigner function of an operator. Notably,

the Wigner function in 1 is simply the Weyl sym-

bol of the density operator ρ̂ , multiplied by the

factor 1
2πℏ .
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3. Ideal vs non-ideal homodyne detection

The two-mode squeezed vacuum state (EPR state)

can be expressed in the Fock basis as follows [8]:

|ψsq⟩ab = (1−λ
2)1/2

∞

∑
n=0

λ
n |n⟩a ⊗|n⟩b . (3)

Where λ = tanh(ζ ) with ζ being the squeezing

parameter. In the Wigner function formalism, the

EPR state above is expressed as [8]:

W (a,b) = Ke
− (xa−xb)

2

4σ0s2 − (xa+xb)
2

4σ2
0 /s

− (pa−pb)2

4σ2
0 /s

− (pa+pb)
2

4σ2
0 s .

(4)

Here a = (xa, pb) and b = (xb, pb) refer to modes a

and b, respectively. Furthermore, K = 1/(2πσ2
0 )

2

is the normalization constant, σ2
0 is the variance,

and s is the squeezing factor

s = e2ζ . (5)

The effect of a measurement on one of the modes

of a bipartite state can be described, in the Wigner

function formalism, by the following general rela-

tion [8]

Wρ̂cond,b(b) =

∫∫
R2 W

Π̂x0
(a)Wρ̂ab(a,b)da∫∫∫∫

R4 W
Π̂x0

(a)Wρ̂ab(a,b)dadb
(6)

In the equation above, W
Π̂x0

is the phase-space rep-

resentation of the measurement operator Π̂x0 cor-

responding to the outcome x0. Our goal is to use

the above integral to determine the result of both

ideal and non-ideal homodyne detection on mode

a of the EPR state given in Eq. 4. This system is

ilustrated in Fig. 1.

Figure 1: A two-mode squeezed vacuum state
(EPR state) source sends mode a for Alice and
mode b for Bob. By Alice performing a homo-
dyne measurement on mode a, Bob’s mode b col-
lapse to a squeezed state for η = 1, where η is the
efficiency of the homodyne detector.

In the ideal case, homodyne detection of the

quadrature x̂ with outcome x0 is described by the

following POVM element [8, 9, 7].

Π̂x0 = |x0⟩⟨x0| . (7)

In the phase-space representation, the projector

above corresponds to a Dirac delta distribution

centered at the value x0 [8, 9]:

W
Π̂x0

(a) =
1

4πσ2
0

δ (xa − x0). (8)

By substituting the expression above together with

Eq. 4 into Eq. 6, and performing the integration,

we obtain:

Wρ̂cond,b(b) = K′e
− (x0−xb)

2

4σ2
0 s2 − (x0+xb)

2

4σ2
0 /s2 +(1−λ̃ 2)[x2

0−Ap2
b]
.

(9)
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Here, the constants are defined as follows:

K′ =
A
√

π

πσ0

√
1− λ̃ 2

, (10)

A =
1

4σ2
0 s2 +

1
4σ2

0/s2 , (11)

B =
1

4σ2
0/s2 −

1
4σ2

0 s2 , (12)

and 2λ̃ = B/A.

The expression above represents the Wigner func-

tion of an EPR state conditioned on an ideal homo-

dyne measurement on mode a with outcome x0.

We now follow the same procedure, but con-

sider a non-ideal homodyne measurement charac-

terized by a finite detection efficiency η , which,

the phase-space representation of the POVM [8]

W
Π̂η ,x0

(a) =
e
(xa−x0)

2

2σ2
0 (1−η)

4πσ2
0

√
2πσ2

0 (1−η)
, (13)

depicted in Fig. 2

Figure 2: Comparison of the Wigner Function of
the POVM for different quantum efficiencies η .

The equation above reduces to Eq.8 in the limit

η → 1, which corresponds to the ideal case. By

substituting this expression into Eq. 6, together

with the EPR state, and evaluating the integral, we

obtain the following Wigner function:

W η

ρ̂cond,b
(b) =

e
− (xb−x̄b)

2

2σ2x e
−

p2
b

2σ2p√
(2πσ2

x )(2πσ2
p)

. (14)

The variances in position and momentum, after te

measurement, are given, respectively, by

σ
2
x =

[2s+(1−η)(s2 +1)]
[(s2 +1)+2(1−η)s]

σ
2
0 , (15)

σ
2
p =

(s2 +1)
2s

σ
2
0 , (16)

and the mean displacement is expressed by

x̄b =−
√

η(s2 −1)
[(s2 +1)+2(1−η)s]

x0 . (17)

Fig. 3 shows mode b Wigner function after mode a

inefficient homodyne measurement. We see when

EPR squeezing s increases, mode b x quadrature

squeezes too.

Fig. 4 shows mode b amplitude x̄b as function of

inefficiency (1−η). We see inefficiency attenuate

the amplitude value and EPR squeezing s increases

the amplitude.

Note when s = 1 there is no EPR squeezing, mode

b variances and x quadrature become σ2
x = σ2

p =

σ2
0 and x̄b = 0. This means measurement on mode

a has no effect on mode b, as it should be, since

zero squeezing is equivalent to separable state.
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Figure 3: Wigner function of mode-b state, condi-
tioned on the measurement in mode a, for different
values of s.

For the maximum efficiency (η = 1), mode b

variances and x quadrature become σ2
x σ2

p = σ4
x

and x̄b = −x0 (s2 − 1)/(s2 + 1). So, when vari-

ance p increases, variance x decreases, which is

a squeezed state feature (we call this a perfect

squeezed state).

4. Conclusion and outlook

In this work, we presented a theoretical and visual

analysis of how detector efficiency affects remote

Figure 4: Mode b quadrature amplitude x̄b as
function of the inefficiency 1−η for different val-
ues of squeezing parameter s.

state preparation in entangled systems. Using the

Wigner function formalism, we derived the ana-

lytical form of the conditioned quantum state and

demonstrated how homodyne detection inefficien-

cies on Alice’s mode impact the prepared state on

Bob’s mode. Our results show that while homo-

dyne measurement collapses Bob’s mode into a

squeezed state regardless of detector efficiency, in-

efficiencies attenuate the quadrature amplitude and

degrade the squeezing. Importantly, when EPR

squeezing is absent (s = 1), Bob’s state remains

unaffected by Alice’s measurements, confirming

the expected behavior for separable states.

These findings provide valuable insights for the

practical implementation of CV-QKD protocols,

where detector inefficiencies directly impact the

amount of shared correlations. By quantifying

how detection losses affect state preparation, our

analysis establishes a foundation for developing

more accurate security models that account for re-

alistic detector performance. This work opens the

path toward incorporating detector inefficiency ef-

fects into comprehensive CV-QKD security anal-
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yses, enabling more precise estimation of achiev-

able secret key rates.
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