

Degradação de propranolol em meio aquoso utilizando-se processos oxidativos avançados. Pamela dos S. Benvindo (G), Lilian L. R. Silva (PQ)

*pamela.benvindo@estudante.ufjf.br, Grupo de Química Analítica BACCAN, Departamento de Química, ICE, UFJF

RESUMO

Neste estudo, investigou-se a degradação do propranolol (PROP), um fármaco amplamente prescrito para doenças cardiovasculares, que apresenta alta toxicidade e que persiste no meio ambiente por um longo período de tempo. Os estudos de degradação de PROP empregaram processos oxidativos avançados (POAs) baseados em radicais sulfato, gerados pela ativação de peroximonossulfato (PMS) por luz ultravioleta (UV). A eficiência do processo de degradação estudado foi avaliada empregando-se um espectrofotometro de absorção molecular na região do UV-Vis, variando-se a proporção PROP:PMS, o pH da solução submetida ao processo de degradação e a concentração inicial de PROP de forma a se buscar uma degradação eficiente do contaminante orgânico avaliado. As condições experimentais que proporcionaram um maior degradação de PROP foram uma proporção PROP:PMS de 1:50, pH = 7,7 e concentração inicial de PROP em solução de 1 mg/L.

Palavras-chave: propranolol, processos oxidativos avançados, radical sulfato, peroximonossulfato, degradação, UV.

Introdução

O propranolol (PROP), um \(\beta\)-bloqueador amplamente utilizado no tratamento de doenças cardiovasculares, apresenta elevada toxicidade e é frequentemente detectado em ambientes aquáticos (1,2). Devido a sua persistência no meio ambiente, os POAS baseados em radicais sulfato surgem como uma alternativa para a degradação de PROP devido ao seu alto potencial redox, boa estabilidade, meia-vida prolongada e eficácia em ampla faixa de pH, superando as limitações dos radicais hidroxila, como a instabilidade do peróxido de hidrogênio (H2O2) e exigência de pH ácido (3-6). Além disso, os radicais sulfatoainda apresentam vantagens como menor interferência de íons inorgânicos e da matéria orgânica nos processos de degradação onde são empregados (7-9). Com potencial redox semelhante aos radicais hidroxila, os radicais sulfato conseguem oxidar compostos recalcitrantes em pH moderado (10-12). A degradação de PROP utilizando PMS, ativado por radiação UV, gerando radicais sulfato (SO₄.-), revelou-se uma abordagem promissora para o tratamento de águas contaminadas com PROP.

Experimental

Condições experimentais

Foi preparada uma solução estoque contendo 100 mg/L de PROP em água deionizada, a partir da qual foram obtidas soluções de menor concentração.

Para se determinar qual a condição de reação resultaria em uma maior degradação de PROP, foram avaliadas diferentes concentrações de PROP (1, 2, 3, 4 e 5 mg/L), diferentes valores de pH da solução (3,0; 5,0; 7,7; 9,0 e 10,0) e diferentes proporções de PROP:PMS (1:10,1:20,1:30 e 1:50) durante os processos de degradação realizados. A degradação de PROP foi realizada utilizando-se um fotoreator contendo uma lâmpada de luz UVC (254 nm, 15W de potência), instalada na parte superior interna desse reator. Os experimentos foram realizados em béqueres abertos e as soluções contendo PROP foram mantidas sob agitação constante. A cada 20 minutos de reação. alíquotas do meio reacional foram retiradas e avaliadas utilizando espectrofotometria de absorção molecular na região do UV-Vis durante 120 minutos. Inicialmente, uma solução contendo 1,0 mg/L de PROP em pH= 7,7 (pH natural da solução de PROP) empregando-se diferentes proporções de PROP:PMS (1:10,1:20,1:30 e 1:50) foi submetida a luz UVC.Após se determinar a razão PROP:PMS que levaria a uma maior degradação de PROP os processos de degradação desse contaminante orgânico foram estudados empregando-se valores adicionais de pH (pH=3,0; 5,0; 9,0 e 10,0) e mantendose uma concentração fixa de PROP (1,0 mg/L). Finalmente, diferentes concentrações adicionais de PROP (2,0; 3,0; 4,0 e 5,0 mg/L) foram submetidas as condições otimizadas de reação durante 120 minutos de reação.

Resultados e Discussão

A eficiência da degradação de PROP foi significativamente afetada pela proporção PROP:PMS empregada durante os processos de degradação empregados (13). Observou-se um aumento da eficiência da degradação de uma solução contendo 1,0 mg/L de PROP com a elevação da razão PROP:PMS utilizada: 54,33% de degradação (PROP:PMS 1:10), 66,53% de degradação (PROP:PMS 1:20), 91,07% de degradação (PROP:PMS 1:30) e 97,79% de degradação (PROP:PMS 1:50), o que confirma a necessidade de excesso de PMS para alcançar maior degradação de PROP (12). Empregando-se uma razão de PROP:PMS 1:50 observou-se que a degradação de PROP foi mais favorecida em pH= 7,7 com 97,79% de remoção de PROP, seguida pela degradação observada em pH 5,0 (89,47%) e em pH 9,0 (89,72%). Em pH= 3,0 (67,54%) e em pH 10,0 (61,33%), a eficiência da degradação de PROP foi mais reduzida, devido à instabilidade dos radicais nessas condições (6,7). Isso reforça que os POAs baseados em radicais sulfato são mais estáveis em condições moderadas de pH (8,9). Quanto às concentrações de PROP avaliadas, observou-se que a eficiência de degradação foi mais acentuada quando soluções contendo 1 mg/L (97,79%), 2 mg/L(91,85%) e 5 mg/L (92,64%) de PROP foram empregadas nos experimentos, e levemente menos acentuada em soluções contendo 3 mg/L (85,6%) e 4 mg/L (84,9%) de PROP. Esses resultados são coerentes com a literatura, que destaca o PMS como um dos oxidantes mais promissores quando ativado por UV, capaz de gerar radicais sulfato altamente reativos e estáveis (7,8)

Conclusões

A degradação de PROP por POAs baseados em radicais sulfato mostrou-se eficiente na degradação desse contaminante orgânico. A melhor condição de degradação foi obtida com uma proporção PROP:PMS de 1:50, pH 7,7 e uma solução contendo concentração de 1 mg/L de PROP, atingindo 97,79% de remoção de PROP. Este estudo reforça o potencial do uso do sistema PMS/UV como uma alternativa viável para o tratamento de águas contaminadas com PROP, uma vez que promoveu uma degradação relevante de propanolol em diferentes concentrações desse contaminante orgânico, contribuindo para a redução da carga desse poluente emergente em meio aquoso.

Agradecimentos

Os autores agradecem á UFJF, á CNPq, à FAPEMIG e à CAPES.

Referências

- 1. Al-Majed, A. A.; Bakheit, A. H. H.; Abdel-Aziz, H. A.; Alajmi, F. M.; AlRabiah, H., Propranolol. In: (H. G. Brittain, ed.) Profiles of Drug Substances, Excipients and RelatedMethodology . Chapter 6, Elsevier, Cambridge, MA, 2017, pp.287–338.
- 2. Maszkowska, J; Stolte, S.; Kumirska, J.; Łukaszewicz, P.; Mioduszewska, K.; Puckowski, A.; Caban, M.; Wagil, M.; Stepnowski, P.; Białk-Bielinska, A., Sci. Total Environ., 2014, 493, 1112-1121.
- 3. Zhang, Q.; Chen, J.; Dai, C.; Zhang, Y.; Zhou, X., J. Chem. Technol. Biotechnol., 2015, 90 (4), 701–708.
- 4. Deng, Y.; Zhao, R., Curr Pollution Rep, 2015, 1, 167–176.
- 5. Huang, J.; Zhang, H., Environ. Int., 2019, 133 (Pt. A):105141.
- 6. Liu, C.; Wu, B.; Chen, X., Chem. Eng. J., 2018, 335, 865–875.
- 7. Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B., J. Phys. Chem., 1988, Ref. Data 17, 513–886.
- 8. Chen, T.; Ma, J.; Zhang, Q.; Xie, Z.; Zeng, Y.; Li, R.; Liu, H.; Liu, Y.; Lv, W.; Liu, G., Science of the Total Environment, 2019, 690, 878–890.
- 9. Graça, C. A. L., Degradation of Persistent Pesticides via Advanced Oxidation and Reductive Processes, Tese de doutorado, Universidade de São Paulo, 2017.
- 10. Yang, Y.; Cao, Y.; Jiang, J.; Lu, X.; Ma, J.; Pang, S.; Li, J.; Liu, Y.; Zhou, Y.; Guan, C., Water Research, 2019, 149, 543-552.
- 11. Hori, H.; Yamamoto, A.; Hayakawa, E.; Taniyasu, S.; Yamashita, N.; Kutsuna, S.; Kiatagawa, H.; Arakawa, R., Environmental Science & Technology, 2005, 39, 2383–2388.

 12. Song, W.; Cooper, W. J.; Mezyk, S. P.; Greaves, J.; Peake,
- B. M., Environ. Sci. Technol., 2008, 42 (4), 1256-1261.
- 13. Xia, X.; Zhu, F.; Li, J.; Yang, H.; Wei, L.; Li, Q.; Jiang, J.; Zhang, G.; Zhao, Q., Front. Chem., 2020, 8:592056