



### APLICAÇÃO DA PIEZOELETRICIDADE NA CIRURGIA ODONTOLÓGICA: REVISÃO DE LITERATURA

<u>Lucas Andeilson dos Santos Matos</u><sup>1</sup>, Rafaela Alves Castro<sup>2</sup>, Karla Geovanna Ribeiro Brígido<sup>3</sup>, Jandenilson Alves Brígido<sup>4</sup>

<sup>1</sup>Centro Universitário Fametro - UNIFAMETRO, (lucasmmatos@outlook.com)

<sup>2</sup> Centro Universitário Fametro - UNIFAMETRO, (rafaelacastro.odonto@gmail.com)

<sup>3</sup> Centro Universitário Fametro - UNIFAMETRO, (karlageovannarb@gmail.com)

<sup>4</sup>Centro Universitário Fametro - UNIFAMETRO, (jandenilson@hotmail.com)

#### Resumo

Introdução: A modernidade tecnológica tem contribuído para a evolução na área da saúde, desde a criação de técnicas mais eficientes, até o incremento de aparelhos mais desenvolvidos. Na odontologia não é diferente, e dentre as técnicas empregadas na cirurgia odontológica, uma que vem ganhando destaque é a utilização do ultrassom cirúrgico piezoelétrico, que promove mais segurança e corta o tecido duro, sem causar danos ao tecido mole. Objetivo: Este estudo avaliou a utilização do instrumento piezoelétrico para realização de cirurgias odontológicas e identificar quais os benefícios clínicos encontrados com o uso desta técnica. Método: Trata-se de uma revisão da literatura, na qual foram feitas buscas na Biblioteca Virtual em Saúde e portal eletrônico PubMed, utilizando as palavras-chaves "Piezoelectric", "Dentistry", "Surgery", associados ao operador booleano AND. Após a leitura dos artigos na íntegra e com base nos critérios de elegibilidade estabelecidos, selecionou-se onze artigos para compor este estudo. Resultados: A utilização da piezoeletricidade na cirurgia se dá quando as vibrações são transferidas para as pontas do dispositivo, auxiliando na realização de osteotomias e criando um corte preciso no tecido ósseo. A cirurgia realizada com o ultrassom piezoelétrico também confere ao paciente sequelas clínicas pós-operatórias mais brandas. Todavia, a piezocirurgia também tem suas desvantagens, pois o dispositivo possui tempo superior para o corte do osso e um custo mais elevado, quando comparado ao instrumento cirúrgico convencional. Considerações finais: A piezoeletricidade pode ser um grande aliado à cirurgia odontológica, proporcionando inúmeros benefícios e trazendo mais segurança ao operador. Deste modo, apesar das desvantagens analisadas, o dispositivo piezoelétrico se mostra mais eficiente que o sistema rotatório convencional.

Palavras-chave: Piezoelectric; Dentistry; Surgery

Área Temática: Inovações e Tecnologia na Área Clínica e Cirúrgica.

Modalidade: Resumo expandido





### 1 INTRODUÇÃO

A modernidade tecnológica tem contribuído para a evolução na área da saúde, desde a criação de técnicas mais eficientes, até o incremento de aparelhos mais desenvolvidos. Na odontologia não é diferente, principalmente quando se falado da cirurgia, em que, a partir da otimização dos procedimentos e materiais, é possível obter um sucesso clínico mais efetivo, que abrangem desde o processo de cicatrização e dor pós-operatória, até a ergonomia do operador (MAGLIONE et al., 2019).

Dentre as técnicas empregadas na cirurgia odontológica, uma que vem ganhando destaque é a utilização do ultrassom cirúrgico piezoelétrico (TUNÇER et al., 2018). A técnica foi desenvolvida por Tomaso Vercellotti em 1988 e funciona através de micro vibrações de bisturis em frequência ultrassônica (AL-DELAYME, 2019). E ainda, quando comparado aos instrumentos convencionais, a piezocirurgia promove mais segurança e corta o tecido duro, sem causar danos ao tecido mole (SILVA et al., 2020).

#### 2 OBJETIVO

O presente trabalho teve como objetivo avaliar a utilização do instrumento piezoelétrico para realização de cirurgias odontológicas e identificar quais os benefícios clínicos encontrados com o uso desta técnica.

### 3 **MÉTODO**

Trata-se de uma revisão da literatura, na qual foram feitas buscas por meio da Biblioteca Virtual em Saúde (BVS) e do portal eletrônico PubMed, utilizando as palavraschave "Piezoelectric", "Dentistry", "Surgery", associados ao operador booleano *AND*.

Os critérios de inclusão adotados foram: publicações originais, no idioma inglês, publicados nos últimos cinco anos, com texto completo disponível. E como critérios de exclusão estabelecidos: artigos duplicados e estudos de revisões.

### 4 RESULTADOS E DISCUSSÃO

Após buscas bibliográficas, gerou-se um total de 39 publicações, distribuídas pela BVS (10) e PubMed (29), em que foi efetuada a leitura de títulos e resumos, selecionou-se 14 artigos. Assim, foi realizada a leitura dos artigos na íntegra e com base nos critérios de elegibilidade estabelecidos, excluiu-se 3 e foi selecionado onze para compor este estudo (Tabela 1).

## REONAIS

### Congresso Nacional de Inovações em Saúde doity.com.br/congis2021



**Tabela 1.** Artigos selecionados para estudo.

| AUTOR<br>PRINCIPAL/<br>ANO | PERIÓDICO                                            | TIPO DE<br>ESTUDO                                                | OBJETIVO/TEMÁTICA                                                                                                                                                                                                                                                          |
|----------------------------|------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AL-<br>DELAYME,<br>2019    | The Saudi Dental<br>Journal                          | Estudo clínico<br>cego,<br>randomizado e<br>controle             | Avaliar o desempenho, a sequela pós-<br>operatória e a qualidade de vida após a<br>remoção de terceiros molares inferiores<br>impactados por meio de cirurgia<br>piezoelétrica em comparação com a<br>osteotomia rotatória convencional.                                   |
| D'AGOSTIN<br>et al., 2019  | Journal of<br>Craniofacial<br>Surgery                | Estudo<br>retrospectivo                                          | Avaliar a incidência de longo prazo e gravidade do distúrbio neurossensorial do nervo alveolar inferior após osteotomia sagital bilateral do ramo mandibular realizada com piezocirurgia.                                                                                  |
| SILVA et al.,<br>2020      | Medicina Oral,<br>Patologia Oral y<br>Cirurgia Bucal | Estudo clínico<br>prospectivo,<br>randomizado e<br>"boca aberta" | Avaliar os efeitos de elevação do retalho de tecido mole, osteotomia e odontosecção usando piezocirurgia versus técnica convencional em extrações de terceiros molares inferiores.                                                                                         |
| DELIBERA et al., 2020      | Case Reports in<br>Dentistry                         | Relato de caso                                                   | Demonstrar o planejamento digital para correção de sorriso gengival com preparo personalizado utilizando guia cirúrgico piezoelétrico para contorno gengival e osteotomia sem retalho.                                                                                     |
| GIBREAL,<br>2019           | BMC Oral Health                                      | Ensaio clínico<br>randomizado                                    | Comparar o decrescimento ortodôntico baseado em piezocisão dos dentes anteriores inferiores após a extração de pré-molares com o tratamento ortodôntico convencional em relação aos níveis de dor, desconforto e satisfação do paciente.                                   |
| KEYHAN et<br>al. 2019      | Maxillofacial Plastic and Reconstructive Surgery     | Estudo<br>prospectivo de<br>ensaio clínico<br>duplo-cego         | Comparar as complicações pós-<br>operatórias de cirurgias de terceiros<br>molares retidos para remoção óssea com<br>laser, equipamento piezoelétrico e<br>instrumentos rotatórios convencionais.                                                                           |
| KIM, 2020                  | Restorative<br>Dentistry &<br>Endodontics            | Relato de caso                                                   | Aplicações da 'técnica de janela óssea' cortical guiada por computador usando serras piezoelétricas que impediram qualquer dano ao nervo na realização de microcirurgia endodôntica de um molar inferior.                                                                  |
| MAGLIONE<br>et al., 2019   | BioMed Research<br>International                     | Estudo<br>observacional                                          | Verificar se havia diferenças entre o método tradicional com micromotor e brocas dedicadas e a técnica piezoelétrica com pontas dedicadas.                                                                                                                                 |
| OTAKE et al.<br>2018       | Scientific Reports                                   | Estudo<br>experimental                                           | Testar a hipótese de que o tempo de corte do dispositivo piezoelétrico é maior do que o de instrumentos rotativos, enquanto a superfície de corte do osso é mais lisa e os tecidos moles são menos danificados com a piezocirurgia sob o sistema experimental padronizado. |
| TUNÇER et al., 2018        | Korean journal of orthodontics                       | Estudo de casos clínicos                                         | Apresentar e discutir a resposta tecidual à cirurgia piezoelétrica durante a retração em massa.                                                                                                                                                                            |





| YOUNES et al., 2017 Case reports in dentistry | Relato de caso | Descrever o caso de uma lesão cística, abordada pela técnica da tampa óssea realizada com dispositivo piezoelétrico, com seguimento clínico e radiográfico de 8 meses. |
|-----------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Fonte: Elaborada pelos autores.

A utilização da piezoeletricidade na cirurgia se dá quando vibrações são transferidas para as pontas do dispositivo, auxiliando na realização de osteotomias e criando um corte no tecido ósseo, são aplicadas microvibrações ultrassônicas de 60-210μm em uma frequência de 25–30 kHz, exercendo corte seletivos no tecido mineralizado, visto que, para cortes no tecido mole, a frequência necessária deve ser superior a 50kHz, sendo esta uma das grandes vantagens da piezocirurgia (OTAKE et al., 2018).

Todos os autores deste estudo corroboram sobre a ideia de que o dispositivo piezoelétrico proporciona um corte preciso em tecidos duros, além de trazer uma maior previsibilidade e segurança no procedimento, também reduz significativamente o risco de lesar estruturas nobres, como nervos e vasos sanguíneos. Ademais, o ultrassom permite um corte mais estável quando aplicado sobre o osso, sem exercer muita força e com pouco efeito de "flutuação" da ponta do dispositivo dando ao cirurgião uma maior ergonomia (KEYHAN et al., 2019).

Somando-se ainda, devido a diminuição da área lesada, o campo operatório se mostra significativamente mais limpo, como também, graças a irrigação constante do dispositivo, aliado ao efeito de cavitação produzido pelas vibrações ultrassônicas, são geradas bolhas de gás nos vasos sanguíneos durante o corte do osso e desta forma, auxiliando no processo hemostático local (SILVA et al., 2020).

Um problema que merece a atenção no ato cirúrgico é o estresse térmico gerado pelas brocas usadas no método convencional de rotação, em decorrência disso, é possível ocorrer necrose local, prejudicando a cicatrização e regeneração alveolar. Em contrapartida, é visto que a piezocirurgia permite uma diminuição do calor produzido, causando também menos danos aos tecidos adjacentes (TUNÇER et al., 2018).

Em um estudo clínico randomizado de Al-Delayme (2019) comparando a piezocirurgia com a osteotomia rotatória convencional na cirurgia de molares terceiros inferiores, foi possível observar como o pós-operatório de pacientes submetidos a cirurgia com o ultrassom piezoelétrico foi notavelmente melhor e as sequelas clínicas de dor, inchaço e trismo foram mais brandas, conferindo uma recuperação pós-cirúrgica mais rápida. Um fato

# Congresso Nacional de Inovações em Saúde doity.com.br/congis2021



também analisado no estudo foi quanto ao som emitido pelo aparelho, os pacientes relataram que o ruído durante a piezocirurgia foi menor e as vibrações causadas são menos percebidas, com isso, causando menos estresse e ansiedade ao paciente.

Todavia, a piezocirurgia também tem suas desvantagens, o dispositivo possui um tempo superior para o corte do osso e vários autores evidenciam esta problemática. Otake *et al.* (2018) em seu artigo, ao cortar a tíbia de um rato utilizando um instrumento convencional rotativo, levou 1 minuto para o feito, enquanto utilizando um ultrassom piezoelétrico, foi necessário mais de três minutos para realizar o mesmo procedimento. Outrossim, uma outra desvantagem apresentada, é em relação ao custo do material piezoelétrico, este tem um preço mais elevado quanto comparado ao instrumento cirúrgico convencional.

### 5 CONSIDERAÇÕES FINAIS

A partir do estudo, foi possível observar como a piezoeletricidade pode ser um grande aliado à cirurgia odontológica, proporcionando inúmeros benefícios, como o corte seletivo ósseo, mantendo a integridade do tecido mole e trazendo mais segurança ao operador, além de manter um campo operatório mais limpo. A piezocirurgia também trás vantagens ao paciente, como um melhor pós-operatório e a minimização do estresse transoperatório. Deste modo, apesar das desvantagens analisadas, o dispositivo piezoelétrico se mostra mais eficiente que o sistema rotatório convencional.

### 6 REFERÊNCIAS

AL-DELAYME, R. M. A. Randomized clinical study comparing Piezoelectric Surgery with conventional rotatory osteotomy in mandibular third molars surgeries. **The Saudi Dental Journal**, v. 33, n. 1, p. 11-21, 2019.

D'AGOSTINO, A. et al. Does Piezosurgery Influence the Severity of Neurosensory Disturbance Following Bilateral Sagittal Split Osteotomy? **Journal of Craniofacial Surgery**, v. 30, n. 4, p. 1154-1162, 2019.

DE FREITAS SILVA, L. et al. Influence of surgical ultrasound used in the detachment of flaps, osteotomy and odontosection in lower third molar surgeries. A prospective, randomized, and "split-mouth" clinical study. **Medicina oral, patologia oral y cirugia bucal**, v. 25, n. 4, p. e461, 2020.

DELIBERADOR, T. M. et al. Guided Periodontal Surgery: Association of Digital Workflow and Piezosurgery for the Correction of a Gummy Smile. **Case reports in dentistry**, v. 2020, 2020.

GIBREAL, O.; HAJEER, M. Y.; BRAD, B. Evaluation of the levels of pain and discomfort of piezocision-assisted flapless corticotomy when treating severely crowded lower anterior teeth: a single-center, randomized controlled clinical trial. **BMC oral health**, v. 19, n. 1, p. 1-9, 2019.

KEYHAN, S. O. et al. Use of piezoelectric surgery and Er: YAG laser: which one is more effective during impacted third molar surgery? **Maxillofacial plastic and reconstructive surgery**, v. 41, n. 1, p. 1-10, 2019.

# RONAIS





KIM, U.; KIM, S.; KIM, E. The application of "bone window technique" using piezoelectric saws and a CAD/CAM-guided surgical stent in endodontic microsurgery on a mandibular molar case. **Restorative Dentistry & Endodontics**, v. 45, n. 3, 2020.

MAGLIONE, M. et al. Observational study on the preparation of the implant site with piezosurgery vs. drill: Comparison between the two methods in terms of postoperative pain, surgical times, and operational advantages. **BioMed research international**, 2019.

OTAKE, Y. et al. Experimental comparison of the performance of cutting bone and soft tissue between piezosurgery and conventional rotary instruments. **Scientific reports**, v. 8, n. 1, p. 1-7, 2018.

TUNÇER, N. İ. et al. Osseous outgrowth on the buccal maxilla associated with piezosurgery-assisted en-masse retraction: A case series. **Korean journal of orthodontics**, v. 48, n. 1, p. 57, 2018.

YOUNES, R. et al. Bone Lid Technique Using a Piezoelectric Device for the Treatment of a Mandibular Bony Lesion. **Case reports in dentistry**, v. 2017, 2017.