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Abstract

We study the problem of allocating a scarce resource to individuals using a

network to describe the allocative externalities among them. The policymaker

seeks an allocation mechanism that maximizes welfare, which equals the sum of

private values and externalities. We show that this problem is NP-hard as it gen-

eralizes a version of the Max-Cut Problem with size restrictions. In cases where

the policymaker has complete information on agents’ values and externalities,

we design an allocation algorithm that guarantees at least 75% of the optimal for

any instance of the problem. This algorithm is based on a method of rounding

linear relaxations and the connection to the Max-Cut problem. Additionally, we

derive conditions under which allocating in a greedy manner is close to opti-

mal. For scenarios in which the policymaker has no information, we provide a

truthful (1 − 1/e)–approximation randomized mechanism that is based on the

convex rounding scheme presented at Dughmi (2011). Moreover, we analyze a

simple (non-truthful) item bidding mechanism with VCG payments and show

that there always exists an optimal pure strategy Nash equilibrium. We also pro-

vide efficiency guarantees for both pure strategy and Bayes-Nash equilibria.
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1 Introduction

Policymakers sometimes need to decide how to optimally allocate scarce resources

among individuals when the allocation entails externalities. For instance, when de-

termining the recipients of a certain educational resource such as textbooks, tablets,

or computers, the evaluation should encompass both the direct advantages these

individuals gain from receiving the resource, as well as the broader impacts these in-

dividuals could have on others, arising from sharing the resource (e.g., Frölich and

Michaelowa (2011)). Similarly, when policymakers decide how to allocate healthcare

treatments among individuals, they must not only consider who stands to benefit

most from treatment but also what externalities individual treatments have on oth-

ers. Miguel and Kremer (2004) show, for example, that medical treatments provided

to schoolchildren not only substantially improved the health and school participa-

tion outcomes for the treated individuals but also had positive effects on those who

were untreated.1

In this paper, we study the problem of allocating a good or service, that is in

limited supply, to agents with varying private values who are linked by a network

of non-negative externalities. Our framework revolves around centralized choice

and focuses on the case of allocative externalities, wherein the externalities emerge

from the impact one agent exerts on others when she receives a unit of the good.

The precise interpretation of these externalities depends on the particular setting.

For instance, in the context of healthcare treatments, these externalities might arise

from the fact that as more agents receive the treatment, the overall risk of infection

decreases. Whereas, in the case of educational resources, externalities might result

from the possibility of agents sharing the allocated resource.

Our setup is as follows: There are n ∈ N agents and k < n units of an indivisible,

identical good. Agents have unit demand for the good and the externalities among

them are described by a weighted network, where the weight is interpreted as the

externality that one agent imposes on another when receiving the good. The policy-

maker chooses a subset of k agents who will receive the good with the objective of

maximizing welfare, which is the sum of the private values of those who were allo-

cated and the externalities they impose on others. We do not impose any restriction

on the structure of the network, and allow for heterogeneous private values and ex-

ternalities.
1Another instance worth noting is that of vaccines. For vaccine distribution, many countries im-

plement some form of a priority mechanism that considers factors like age groups, health vulnera-
bilities, and occupations. Allocating vaccines initially to individuals aged 65 and above or those with
compromised immune systems, for instance, aims to grant priority to those with a higher private
value for the vaccine. Conversely, directing vaccines to healthcare professionals or educators priori-
tizes individuals who impose greater externalities on others.
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Finding the optimal allocation, even with full knowledge of individuals’ private

values and the externalities they impose on others, is a hard problem. We show that

a variant of the Max-Cut problem with size restrictions can be reduced to the poli-

cymaker’s problem. The Max-Cut problem is one of Karp’s 21 original NP-complete

problems (see Karp (1972)), which immediately implies that the policymaker’s prob-

lem is NP-hard. Therefore, exact optimization is not tractable and there is no choice

but to devise allocation mechanisms that approximate the optimal solution.

We begin our analysis by assuming that the policymaker has complete informa-

tion on individuals’ private values and externalities. This allows us to focus on the

algorithmic problem at hand, abstracting from incentive considerations. We em-

ploy a method of rounding linear relaxations known as pipage rounding (Ageev and

Sviridenko (1999)) to design a 3/4–approximation algorithm for the policymaker’s

problem.2 Moreover, we show that a simple greedy allocation strategy provides a

performance guarantee of 1 − 1/e ≈ 0.63 , and that in scenarios where agents’ pri-

vate values significantly outweigh externalities, using the greedy strategy is close to

optimal.3

In the second part of our analysis, we relax the complete information assump-

tion and assume that both private values and externalities are not known to the poli-

cymaker. This introduces the additional challenge of devising a mechanism that also

incentivizes individuals to reveal their true valuations. The Vickery-Clarke-Groves

(VCG) mechanism (Vickrey (1961), Clarke (1971), Groves (1973)) offers a general so-

lution to such welfare maximization problems. However, it requires an exact solu-

tion to the policymaker problem, which is not feasible in our case.4 Moreover, the

approximation algorithms provided for the complete information setting cannot be

converted into incentive-compatible mechanisms. Thus, we need to develop new

algorithms that take agents’ strategic incentives into account.

We show that the policymaker’s problem can be mapped to a combinatorial pub-

lic project (CPP) problem (Papadimitriou et al. (2008)). The CPP problem is a canoni-

cally hard mechanism design problem for which no truthful, deterministic, constant

ratio approximation mechanisms are known (see Papadimitriou et al. (2008), Buch-

fuhrer et al. (2010), Dobzinski (2011)). Thus, we turn to randomized mechanisms

and show that we can apply the convex randomized rounding scheme presented by

Dughmi (2011) and obtain a truthful (1 − 1/e)–approximation randomized mecha-

nism for the policymaker’s problem.

The truthful mechanism presented might be considered too complicated for

2An algorithm is said to be a ρ–approximation algorithm if, for any instance of the policymaker’s
problem, the algorithm achieves at least ρ of the maximum welfare.

3The greedy algorithm allocates, in each step, an additional unit of the good to the agent that leads
to the largest increase in welfare at that step. See Example 1 for an illustration.

4In fact, VCG requires solving many instances of the problem for the calculation of payments.
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practical implementation as it might require exponential communication for com-

binatorial valuations. Therefore, we also analyze a "simple" and more practical alter-

native - item bidding with VCG payments (Lucier et al. (2013), Markakis and Telelis

(2017)).5 Under the item bidding mechanism, an individual submits a bid for each

agent (including herself) to be allocated a unit of the good. The mechanism then

allocates goods to those agents who received the k highest sum of bids.

We show that there always exists an optimal Pure Strategy Nash Equilibrium,

where agents bid their valuations for the optimal allocation and incur a payment of

zero. However, the ratio between the optimal solution and the worst-case equilib-

rium (i.e. the Price of Anarchy) is linear in the number of agents. Additionally, we

bound the loss of efficiency for Bayes-Nash equilibria and show that it is also linear

in the number of agents. Our choice of VCG-based payments as opposed to first or

second prices is due to the fact that the latter payment rules can lead to scenarios

where there is no optimal equilibrium, and the worst-case performance does not

improve under these payment rules. We note that using an item bidding mechanism

comes at the cost of losing truthfulness unless valuations are additive.

Related literature

There is a large body of literature on the design of efficient mechanisms. However,

the vast majority of this literature does not consider situations in which the allo-

cation entails externalities. Our work contributes to the literature on mechanism

design with allocative externalities. Ostrizek and Sartori (2023) and Akbarpour et

al. (2024) propose frameworks to consider externalities in screening models. More

related to our work, Jehiel et al. (1996), Jehiel et al. (1999), Jehiel and Moldovanu

(2001), and Jehiel et al. (2003) analyze auctions with allocative externalities. Specif-

ically, Jehiel et al. (1996) and Jehiel et al. (1999) consider the problem of auctioning

one unit of a single good in order to maximize revenue, while Jehiel et al. (2003) looks

at multi-object auctions with multi-unit demand agents, analyzing the tension be-

tween efficiency and revenue. Jehiel and Moldovanu (2001) studies a setting with

heterogeneous objects and interdependent values. They show that in the presence

of allocative externalities, there does not exist an incentive compatible mechanism

that allocates the goods efficiently. We consider a different setting with several units

of a single (homogeneous) good. Additionally, we consider the case where an agent

reports the externalities imposed on her (i.e., the agent reports her own valuation),

while the incomplete information analysis in Jehiel et al. (1996) involves agents re-

porting the externalities they impose on others.

A related problem to the one we address is the problem of optimal seeding (see

5By "simple" here we mean that it reduces communication complexity relative to the truthful ran-
domized mechanism.
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Domingos and Richardson (2001), Richardson and Domingos (2002), and Kempe et

al. (2003) for seminal papers on the algorithmic problem, as well as Banerjee et al.

(2013), Cai et al. (2015), and Beaman et al. (2021) for applications). In this problem,

given a fixed network and a number of seeds, one needs to select agents (seeds) to

maximize diffusion on the network. Our problem is similar in the sense that there

exists a resource constraint for the number of seeds (which can be viewed as our

constraint of the number of goods to be distributed), but differs in that the diffusion

in our setting is constrained, occurring exclusively between those who were allocated

and the agents to whom they are connected to. Additionally, we also allow for posi-

tive spillovers within the set of allocated agents. This has important implications on

algorithmic performance: for example, while Akbarpour et al. (2018) show that ran-

dom seeding may perform close to optimal or even better by randomly allocating a

few additional seeds beyond the resource constraint, randomly allocating goods to

agents in our setting can lead to arbitrarily bad performance.

The literature on networked markets focuses mainly on the private provision

of public goods (Bramoullé and Kranton (2007), Elliott and Golub (2019), Galeotti

et al. (2020)). In most of these papers, individuals decide how much they wish to

contribute to the production of the public good, taking into account that the good

is non-excludable among linked agents. We ask a different question: How should a

central planner optimally allocate a resource given a fixed network of externalities?

Finally, in terms of methods, our paper is closely related to the literature on

monotone submodular maximization with cardinality constraints (Nemhauser et al.

(1978), Conforti and Cornuéjols (1984), Vondrák (2010), Sviridenko et al. (2017)). In

their seminal paper, Nemhauser et al. (1978) show that a simple greedy algorithm

provides a (1−1/e)–approximation and prove that this is the best performance guar-

antee achievable in polynomial time for general monotone submodular functions.

We show that, even for our more restricted class of valuations, the greedy algorithm

does not yield a better performance guarantee. However, by leveraging the connec-

tion to a variant of the Max-Cut problem (Karp (1972), Goemans and Williamson

(1995)), we are able to provide a polynomial algorithm that improves upon the 1−1/e

performance and provides a 3/4–approximation for the policymaker’s problem. No-

tably, the best known approximation ratio for the related variant of the Max-Cut

problem, The Max Directed Cut problem with size restriction, is 1/2 (see Ageev et

al. (2001)). The monotonicity of our problem allows us to improve upon that.

Organization of the paper. In Section 2, we present the definitions that constitute

our general framework and formally define the policymaker’s optimization problem.

In section 3, we establish the connection between the policymaker’s optimization
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problem and a version of the Max-Cut Problem with size restrictions. Building on

this connection we show that the policymaker’s problem is NP-hard. In Section 4,

we present approximation algorithms for the policymaker’s problem, assuming that

she has complete information. We develop a 3/4-approximation algorithm and also

show that a greedy algorithm provides an approximation ratio of 1−1/e for the gen-

eral case, and specify conditions under which allocating in a greedy manner is close

to optimal. In section 5, we relax the assumption of complete information and take

a mechanism design approach. We show that there exists a truthful (randomized)

(1− 1/e)-approximation mechanism to the policymaker’s problem. Additionally, we

analyze a non-truthful item bidding mechanism with VCG payments and provide

performance guarantees for several equilibrium concepts. Section 6 provides con-

cluding remarks.

2 Framework

A policymaker needs to allocate k ∈ N units of an indivisible, identical good to a set

of N = {1, . . . , n} agents, each with unit demand.6

Allocations: Let X = {0, 1}n be the set of n-dimensional binary vectors. An

allocation x ∈ X is a binary vector, where xi = 1 if agent i was allocated a unit and

xi = 0 otherwise. We say that an allocation is feasible if
∑n

i=1 xi ≤ k.

Agents’ private values and externalities: Agents differ in their private value

for the good and the externalities they impose on other agents. The vector v0 =

(v01, . . . , v
0
n) ∈ Rn

+ denotes the private values assigned by different agents to receiving

a unit of the good. The matrix E ∈ Rn×n
+ describes the adjacency matrix of (non-

negative) externalities. Its entry Eij ∈ R+ is the externality that agent i imposes on

agent j when the former receives a unit of the good (xi = 1) and the latter does not

(xj = 0). If j is also allocated the good (xj = 1), we assume that Eij is scaled by a type-

dependent parameter αij ∈ [0, 1].7 If αij = 0, for example, then allocating a good to

i imposes a positive externality on j only if j was not allocated the good. The other

extreme case of αij = 1 implies that j gets the same externality from i receiving the

good, regardless of whether j also received it or not.

Agents do not impose externalities on themselves, and so for every i ∈ N we set

Eii = 0. We view the agents as being linked by a directed, weighted network, where

the weights of the edges describe the externalities agents impose on each other.8

Valuations: Each agent i has a valuation function vi : X → R+. Let x ∈ X be an

6We assume that k < n, otherwise the problem is trivial.
7The magnitude of these type-dependent scaling parameters is context-dependent. For example,

comparing allocation instances of educational resources versus healthcare treatment, one might as-
sume that the scaling parameters are larger in the latter compared to the former.

8See Example 1 for an illustration.
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allocation. Agent’s i valuation for allocation x, denoted by vi(x), is given by

vi(x) =


v0i +

∑n
j=1 αjiEjixj, xi = 1∑n

j=1 Ejixj, xi = 0
(1)

where 0 ≤ αji ≤ 1.9

We assume that for every agent i, v0i ≥
∑n

j=1(1 − αji)Eji. This assumption pre-

vents a situation in which, given an allocation, an agent prefers not to receive the

good over being allocated. Therefore, this implies that for each agent i the valuation

function is non-decreasing, i.e., for any two allocations x and x̂ such that xj ≥ x̂j

for all j ∈ N we have that vi(x) ≥ vi(x̂). We also consider more general monotone

valuation functions and show that several of our results extend to larger classes of

valuations.

There are a few observations worth noting regarding the functional form speci-

fied above. First, note that for all i ∈ N we have that vi(0, . . . , 0) = 0. That is, valua-

tions for not allocating any unit of the good are zero. Second, agents’ outside options

are endogenously determined by the allocation mechanism, i.e. vi(0, x−i) depends

on how the good was allocated among agents other than i. Note that when there

are no externalities, i.e. Eij = 0 for all i, j ∈ N , we are back to the standard setting

of private values and a zero outside option. Finally, our specification also allows for

externalities within the allocated set of agents. These externalities are scaled by the

type-dependent parameter αji.

The objective function: The welfare of an allocation x is the sum of agents’ val-

uations, which equals the sum of private values of those who were allocated and the

externalities that they impose on others:

W (x) =
n∑

i=1

vi(x) =
n∑

i=1

v0i xi +
∑
i,j∈N

αijEijxixj +
∑
i,j∈N

Eijxi(1− xj)

=
n∑

i=1

v0i xi +
∑
i,j∈N

Eij (xi − (1− αij)xixj)

(2)

The policymaker’s objective is to provide a feasible allocation x that maximizes

9Note that, for an agent i with αji = 1 for all j ∈ N , the valuation function is additive in x. The
other extreme case where αji = 0 for all j ∈ N implies that once allocated, agent i’s valuation does
not depend on who else was allocated, i.e. xi = x′

i = 1 implies vi(x) = vi(x
′) = v0i .
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welfare.

max
x∈X

W (x) =
n∑

i=1

v0i xi +
∑
i,j∈N

Eij (xi − (1− αij)xixj) (PM-k)

s.t.

n∑
i=1

xi ≤ k,

xi ∈ {0, 1}, ∀i ∈ N .

Note that the welfare function is non-decreasing in x. This implies that the fea-

sibility constraint,
∑n

i=1 xi ≤ k holds with equality for the optimal allocation.

To illustrate the presented concepts, we conclude this section with the following

example.

Example 1. A policymaker needs to allocate k = 2 units of an indivisible, identical

good to n = 3 agents. The agents have unit demand for the good and are connected

in the network of externalities described in Figure 1. We assume that αij = 0 for

all i, j ∈ N . This implies that agent’s i valuation is vi(x) = v0i if xi = 1 and vi(x) =∑n
j=1Ejixj otherwise.

Figure 1: Consider the following directed, weighted network with n = 3 agents. The
numbers colored in blue represent agents’ private values for a unit of the good and
the edge weights correspond to the externalities agents impose on one another.

The vector of private valuations and the adjacency matrix of externalities for the

above network are given by:

v0 =

 8

7

10

 E =

0 3 5

4 0 0

4 1 0


The welfare of allocation x is given by: W (x) =

∑n
i=1 v

0
i xi +

∑
i,j∈N Eijxi(1 − xj).

Therefore, if we choose to allocate the units using a greedy strategy which assigns

the goods in a sequential order such that, in each step, the individual that leads to

the highest increase in welfare is assigned, we will obtain a welfare of 22 with agent A

receiving the first unit of the good and agent C receiving the second. However, this
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allocation does not maximize welfare. The optimal allocation consists of allocating

the units to agents B and C, which results in a welfare of 25. ⋄

3 Optimal Allocations and the Max-Cut Problem

In this section, we present a variant of the Max-Cut Problem and establish the con-

nection between that problem and the policymaker’s one. We build on this connec-

tion to provide the hardness result of the policymaker’s problem.

The Max-Cut Problem is a graph theoretic optimization problem and one of

Karp’s original 21 NP-complete problems (Karp (1972)).10 We present a concise de-

scription of a variant of the problem known as the Max-Directed Cut Problem with

given sizes of parts, henceforth max-dicut with gsp (see Ageev and Sviridenko (1999)

and Ageev et al. (2001) for approximation algorithms to this problem).

Let G = (V,E) be a directed graph. A directed cut in G is defined to be the set

of edges leaving some vertex subset V1 ⊆ V , i.e. {ij ∈ E|i ∈ V1 and j /∈ V1}. Given a

directed graph G and a weight edge function w : E(G) → R+, where E(G) denotes

the set of edges in G, the maximum directed cut problem is that of finding a directed

cut with maximum total weight. That is, finding a partition (V1, V2) of V , such that

the total edge weights from nodes in V1 to nodes in V2 is maximized. The max-dicut

with gsp adds the restriction that |V1| = k for some integer number k ≤ |V |.
The max-dicut with gsp can be written as the following quadratic binary pro-

gram:

max
x

∑
ij∈E(G)

wijxi (1− xj) (MC-k)

s.t.
∑
i∈V

xi = k,

xi ∈ {0, 1}, ∀i ∈ V .

The NP-hardness of the max-dicut problem with gsp follows from the fact that

the Max-Cut problem is a special case of it, in which the graph is undirected, un-

weighted, and there is no size constraint.

Theorem 1. The policymaker’s problem (PM-k) is at least as hard as the max-directed

cut with given sizes of parts (MC-k).

Proof. Reduction from max-dicut with gsp: Given a graph G = (V,E) and a weight

10In Karp (1972) the decision problem related to the Max-Cut optimization problem is stated as
an NP-complete problem. In the decision variant one needs to verify the following: Given a graph
G = (V,E), weight function w : E(G) → R+, and a positive integer W , is there a partition (V1, V2) ⊆ V
such that the total edge weight from nodes in V1 to nodes in V2 is at least W .
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edge function w : E(G) → R+ we construct the following instance of the policymak-

ers’ problem. We assume that each agent i has the same private value for the good,

which is given by v0i = v ≡ maxj∈V
∑

m∈V wmj , for all i ∈ N . We set agents’ exter-

nalities to be equal to the corresponding edge weights, i.e. Eij = wij if ij ∈ E(G),

and Eij = 0 otherwise. Finally, set αij = 0 for all i, j ∈ N . Then, the policymaker’s

problem (PM-k) can be written as:

max
x

W (x) = v
n∑

i=1

xi +
∑

ij∈E(G)

wijxi(1− xj)

s.t.
n∑

i=1

xi = k,

xi ∈ {0, 1}, ∀i ∈ N .

It follows that the solution to the policymaker’s problem with equal private val-

ues coincides with the solution to the max-dicut problem with gsp (MC-k), given by

the graph G = (V,E) and the weight edge function w : E(G) → R+. Thus, the max-

directed cut problem with given sizes of parts can be viewed as a special case of the

policymaker’s problem. This immediately implies that the policymaker’s problem is

at least as hard.

The following Corollary is an immediate implication of Theorem 1.

Corollary 1. The policymaker’s problem (PM-k) is NP-hard.

We note that the policymaker’s problem remains NP-hard, even when agents’

private values are identical, externalities among all linked agents are equal, and the

graph is undirected and regular.11 The NP-hardness for this case follows from the fact

that the Max-Cut problem with given sizes of parts remains NP-hard even for regular

graphs and equal weights.

This observation underscores that the computational complexity of the poli-

cymaker’s problem arises primarily from the network structure of the externalities

rather than from heterogeneity in private values or externalities.

4 The Algorithmic Problem

The NP-hardness of the policymaker’s problem implies that we cannot solve for an

exact optimum. Therefore, in this section, we develop two approximation algorithms

for the optimal allocation and provide provable performance guarantees for both of

11That is setting v0i = v ∈ R+ for all i ∈ N , αij = α ∈ [0, 1] for all i, j ∈ N , Eij = Eji ∈ {0, E} for
all i, j ∈ N , and a given E ∈ R+. Moreover, each agent has the same number of direct connections.
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them. We assume throughout this section that the policymaker has full knowledge of

individuals’ private values and the externalities they impose on each other. We relax

this assumption in Section 5.

Definition 1 (Performance Guarantee). An algorithm has a performance guarantee

of ρ ∈ [0, 1] if it achieves at least ρ of the optimal for any instance of the problem,

i.e.,

ALG(v) ≥ ρ ·OPT (v)

for any instance, v, of the problem.

4.1 The LP-Rounding Algorithm

We start with an approximation algorithm (the LP-Rounding Algorithm) that em-

ploys a method of rounding a linear relaxation (Pipage rounding) and provides a

performance guarantee of at least 3/4.

The key ideas behind this method are associating with the welfare function

W (x) = W (x1, . . . , xn) another function L(x1, . . . , xn) that coincides on binary vec-

tors and can be polynomially computable on the n-dimensional cube [0, 1]n. Addi-

tionally, we show that the following two properties hold:

(i) There exists ρ > 0 such that W (x1, . . . , xn) ≥ ρL(x1, . . . , xn) for each x ∈ [0, 1]n.

(ii) ϵ-Convexity: The function ϕ(ϵ, x, i, j) = W (x1, . . . , xi + ϵ, . . . , xj − ϵ, . . . , xn) is

convex with respect to ϵ ∈ [−min{xi, 1 − xj},min{1 − xi, xj}] for any pair of

indices i and j and each x ∈ [0, 1]n.

These two properties imply that we can construct a ρ-approximation algorithm. The

first property provides a non-trivial performance guarantee for the relaxed problem

and the second ensures that we can round the relaxed solution to a binary one, pre-

serving the guarantee.

Theorem 2. Let αmin = mini,j∈N αij , and let xLP be the allocation induced by the

LP-Rounding algorithm and xOPT the allocation that maximizes W (·). Then, the LP-

Rounding algorithm provides a performance guarantee of

W (xLP ) ≥


3/4W (xOPT ), αmin ≤ 0.5

(1− αmin + α2
min)W (xOPT ), αmin > 0.5

Proof. See appendix.

The LP-Rounding algorithm provides a performance guarantee that is weakly in-

creasing inαmin and is bounded below by 3/4. An increase inαmin implies that agents’
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valuations approach the additive case and as a result, the policymaker’s problem be-

comes more tractable. In the limit case where αmin = 1, the LP-Rounding algorithm

provides the optimal allocation. We provide a proof overview for Theorem 2 and de-

scribe the proposed algorithm. The complete proof can be found in Appendix A.

Proof Overview

We start by re-writing the welfare function in the following way:

W (x) =
n∑

i=1

v0i xi +
∑
i,j∈N

Eij (xi − (1− αij)xixj)

=
∑
i,j∈N

Eij(xi + (1− αij)xj − (1− αij)xixj) +
n∑

i=1

(
v0i −

n∑
j=1

(1− αji)Eji

)
xi

where the second equality follows from plugging v0i = v0i −
∑n

j=1(1 − αji)Eji +∑n
j=1(1 − αji)Eji, and re-arranging terms. Thus, the policymaker’s problem can be

written as:

max
x

W (x) =
∑
i,j∈N

Eij(xi + (1− αij)xj − (1− αij)xixj) +
n∑

i=1

(
v0i −

n∑
j=1

(1− αji)Eji

)
xi

s.t.
n∑

i=1

xi = k, (PM-k’)

xi ∈ {0, 1}, ∀i ∈ N .

Next, we define the following integer linear program, which coincides with (PM-

k’) on binary vectors:

max
x

L(x) =
∑
i,j∈N

Eij min{(xi + (1− αij)xj), 1}+
n∑

i=1

(
v0i −

n∑
j=1

(1− αji)Eji

)
xi

s.t.
n∑

i=1

xi = k, (ILP)

xi ∈ {0, 1}, ∀i ∈ N .

Since these two problems coincide on binary vectors it is immediate that an op-

timal solution xOPT to (PM-k’) must also be an optimal solution to (ILP).

Relaxing (ILP) to a continuous linear program by replacing the binary con-

straints to continuous ones, i.e., replacing xi ∈ {0, 1} to 0 ≤ xi ≤ 1 for all i ∈ N ,

we show that any optimal fractional solution, x∗, to the relaxed linear program satis-
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fies:

W (x∗) ≥


3/4L(x∗), αmin ≤ 0.5

(1− αmin + α2
min)L(x

∗), αmin > 0.5

This follows from the observation that for all pairs 0 ≤ xi, xj ≤ 1 the following

inequality holds:

xi + (1− αij)xj − (1− αij)xixj

≥


3/4 (min{(xi + (1− αij)xj), 1}) , αij ≤ 0.5

(1− αij + α2
ij) (min{(xi + (1− αij)xj), 1}) , αij > 0.5

(3)

Finally, we show that the welfare function satisfies the ϵ-convexity property

which implies that we can round the fractional solution, x∗, to a binary one, xLP ,

that provides weakly greater welfare, i.e.,

W
(
xLP

)
≥ W (x∗)

Putting everything together we have that:

W (xLP ) ≥


3/4W (xOPT ), αmin ≤ 0.5

(1− αmin + α2
min)W (xOPT ), αmin > 0.5

which completes the proof.

4.2 The Greedy Algorithm

The next approximation algorithm we develop (the Greedy Algorithm) uses a natural

greedy strategy and allocates, in each step, an additional unit to the agent that leads

to the largest increase in welfare.

Definition 2 (Greedy Algorithm). The greedy algorithm for the policymaker’s prob-

lem:

Initialization: Start with the null allocation, x = (0, 0, . . . , 0).

Step 1: Allocate a unit of the good to agent i∗ that satisfies:

i∗ = argmax{i∈N ;xi=0}

[
v0i +

∑n
j=1 Eij(1− (1− αij)xj)−

∑n
j=1(1− αji)Ejixj

]
Step 2: Set xi∗ = 1. If

∑n
i=1 xi = k stop. Otherwise, repeat Step 1.

13



In order to prove that the greedy algorithm provides a constant performance

guarantee, we first show that the welfare function satisfies the following "diminishing

returns" property.

Definition 3 (Submodular Set Function). A set function f : 2N → R is submodular if

it satisfies

f(S ∪ {i})− f(S) ≥ f(T ∪ {i})− f(T )

for all pairs S ⊆ T and all elements i /∈ T .

Lemma 1. The welfare function W (·) is submodular.

Proof. See appendix.

This result implies that the marginal welfare gain of allocating a unit of the good

to an agent weakly decreases as the set of allocated agents increases in the set inclu-

sion order. The following proposition shows that the Greedy Algorithm provides a

performance guarantee of (1− 1/e) ≈ 0.63.

Proposition 1. Let xG be the allocation induced by the greedy algorithm and xOPT

the welfare-maximizing allocation. Then, the greedy algorithm provides a (1− 1/e)−
approximation, i.e.,

W
(
xG
)
≥ (1− 1/e)W

(
xOPT

)
Proof. The proof follows from Lemma 1 and from Theorem 4.3 in Nemhauser et al.

(1978) which shows that for any non-negative, monotone, and submodular function

W (·) with a cardinality constraint on the size of the set, the greedy algorithm pro-

vides a (1− 1/e)−approximation.

The Greedy algorithm guarantees a minimum of approximately 63% of the wel-

fare achieved by the optimal allocation. Note that this result, as well as the other re-

sults presented in this section, only requires that the valuation function is submod-

ular. Thus, the analysis presented here extends to a much larger class of valuation

functions.12

Since Proposition 1 holds for any valuation function that is submodular, a natu-

ral question is whether the 1−1/e bound is tight for our specific case. In the following

result, we show that this is indeed the case.

Proposition 2. The 1− 1/e performance guarantee is tight for the policymaker’s prob-

lem. That is, for every ρ′ > 1− 1/e, there exists {vi(x)}ni=1 and k ≤ n such that:

W
(
xG
)
< ρ′W

(
xOPT

)
12For example, the results continue to hold if agents only value the largest externality imposed on

them, instead of summing across all externalities. This is captured by the following valuation function:
vi(x) = v0i + αi max{j ; xj=1} Eji if xi = 1 and vi(x) = max{j ; xj=1} Eji otherwise.
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Figure 2: Figure 2 displays the case for k = 2. The numbers colored in blue represent
agents’ private values for a unit of the good and the edge weights correspond to the
externalities agents impose on one another.

Proof. We will prove that the bound is tight by providing an example in which the

Greedy algorithm provides exactly 1−
(
1− 1

k

)k
of the welfare attained in the optimal

allocation, which converges from above to 1− 1/e as k → ∞.

Let N = N1 ∪ N2 where N1 = {1, . . . , k} and N2 = {k + 1, . . . , 2k}. The initial

vector of private values v0 ∈ Rn
+ is given by:

v0i =


(k−1

k
)i−1, i ∈ N1

(k−1
k
)k−1, i ∈ N2 \ {2k}

0, i = 2k.

The adjacency matrix of externalities E ∈ R2k×2k
+ is defined as follows:

Eij =


vj
k
, i ∈ N2 and j ∈ N1 \ {k}

vj, i = 2k and j = k

0, otherwise.

Finally, we set αij = 0 for all i, j ∈ N . Figure 2 illustrates the example for k = 2.

The optimal allocation xOPT is xOPT
i = 1 if and only if i ∈ N2, and the welfare

is W (xOPT ) =
∑2k

i=1 v
0
i = k. Next, note that for any i ∈ N2 and m ∈ N1, we have

v0i +
∑2k

j=m Eij = v0m. Thus, a possible allocation of the greedy algorithm is to allocate

the m−th unit of the good to agent m ∈ N1. We then have that xG = 1 if and only if

i ∈ N1, and the welfare achieved is:

W (xG) =
∑
i∈N1

v0i = k

[
1−

(
k − 1

k

)k
]
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Therefore, W (xG)
W (xOPT )

=
[
1−

(
1− 1

k

)k]→ 1− 1
e

as k → ∞.13

While the bound in Proposition 1 is tight, the performance guarantee of the

greedy algorithm increases substantially when agents’ private values are large com-

pared to the externalities they impose on each other. In these scenarios allocating in

a greedy manner becomes close to optimal. The following definition formalizes the

comparison between private values and externalities.

Definition 4. Let v0 ∈ Rn
+ and E ∈ Rn×n

+ be the initial valuations and externalities.

We define the following parameters:

(i) γin = maxj∈N
∑

i∈N Eij

v0j

(ii) γout = maxj∈N
∑

i∈N Eji

v0j

The first parameter, denoted as γin, represents the maximal ratio of the aggregate

externalities imposed on an agent to that agent’s private value for a unit of the good.

Letαmax = maxi,j∈N αij . Note that, γin ∈ [0, 1/(1− αmax)] as it is assumed that the sum

of scaled externalities imposed on any agent does not surpass their private value for

the good,
∑n

i=1(1− αij)Eij ≤ v0j for any agent j ∈ N .

The second parameter, denoted as γout ∈ R+, represents the maximal ratio of the

aggregate externalities an agent imposes on all other agents to that agent’s private

value for a unit of the good.

Thus, these two parameters imply that both the externalities imposed on each

agent and the total externalities that each agent imposes on all other agents are

bounded by her private value for the good, scaled respectively by γin or γout.

Proposition 3. Let v0 ∈ Rn
+ and E ∈ Rn×n

+ be agents’ private values and externalities.

Let c = min{ (1−αmin)(γin+γout)
1+γout

, 1}, and let xG and xOPT be the allocations induced by

the greedy algorithm and the welfare maximizing allocation respectively. Then,

W
(
xG
)
≥ 1

c

(
1− 1

ec

)
W
(
xOPT

)
Proof. See appendix.

Setting αmin = 0 and γin ≥ 1 (which yields c = 1) we obtain the approximation

ratio presented in Proposition 1. For the case where γin = γout = 0, which is a scenario

13At each step, the Greedy algorithm will be indifferent between allocating to an agent from N2 or
to the agent with the largest private value from N1. We can break these indifferences by adding an
arbitrarily small ϵ > 0 to the private value of each i ∈ N1, which will result in a unique allocation for
the Greedy algorithm. For this unique allocation, as we take ϵ → 0 and k → ∞ we get the 1 − 1/e
bound.
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of no externalities, or for αmin = 1 which is the case of additive valuations, the Greedy

algorithm attains an approximation ratio of 1 and produces an optimal allocation.

Proposition 3 leads to the following comparative statics result for the performance

guarantee of the Greedy algorithm.

Corollary 2. The performance guarantee of the Greedy algorithm is:

(i) Monotone increasing in αmin.

(ii) Monotone decreasing in γin and γout.

The intuition for Corollary 2 is straightforward. An increase in αmin implies that

agents’ valuations are "closer" to additive ones, which results in an increase in the

performance guarantee of the Greedy algorithm. An increase in γin or γout, on the

other hand, implies an increase in externalities compared to private values, which

leads to a decrease in the performance guarantee.

Finally, whether the Greedy Algorithm provides a better approximation ratio

than the LP-Rounding algorithm depends on the values ofαmin, γin and γout. If γin = 1,

for example, then c = 1−αmin. In this case, the Greedy Algorithm yields a higher per-

formance guarantee whenever αmin ≥ ᾱ where ᾱ ≈ 0.4.14

5 The Mechanism Design Problem

The analysis so far was carried out under the assumption that the policymaker has

complete information and fully observes agents’ private values, externalities, and the

scaling parameters αij . In this section, we relax this assumption and assume that the

policymaker possesses no knowledge of agents’ valuation functions.15 We provide

a truthful, randomized (1 − 1/e)–approximation mechanism for the policymaker’s

problem. Furthermore, we analyze a (non-truthful) item bidding mechanism and

provide performance guarantees for Pure Strategy and Bayes-Nash equilibria.

5.1 A Truthful Randomized (1− 1/e)-Approximation Mechanism

We begin our analysis by showing that the policymaker’s problem can be mapped to

a combinatorial public project (CPP) problem (Papadimitriou et al. (2008)), where

implementing a set of projects or allocating a set of resources can be thought of as

14The cutoff value ᾱ satisfies the following condition:

1

1− ᾱ

(
1− 1

e1−ᾱ

)
=

3

4

.
15That is, the policymaker does not know agents’ private values, the externalities they impose on

each other, and the scaling parameters.
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allocating units of the good to a set of agents. Building on this connection we em-

ploy the convex rounding scheme presented in Dughmi (2011) to obtain a truthful,

randomized (1− 1/e)–approximation mechanism for the policymaker’s problem.

In a Combinatorial Public Project problem, there exists a set of agents N =

{1, . . . , n}, a set of projects M = {1, . . . ,m}, and an integer k ≤ m. Each agent i

has a valuation function vi : 2
M → R+ over all possible subsets of projects. The val-

uation functions satisfy two standard assumptions. First, vi is normalized such that

vi(∅) = 0. Second, vi is monotone, i.e. for every S ⊆ T ⊆ M , vi(S) ≤ vi(T ). The

objective is to choose a subset of projects S∗ ⊆ M of size k that maximizes total wel-

fare,
∑

i∈N vi(S
∗). We consider a flexible version of CPP, where the chosen set can be

of size at most k, i.e., a feasible solution is any subset S such that |S| ≤ k. The CPP

problem can be written as the following optimization problem:

max
S⊆M

∑
i∈N

vi(S)

s.t. |S| ≤ k.
(4)

It is often assumed that agents’ valuations are submodular functions (as in defi-

nition 3). A prominent subset of submodular functions, which will be of key interest

to our setting, is coverage functions.

Definition 5. Let (Y , µ) be a measure space. A valuation function vi : 2
M → R+ is a

coverage function if there exists m measurable subsets A1, A2, . . . , Am ⊆ Y such that

vi(S) = µ(∪l∈sAl).

It is easy to check that the policymaker’s problem (PM-k) corresponds to a CPP

problem in which M = N and, for each agent i, vi(S) = v0i +
∑

j∈S αjiEji if i ∈ S

and vi(S) =
∑

j∈S Eji otherwise.16 Moreover, we show that agents’ valuations in the

policymaker’s problem belong to the class of coverage functions.

Lemma 2. The policymaker problem (PM-k) corresponds to a CPP problem such that

for each i, vi is a coverage valuation function.

Proof. We prove Lemma 2 for the case where αij = 0 for all i, j ∈ N . The complete

proof can be found in Appendix A and uses similar arguments for the general case.

For each agent i, consider vi such that vi(S) = v0i if i ∈ S and vi(S) =
∑

l∈S Eli

otherwise. Let Y = [0, v0i ] and µ be the Lebesgue measure.17 Define Ai = Y = [0, v0i ]

and Aj =
(∑j−1

t=1 Eti,
∑j

t=1Eti

]
for all j ̸= i.18 Note that for j ̸= i, µ(Aj) = Eji and

16In our setting, the chosen projects can be thought of as the agents being allocated a unit of the
good.

17The Lebesgue measure is such that for all (a, b], b ≥ a, µ((a, b]) = b− a.
18We use the standard convention that the sum over the empty set equals 0. Therefore, A1 = [0, E1i]

for all i ̸= 1.
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Aj∩Al = ∅ for all l ̸= j, i. Take an arbitrary set S ⊆ N . If i ∈ S, then ∪l∈sAl = Ai. Thus,

vi(S) = µ(Ai) = v0i if i ∈ S. If i /∈ S, then ∪l∈sAl is the union of pairwise disjoint sets.

Hence, vi(S) =
∑

l∈S µ(Al) =
∑

l∈S Eli.

We consider direct-revelation mechanisms for the policymaker’s problem. For

given parameters n and k, denote by S the set of feasible allocations, i.e., S = {S ⊆
N ; |S| ≤ k}. A direct revelation mechanism consists of an allocation rule A that

maps a vector of reported valuation functions (v̂1, . . . , v̂n) to a feasible allocation

S ∈ S and a payment rule p which maps a vector of reported valuation functions

to payments for each player. We allow for randomized allocation and payment rules.

We say that a randomized mechanism is truthful if each agent maximizes her

expected payoff by reporting her valuation function truthfully, regardless of other

agents’ reports.

Definition 6. A randomized mechanism is said to be truthful if A and p satisfy:

E[vi(A(vi, v̂−i))− pi(vi, v̂−i)] ≥ E[vi(A(v′i, v̂−i))− pi(v
′
i, v̂−i)]

for every agent i, reported valuation v′i and other agents reported valuations v̂−i.

Lemma 2 together with Dughmi (2011) implies that there exists a truthful, ran-

domized mechanism that provides a (1 − 1/e)-approximation and runs in expected

polynomial time.

Proposition 4. There exists a truthful, randomized (1 − 1/e)-approximation mecha-

nism for the policymaker’s problem.

Proof. The proof follows from lemma 2 and Theorem 3.1 in Dughmi (2011), which

shows that such a mechanism exists for CPP with coverage valuations.

For completeness, we provide a succinct description of the mechanism pro-

posed in Dughmi (2011). Consider the following integer programming formulation

of the CPP problem faced by the policymaker:

max
x

W (x) =
n∑

i=1

vi(x); (PM-k)

s.t.

n∑
i=1

xi ≤ k,

xi ∈ {0, 1}, ∀i ∈ N .

where vi(x) = v0i xi +
∑

j∈N αjiEjixjxi +
∑

j∈N Ejixj(1− xi).
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We consider a natural relaxation to the polytope P = {x ∈ Rn |
∑n

i=1 xi ≤ k , 0 ≤
x ≤ 1}. Solving the relaxed problem efficiently is not feasible as the above optimiza-

tion problem is not convex. The novelty in Dughmi (2011) and Dughmi et al. (2011)

approach is defining a randomized rounding scheme r(x) that renders the objective

concave and maximizes directly on the output of the rounding scheme rather than

on its input. The rounding scheme maps points from P to feasible solutions S. Since

r is randomized it induces a distribution over S for each x ∈ P .19 We can then write

(PM-k) as:20

max
x

ES∼r(x)

[
n∑

i=1

vi(S)

]
(5)

s.t.
n∑

i=1

xi ≤ k,

xi ∈ [0, 1], ∀i ∈ N .

The rounding scheme proposed in Dughmi (2011), referred to as the k-bounded-

lottery rounding scheme, works as follows: given x ∈ P , take k independent random

draws on N∪{0} from a distribution where, in each draw, i is chosen with probability

xi/k (and 0 is chosen with probability 1−
∑

i∈N xi/k). The resulting allocation S con-

sists of agents i that were chosen in at least one draw (where choosing 0 in one draw

is interpreted as not choosing any agent). By construction, this rounding scheme

yields a set S of size of at most k. Moreover, note that agent i ∈ N is included in the

realized set S with probabilibility 1− (1− xi

k
)k.21

Dughmi (2011) shows that for coverage valuations the objective in (5) is con-

cave. Moreover, this rounding scheme yields a 1 − 1/e approximation for submodu-

lar valuations. Taken together with VCG payments this yields a truthful, randomized

(1− 1/e)-approximation mechanism for the policymaker’s problem.

5.2 Item Bidding with VCG Payments

In this section, we study a more "practical" item bidding mechanism with VCG-

based payments. The practicality of this mechanism stems from the reduced

communication complexity imposed on agents when reporting valuations and the

19The standard approach is to maximize a simple extension of W (·) to P . This yields an optimal
fractional solution x∗ which is then rounded to an integer solution by r(x∗). However, this approach
is often incompatible with truthful mechanisms. The truthfulness in expectation follows immediately
from the allocation rule being maximal-in-distributional-range (MIDR).

20Note that we reformulate vi to be defined over feasible sets S.
21The probability that i is not chosen in one particular draw is 1− xi

k . Thus, the probability that i is
not chosen in any of the k independent draws is (1− xi

k )k.
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straightforward allocation rule.22 However, being non-truthful, this mechanism re-

quires agents to take strategic actions and reason through the mechanism.23

The items in our setting correspond to agents receiving the resource. Each agent

i ∈ N submit a bid vector bi = (b1i , · · · , bni ) , where bji is the bid i places on agent j

being allocated a unit of the good. Let Bj =
∑n

i=1 b
j
i be the sum of bids placed on

agent j receiving a unit of the good. The item bidding mechanism chooses the k

agents with the highest sum of bids. For a profile of bids b ∈ Rn×n
+ let S(b) be the

chosen set of agents. The payment of an agent i is given by the Clarke pivot rule:

pi(b) =
∑
k ̸=i

∑
j∈S(0,b−i)

bjk −
∑
k ̸=i

∑
j∈S(bi,b−i)

bjk (6)

The utility of agent i from a profile of bids b is defined as ui(b) = vi(S(b)) − pi(b),

where vi(S(b)) = v0i +
∑

j∈S(b) αjiEji if i ∈ S(b) and vi(S(b)) =
∑

j∈S(b) Eji otherwise.

We impose a standard no overbidding assumption, meaning that for any subset of

items, the sum of bids submitted by an agent cannot exceed his valuation for it.24

We analyze two main solution concepts: Pure Strategy Nash Equilibrium (PSNE)

and Bayes-Nash Equilibrium (BNE). The definitions and analysis for Bayes-Nash

Equilibrium can be found in Appendix B.

A bid profile b is a Pure Strategy Nash Equilibrium if for all agents i and any fea-

sible deviation b′i the following holds:

u(bi, b−i) ≥ u(b′i, b−i)

Pure Strategy Nash Equilibrium assumes a full information model, where agents’

valuations are commonly known.

We denote the welfare function by W (S) =
∑n

i=1 vi(S). Let SOPT be the optimal

subset of agents to be allocated given the cardinality constraint |S| ≤ k. The Price of

Anarchy (PoA) for PSNE is the ratio of the worst-case welfare in equilibrium and that

of the optimal allocation:

min
b:a PSNE

W (S(b))

W (SOPT )

When we refer to the Price of Anarchy of the item bidding mechanism, we mean

the minimum PoA across all possible valuation functions {vi(S)}ni=1 and number of

items k.
22In the item bidding mechanism, each agent needs to provide n values, where n is the number of

agents. For agents’ valuations in the policymaker’s problem provided in equation 1, each agent needs
to provide 2n values, and for general submodular valuations 2n − 1 values are needed.

23Furthermore, in the item bidding mechanism, the computational burden is transferred from the
policymaker to the agents.

24Formally, we require that
∑

j∈S bji ≤ vi(S) for every agent i ∈ N and S ⊆ N .
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We begin the analysis of the item bidding mechanism by showing that there ex-

ists an optimal PSNE for the policymaker’s problem. This result does not require the

no overbidding assumption

Proposition 5. There exists a pure strategy Nash equilibrium b such that S(b) = SOPT

for the policymaker’s problem under the item bidding mechanism with VCG pay-

ments. Moreover, at this equilibrium agents bid their valuation for the optimal al-

location, i.e.
∑n

i=1 b
j
i = vi(S

OPT ) for every i ∈ N .

Proof. Let SOPT be the optimal subset of agents to be allocated. We will show that

the following bidding profile

bji =



v0i , i, j ∈ SOPT , i = j

αjiEji, i, j ∈ SOPT , i ̸= j

Eji, i /∈ SOPT , j ∈ SOPT

0, otherwise

(7)

is a PSNE. It is immediate that S(b) = SOPT and that pi(b) = 0 for all i ∈ N since

Bj = 0 for any j /∈ SOPT . Assume by contradiction that b is not a PSNE. Then there

exists an agent i with a profitable deviation b
′
i such that ui(b

′
i, b−i) = vi(S(b

′
i, b−i)) −

pi(b
′
i, b−i) > vi(S

OPT ) = ui(b). From the definition of the payment rule we have that

pi(b
′
i, b−i)) =

∑
k ̸=i

∑
j∈S(0,b−i)

bjk −
∑

k ̸=i

∑
j∈S(b′i,b−i)

bjk. Plugging agent i’s payment after

the deviation and re-arranging terms we have

vi(S(b
′

i, b−i)) +
∑
k ̸=i

∑
j∈S(b′i,b−i)

bjk > vi
(
SOPT

)
+
∑
k ̸=i

∑
j∈S(0,b−i)

bjk

=⇒ vi(S(b
′

i, b−i)) +
∑
k ̸=i

∑
j∈S(b′i,b−i)

bjk >

n∑
i=1

vi
(
SOPT

)
Where the second inequality follows from the observation that S(0, b−i) = SOPT and

that under the bidding profile b all agents are bidding their true valuation for the

optimal allocation. Next, we show that∑
k ̸=i

∑
j∈S(b′i,b−i)

bjk ≤
∑
k ̸=i

vk(S(b
′

i, b−i))
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The inequality above follows from the observation that for any agent k ̸= i:

∑
j∈S(b′i,b−i)

bjk =


v0k +

∑
j∈SOPT∩S(b′i,b−i)

αjkEjk, k ∈ SOPT ∩ S(b
′
i, b−i),∑

j∈SOPT∩S(b′i,b−i)
αjkEjk, k ∈ SOPT and k /∈ S(b

′
i, b−i)∑

j∈SOPT∩S(b′i,b−i)
Ejk, k /∈ SOPT

Which implies that for any agent k ̸= i,
∑

j∈S(b′i,b−i)
bjk ≤ vk(S(b

′
i, b−i)). Thus, we have

that
n∑

i=1

vi(S(b
′

i, b−i)) >
n∑

i=1

vi
(
SOPT

)
Contradicting the optimally of SOPT .

This result shows that the Price of Stability, the ratio of the best-case equilibrium

and that of the optimal allocation, is 1. Moreover, it proves existence of PSNE for the

policymaker’s problem under the proposed mechanism. However, this does not rule

out the existence of "bad" equilibria in terms of efficiency loss.

Proposition 6. The PSNE price of anarchy of the item bidding mechanism with VCG

payments is 1
n

.

Proof. The proof is carried out in two parts. We first give a 1
n

lower bound on the

PSNE PoA and then provide an example to show that the bound is tight.

Let b be a PSNE and denote by S(b) = S the resulting allocation. Since b is a

PSNE, no agent has a profitable deviation. This implies that for any agent i and any

deviation b
′
i that results in the optimal allocation, i.e., S(b

′
i, b−i) = SOPT , the following

holds

vi(S)− pi(bi, b−i) ≥ vi(S
OPT )− pi(b

′

i, b−i)

=⇒ vi(S) +
∑
k ̸=i

∑
j∈S(bi,b−i)

bjk ≥ vi(S
OPT ) +

∑
k ̸=i

∑
j∈S(b′i,b−i)

bjk

Summing over all agents we have that

n∑
i=1

vi(S) +
∑
k ̸=i

∑
j∈S(bi,b−i)

bjk

 ≥
n∑

i=1

vi(S
OPT ) +

∑
k ̸=i

∑
j∈S(b′i,b−i)

bjk


=⇒ W (S) +

n∑
i=1

∑
k ̸=i

∑
j∈S(bi,b−i)

bjk ≥ W (SOPT )
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Using the no overbidding assumption we note that

n∑
i=1

∑
k ̸=i

∑
j∈S(bi,b−i)

bjk ≤ (n− 1)
n∑

i=1

vi(S) = (n− 1)W (S)

Thus,

nW (S) ≥ W (SOPT )

Which proves a 1
n

lower bound on the PSNE price of anarchy.

Next, we provide an example that shows that the bound is tight. Let N = N1∪N2

where N1 = {1} and N2 = {2, . . . , n} and let k = 1. Agents have identical private

values, i.e., v0i = v for all i ∈ N . The adjacency matrix of externalities is defined as

follows:

Eij =

v, i = 1, j ∈ N2

0, otherwise

Finally, we set αij = 0 for all i, j ∈ N . Let b be defined as follows:

bji =

v, i = j = 2

0, otherwise

Then b is a PSNE and S(b) = {2} and the ratio between the welfare in this equilibrium

and that of the optimal allocation, SOPT = {1}, is 1
n

.

The analysis of the item bidding mechanism with VCG payments shows that

while the best case equilibrium is efficient, there is a wide range of potential pure

strategy Nash equilibria in terms of efficiency guarantee. In Appendix B we assume

that agents’ valuations are not common knowledge and extend the analysis pre-

sented here to Bayes-Nash equilibrium. We show that the worst-case BNE provides

a performance guarantee that lies between 1
n+1

and 1
n

.

6 Conclusion

This paper studies the problem of allocating a good or a service that is in limited

supply when the allocation entails externalities. The literature on mechanism de-

sign has developed an extensive framework for designing efficient allocation mecha-

nisms taking into account individuals’ private values. However, far less attention has

been given to the role of externalities. In this paper, we focus on the role of allocative

externalities in the design of efficient allocation mechanisms. Including externali-

ties results in a computationally hard problem for which exact optimization is not
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tractable. We thus turn to practical mechanisms that approximate the optimal solu-

tion and provide performance guarantees.

The connections established in this paper between designing efficient mecha-

nisms in the face of allocative externalities and the well-known Combinatorial Pub-

lic Project problem, as well as simple mechanisms such as item bidding, shed light

on why mechanism design with externalities is a hard problem and might offer a for-

mal framework for analyzing the role of externalities in mechanism design. We view

the work presented in this paper as another step towards a broader understanding of

mechanism design in the face of externalities.
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Appendix A: Proofs

Proof of Theorem 2.

The proof proceeds by a series of steps.

Step 1: Re-writing the Welfare Objective Function.

We begin by re-writing the welfare objective function in the following way:

W (x) =
n∑

i=1

v0i xi +
∑
i,j∈N

Eij (xi − (1− αij)xixj)

=
n∑

i=1

(
v0i +

n∑
j=1

(1− αji)Eji −
n∑

j=1

(1− αji)Eji

)
xi +

∑
i,j∈N

Eij (xi − (1− αij)xixj)

=
∑
i,j∈N

Eij(xi + (1− αij)xj − (1− αij)xixj) +
n∑

i=1

(
v0i −

n∑
j=1

(1− αji)Eji

)
xi

where the second equality follows immediately from re-arranging terms.

Therefore, the policymaker’s problem can be written as:

max
x

W (x) =
∑
i,j∈N

Eij(xi + (1− αij)xj − (1− αij)xixj) +
n∑

i=1

(
v0i −

n∑
j=1

(1− αji)Eji

)
xi

s.t.
n∑

i=1

xi = k,

xi ∈ {0, 1}, ∀i ∈ N .

Step 2: A Linear Relaxation and the Performance Guarantee.

The policymaker’s problem can be formulated as the following integer program:

max
x

L(x) =
∑
i,j∈N

Eij min{xi + (1− αij)xj, 1}+
n∑

i=1

(
v0i −

n∑
j=1

(1− αji)Eji

)
xi (LP)

s.t.

n∑
i=1

xi = k,

xi ∈ {0, 1}, ∀i ∈ N .

It is easy to check that if xOPT is an optimal solution to the policymaker’s prob-

lem then it must also be an optimal solution to (LP). We relax the integer program to

a continuous one by replacing the binary constraints with 0 ≤ xi ≤ 1. Let x∗ be an

optimal fractional solution to the relaxed linear program. We claim that:

30



W (x∗) ≥


3/4L(x∗), αmin ≤ 0.5

(1− αmin + α2
min)L(x

∗), αmin > 0.5

It suffices to check that for all pairs i, j ∈ N the following holds

xi + (1− αij)xj − (1− αij)xixj

≥


3/4 (min{(xi + (1− αij)xj), 1}) , αij ≤ 0.5

(1− αij + α2
ij) (min{(xi + (1− αij)xj), 1}) , αij > 0.5

(8)

Assume first that xi + (1 − αij)xj < 1. For αij ≤ 0.5, we get that (8) is equivalent to

xi + (1− αij)xj ≥ 4(1− αij)xixj , which follows from:

xi + (1− αij)xj ≥ (xi + (1− αij)xj)
2 ≥ 4(1− αij)xixj

For the case where αij > 0.5 we get that (8) is equivalent to xi+(1−αij)xj ≥ xixj

αij
.

The inequality trivially holds for xi = 0 or xj = 0. For xi ̸= 0 and xj ̸= 0, we can

rewrite the inequality as:
xi + (1− αij)xj

xixj

≥ 1

αij

The expression on the left side attains a global minimum at xi = αij and xj = 1

and, thus, the inequality holds for this case.

Next assume that xi+(1−αij)xj ≥ 1. For the case whereαij ≤ 0.5, we have that (8)

is equivalent to xi+(1−αij)xj−(1−αij)xixj ≥ 3/4. Since xi+(1−αij)xj−(1−αij)xixj

attains a global minimum at xi =
1
2

, xj =
1

2(1−αij)
, the inequality holds for this case.

For αij > 0.5, we have that (8) is equivalent to xi + (1 − αij)xj − (1 − αij)xixj ≥
1−αij +α2

ij . The expression on the left side attains a global minimum at xi = αij and

xj = 1 and, thus, the inequality also hold for this case.

Step 3: Pipage Rounding.

In this step we round the fractional solution, x∗, to an integral one, using a determin-

istic rounding method known as "pipage" rounding.

We start by defining the following function:

ϕ(ϵ, x, i, j) = W (x1, . . . , xi + ϵ, . . . , xj − ϵ, . . . , xn)

We say that this function satisfies the ϵ-convexity condition if it is convex with

respect to ϵ ∈ [−min{xi, 1 − xj},min{1 − xi, xj}] for any pair of indices i and j and

each x ∈ [0, 1]n.

Notice that for each pair of indices i and j the function ϕ(ϵ, x, i, j) is the sum of
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Eij(−(1−αij)(xi + ϵ)(xj − ϵ)) +Eji(−(1−αji)(xj − ϵ)(xi + ϵ)) and a term linear in ϵ. It

follows that ϕ(ϵ, x, i, j) is a quadratic polynomial in ϵ with a non-negative leading co-

efficient for each pair of indices i and j and each x ∈ [0, 1]n. Thus, ϕ(ϵ, x, i, j) satisfies

the ϵ-convexity condition.

If the solution x∗ is not binary, then due to the feasibility constraint
∑n

i=1 xi = k,

it has at least two different components xi and xj with values lying strictly between 0

and 1. By the ϵ-convexity condition, ϕ(ϵ, x, i, j) ≥ W (x) either for ϵ = −min{xi, 1−xj}
or for ϵ = min{1 − xi, xj}. Thus, we obtain a new feasible solution x̂ = (x1, . . . , xi +

ϵ, . . . , xj − ϵ, . . . , xn) with a smaller number of noninteger components and such that

W (x̂) ≥ W (x∗). Repeating this step at most n − 1 times yields a binary solution x′

with

W (x′) ≥ W (x∗)

which completes the proof.

Proof of Lemma 1.

Let x and x̂ be two allocations such that x ≤ x̂. This implies x̂i = 1 if xi = 1, for all

i ∈ N . Let j ∈ N be such that x̂j = 0 and hence xj = 0. Finally, let x ∪ {j} be the

allocation that allocates a unit of the good to agent j as well as to those who were

allocated in allocation x. Then, we have that,

W (x ∪ {j})−W (x) = v0j +
∑
k∈N

Ejk(1− xk)−
∑
k∈N

(1− αkj)Ekjxk

≥ v0j +
∑
k∈N

Ejk(1− x̂k)−
∑
k∈N

(1− αkj)Ekjx̂k

= W (x̂ ∪ {j})−W (x̂)

where the inequality follows from x̂i = 1 if xi = 1, for all i ∈ N .

Proof of Proposition 3.

We start with the following definition of the total curvature of a monotone submod-

ular set function W : 2x → R+.

Definition 7 (Total Curvature). The total curvature of a set function W (·) is a param-

eter c ∈ [0, 1] such that

c = 1− min
S, j /∈S

W (S ∪ {j})−W (S)

W ({j})
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The total curvature reflects how much the marginal value of W (S ∪ {j}) can

decrease as a function of S ⊆ X. We will use the following result which will be key in

our proof.

Theorem 3 (Conforti and Cornuéjols (1984)). If X is a uniform matroid and U has

a total curvature of c, then

W (aG) ≥ 1

c

(
1− 1

ec

)
W (a∗) (9)

In the policymaker’s problem (PM-k) the constraint induces a uniform matroid

of exactly k elements. The total curvature of the welfare function is given by

c = 1−min
j∈N

W ({N \ {j}} ∪ {j})−W ({N \ {j})
W ({j})

= 1−min
j∈N

v0j −
∑

i∈N(1− αij)Eij +
∑

i∈N αjiEji

v0j +
∑

i∈N Eji

Notice that

min
j∈N

v0j −
∑

i∈N(1− αji)Eij +
∑

i∈N αijEji

v0j +
∑

i∈N Eji

≥ min
j∈N

v0j − (1− αmin)
∑

i∈N Eij + αmin

∑
i∈N Eji

v0j +
∑

i∈N Eji

= min
j∈N

(1− αmin)(v
0
j −

∑
i∈N Eij)

v0j +
∑

i∈N Eji

+ αmin

≥ min
j∈N

(1− αmin)(v
0
j − γinv

0
j )

v0j + γoutv0j
+ αmin

=
(1− αmin)(1− γin)

1 + γout
+ αmin

Therefore we have that,

c ≤ (1− αmin)(γin + γout)

1 + γout

Finally, note that 1
c

(
1− 1

ec

)
is a decreasing function of c, for c ∈ [0, 1], and thus the

inequality in (9) holds for c = min{ (1−αmin)(γin+γout)
1+γout

, 1}.
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Appendix B: Item Bidding Mechanism: Bayes-Nash

Equilibrium

In this section, we examine the price of anarchy of Bayes-Nash equilibrium (BNE).

BNE is the standard solution concept when it is assumed that agents’ valuations are

not common knowledge. Let Vi denote agent i’s possible valuations. The valuation

profile v = (v1, . . . , vn) is drawn from a product distribution F = F1 × F2 · · · × Fn over

the set V = V1 × V2 · · · × Vn, where F and V are common knowledge. A Bayes-Nash

equilibrium is a profile of strategies b(v) = (bi(vi))i∈N such that for each agent i ∈ N ,

vi ∈ Vi and any deviation b′i(vi):

Ev−i∼F−i
[ui(bi(vi), b−i(v−i)] ≥ Ev−i∼F−i

[ui(b
′
i(vi), b−i(v−i)]

Let W (S, v) =
∑n

i=1 vi(S) be the welfare function given the valuation profile v.

Denote by SOPT (v) the optimal subset of agents to be allocated given the cardinality

constraint |S| ≤ k and valuation profile v. The Price of Anarchy (PoA) for BNE is

the ratio of the worst-case expected welfare in equilibrium and that of the optimal

allocation.

min
b: a BNE

Ev∼F [W (S(b(v)), v)]

Ev∼F [W (SOPT (v), v)]

When we refer to the Bayes-Nash Price of Anarchy of the item bidding mecha-

nism, we mean the minimum PoA across all possible valuation sets V , distributions

F and number of items k.

From Proposition 6 we know that the BNE price of anarchy must be at most 1
n

.25

We provide an upper bound of 1
n+1

by utilizing the smoothness framework developed

by Roughgarden (2012) for incomplete information games. We adjust Roughgarden

(2012) definition of smooth games to our setting as presented in Markakis and Telelis

(2017).

Definition 8 (Roughgarden (2012)). A mechanism is (λ, µ)–smooth with respect to a

bidding function b∗ : V → Rn×n if

n∑
i=1

ui(vi; S(b
∗
i (v), b

′
−i)) ≥ λ

n∑
i=1

vi(S(b
∗(v)))− µ

n∑
i=1

v′i(S(b
′))

for every valuation profiles v, v′ ∈ V , and every bidding profile b′ that satisfies no over

bidding with respect to v′.
25This observation is immediate since the analysis of PSNE is a special case of BNE in which the

product distribution is degenerate.
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Theorem 4 (Roughgarden (2012)). If a mechanism is (λ, µ)–smooth with respect to a

bidding function b(·) that maximizes W (S(b)), then the Bayes-Nash equilibrium price

of anarchy is at least λ
µ+1

.

The bidding profile provided in the proof of Proposition 5 can be easily con-

verted into a bidding function that maximizes welfare with respect to any valuation

profile. We show that the item bidding mechanism with VCG payments is (1, n)–

smooth with respect to that function.

Proposition 7. The item bidding mechanism with VCG payments is (1, n)–smooth

with respect to the bidding function (7).

Proof. Let v, v′ ∈ V be two profiles of valuations. Denote by b∗(v) = b∗ be the bidding

profile from (7). For any bidding profile b′ that satisfies no over bidding with respect

to v′ we have that

ui(vi ; S(b
∗
i , b

′
−i)) = vi(S(b

∗
i , b

′
−i))− pi(b

∗
i , b

′
−i)

= vi(S(b
∗
i , b

′
−i))−

∑
k ̸=i

∑
j∈S(0,b′−i)

bjk +
∑
k ̸=i

∑
j∈S(b∗i ,b′−i))

bjk

≥
n∑

k=1

∑
j∈S(b∗i ,b′−i))

bjk −
∑
k ̸=i

∑
j∈S(0,b′−i)

bjk

where the last inequality follows from no overbidding. Next, note that

∑
k ̸=i

∑
j∈S(0,b′−i)

bjk ≤
n∑

k=1

∑
j∈S(b′i,b′−i)

bjk

This inequality holds due to the allocation rule of the item bidding mechanism.

Moreover, from the definition of the bidding profile (7) and using the definition of

the allocation rule again, the following also holds:

n∑
k=1

∑
j∈S(b∗i ,b′−i))

bjk ≥ vi(S(b
∗))
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Using the two inequalities above:

ui(vi ; S(b
∗
i , b

′
−i) ≥

n∑
k=1

∑
j∈S(b∗i ,b′−i))

bjk −
∑
k ̸=i

∑
j∈S(0,b−i)

bjk

≥ vi(S(b
∗))−

n∑
k=1

∑
j∈S(b∗i ,b−i)

bjk

≥ vi(S(b
∗))−

n∑
k=1

vk(S(b
′))

where the last inequality follows from no overbidding. Summing over all agents:

n∑
i=1

ui(vi; S(b
∗
i (v), b

′
−i)) ≥

n∑
i=1

vi(S(b
∗(v))− n

n∑
i=1

v′i(S(b
′))

Proposition 7 immediately implies a lower bound on the price of anarchy for

BNE.

Corollary 3. The Bayes-Nash price of anarchy of the item bidding mechanism with

VCG payments is at least 1
n+1

.

Corollary 3 together with Proposition 6 imply that the BNE Price of Anarchy lies

between 1
n+1

and 1
n

.
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