
Variable selection for minimum-variance portfolios∗

Guilherme V. Moura André P. Santos Hudson S. Torrent

November 28, 2024

Abstract

Machine learning (ML) methods have successfully identified predictor variables for
the equity premium of individual stocks. In this paper, we investigate whether ML can
also select predictors for optimal portfolio choice. We parameterize portfolio weights as a
function of a large pool of firm characteristics, including non-linear transformations, yield-
ing 4,610 predictors. Employing ML to select predictors significantly enhances portfolio
performance: minimum-variance portfolios achieve lower risk compared to sparse speci-
fications, especially when non-linear terms are included. Moreover, some ML methods
select predictors that reduce portfolio risk and enhance returns, resulting in minimum-
variance portfolios with strong performance in terms of Sharpe ratios.
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1 Introduction

Which variables are important to the portfolio construction problem, and how can they be

selected? Addressing this question is difficult considering the availability of a myriad of

predictors that seem to explain the cross-sectional patterns of stock returns (see, for instance,

Cochrane, 2011; Harvey, Liu, and Zhu, 2016; McLean and Pontiff, 2016; Hou, Xue, and Zhang,

2020). The problem becomes even more challenging when non-linear transformations, such as

interactions between covariates and high-order moments, are taken into account, which results

in an exponential increase in the predictor space. In this context, the number of features can

easily surpass the number of data points, and the application of standard statistical methods,

such as OLS, is known to perform poorly, see Nagel (2021). In this paper, we assemble a

data set with 4,610 firm-level predictors and demonstrate that machine learning (ML) variable

selection methods are capable of selecting subsets of these features that are important for the

portfolio construction problem.

Much of the literature on variable selection in empirical asset pricing considers ad-hoc sparse

specifications based on a few predetermined state variables in order to explain the cross-section

patterns of stock returns (e.g. Fama and French, 1993, 2015; Hou, Xue, and Zhang, 2015)

and to determine how they affect optimal portfolio allocations (Aït-Sahalia and Brandt, 2001).

Kozak, Nagel, and Santosh (2020) refer to this approach as “characteristics-sparse models”.

For instance, Chan, Karceski, and Lakonishok (1999) and Brandt, Santa-Clara, and Valkanov

(2009) propose portfolio allocation methods based on low-dimensional factor specifications

containing three characteristics. An obvious limitation of this approach is that many important

variables can be omitted. Two notable and recent exceptions are the works of DeMiguel, Martin-

Utrera, Nogales, and Uppal (2020) and Kozak et al. (2020) who employ high-dimensional data

sets containing a large number of characteristics and find that the number of relevant ones

for the portfolio construction problem is larger in comparison to the standard specifications

based on only a few ad-hoc characteristics. Nagel (2021) argue that “One interpretation of this

expansion in the number of factors is that the literature is slowly adjusting to the fact that

there are, indeed, relevant omitted factors.”

In this paper, we present a methodological framework for high-dimensional predictor
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selection and provide empirical evidence that enables us to establish four main conclusions

that are useful for academics and market practitioners. First and foremost, the choice of

variable selection method matters: there are substantial differences in terms of the preference

of each method with respect to specific features and to the number of features each method

selects. Second, the number of selected features that are relevant for the portfolio construction

problem exceeds the number of variables used in popular low-dimensional factor models. Third,

augmenting the predictor space with non-linear transformations of the original characteristics

leads to optimal portfolios with improved performance.1 Fourth, working with a subset of

important predictor variables results in minimum-variance portfolios that outperform their

benchmarks in terms of a lower standard deviation of out-of-sample portfolio returns.

We add to the existing literature by extending the works of Kozak et al. (2020) and DeMiguel

et al. (2020) along two dimensions. First, we raise the statistical challenge by assembling

a set of predictor variables containing the 95 firm characteristics considered in Gu et al.

(2020) and augment it with the second-order and cross-product (interaction) terms among all

characteristics, yielding a total of 4,610 predictors. This allows us to study not only whether and

to what extent non-linear functions of features that are important for portfolio construction, but

also what type non-linearity (i.e. non-linearities of individual predictors or interactions between

covariates) that are most important in helping the investor improve portfolio performance.

Existing empirical evidence (Moritz and Zimmermann, 2016; Bryzgalova, Pelger, and Zhu,

2020; Chen, Pelger, and Zhu, 2020; Freyberger, Neuhierl, and Weber, 2020; Gu, Kelly, and

Xiu, 2020, 2021) suggests that non-linear functions of firm characteristics can be an important

source of predictability of security returns. Thus, it is natural to argue whether non-linearities

are relevant and what type they may be from a portfolio choice perspective.

Our second contribution is to expand the set of variable selection methods used to identify

the most important predictors. Specifically, we consider three classes of variable selection

methods: regularization, ensembles, and Bayesian methods. While regularization methods

perform variable selection by shrinking the coefficients using the L1 regularization (or a
1Non-linear transformations have been extensively studied in the asset pricing literature. For instance,

Harvey and Siddique (2000) assume that the stochastic discount factor is quadratic in the market return. Hong,
Lim, and Stein (2000) show that momentum interact with firm size and analyst coverage: momentum strategies
declines with firm size and work better among stocks with low analyst coverage. Medhat and Schmeling (2022)
show that previous month’s return and share turnover also interact: low-turnover stocks exhibit significant
short-term reversal whereas high-turnover stocks exhibit short-term momentum.
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combination of L1 and L2 regularizations), the ensemble method considered in the paper

operates via a stagewise additive modeling procedure that iteratively estimates the model by

sequentially adding new components, with early stopping of the algorithm to avoid overfitting.

The Bayesian variable selection, on the other hand, performs regularization by specifying a prior

over the parameters, which shrinks weak signals toward zero while allowing strong signals to

remain unshrunk. Finally, as a robustness check, we implement the marginal screening method

of Fan and Lv (2008), which is computationally efficient and suitable for ultra-high dimensions

of predictors.

It is also worth highlighting three important methodological aspects of our work. First,

consistent with our interest in the portfolio choice problem, we focus on directly parameterizing

the objective of interest - portfolio weights - as a function of lagged firm-level characteristics and

their cross-products and second-order transformations, instead of predicting stock returns. This

difference is important because variables that lead to better predictions of individual security

returns in terms of higher out-of-sample R-squared do not necessarily lead to better portfolios

in terms of standard metrics such as the out-of-sample standard deviation of portfolio returns

or the portfolio’s Sharpe ratio; see Nagel (2021) for a discussion. The reason is that portfolio

performance depends on the properties of the covariance matrix of asset returns, and R-squared

measures are uninformative about those properties.2

A second important aspect of our methodology is the use of the parametric portfolio policy

approach of Brandt et al. (2009) to parameterize portfolio weights as a linear function of non-

linear transformations of lagged firm characteristics. We borrow analytical results obtained

in DeMiguel et al. (2020) and reformulate the parametric portfolio approach as a penalized

regression model that allows us to study the role played by alternative variable selection

strategies in identifying relevant predictors for the portfolio construction problem.

Finally, the third important aspect of our methodology is the focus on minimum-variance

portfolios. Several reasons motivate this choice. First, minimum-variance strategies are among
2Pástor and Stambaugh (2000) show that a model that is better for pricing is not necessarily better for

investing, because investors are usually subject to margin requirements and model uncertainty that prevent them
from implementing certain investment strategies suggested by asset pricing models. Fabozzi, Huang, Jiang, and
Wang (2024) builds on the approach developed by Pástor and Stambaugh (2000) and find that, although the
4-factor model of Hou, Xue, and Zhang (2015) is better than the 5-factor model of Fama and French (2015) at
explaining anomalies, the two models have similar performance in terms of investing.
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the most popular smart-beta strategies in the U.S. (Ang, Madhavan, and Sobczyk, 2017).3

Second, minimum-variance portfolios are less sensitive to estimation errors in expected returns

and often lead to robust performance in practice (DeMiguel and Nogales, 2009). Third, the

minimum-variance parametric portfolios can be cast as an unconstrained regression problem,

which allows for the deployment of a wide range of variable selection methods in a natural way.

Finally, arbitrary characteristic sparsity can be particularly harmful to these portfolios. This is

the case because a potentially high number of predictors can help reduce portfolio risk, even if

they do not contribute to increasing portfolio mean returns. For instance, a predictor with a low

covariance with the benchmark portfolio or with other predictors is likely to be important for

constructing a minimum-variance portfolio, even if it does not aid in increasing average portfolio

returns. We circumvent the arbitrary sparsity by considering a very large cross-section of firm

characteristics and employing variable selection methods to identify predictors that are relevant

for the minimum-variance construction problem.

We perform an empirical exercise in which we use the selected predictors from each variable

selection method to construct minimum-variance portfolios for the universe of NYSE, NASDAQ,

and NYMEX stocks and conduct an out-of-sample evaluation. The results point to a clear

superiority of the portfolios obtained with the variable selection methods in comparison to those

obtained with ad hoc sparse specifications such as the 3- and 5-factor models of Fama and French

(1993, 2015) as well as classic benchmark strategies such as the value-weighted and equally

weighted portfolios. For instance, the minimum-variance portfolios with predictors selected

using the best-performing method delivered out-of-sample returns with an annualized standard

deviation of 9.1%, and this result is further improved to 8.3% when using the augmented data set

with all non-linear predictor transformations. These figures are substantially and statistically

lower than those obtained with the 3-factor (15%) and 5-factor (14.6%) models.

We also investigate the importance of individual predictors. We find that the main effects

and interactions among market beta, different measures of return volatility, return momentum,

liquidity, and bid-ask spread are among the most important predictors. We provide an

interpretation of the predictor importance by i) identifying which aspects of the investor’s utility

the predictors contribute to the most, and ii) showing how predictor importance translates to
3A total of 18 minimum-volatility ETFs are traded in the U.S. They have $52.08 billion in assets under

management as of July 2024 (see etf.com/topics/low-volatility).
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portfolio allocations. For instance, stocks with lower liquidity receive higher weights, and

this result is stronger for stocks with lower idiosyncratic volatility. Stocks with lower market

betas receive higher weights, and this result is stronger for stocks with a higher standard

deviation of liquidity. Our results are in line with those reported in Scherer (2011), which finds

that risk-based characteristics such as market beta and idiosyncratic volatility can explain the

allocations of minimum-variance portfolios. Our paper extends those results and shows that

different measures of size, return momentum, and liquidity are also important, as well as their

interactions with different risk-based characteristics.

To assess the economic significance of the most important predictors, we examine whether

variations in their estimated parametric-portfolio coefficients are associated with fundamental

state variables that reflect market conditions, such as investor sentiment, market-wide liquidity,

and economic recession. Specifically, we use the investor sentiment index from Baker and

Wurgler (2006), the liquidity index from Pástor and Stambaugh (2003), and the NBER recession

indicator. Our analysis shows that variations in the estimated coefficients of the most influential

predictors are indeed related to these state variables. Furthermore, the variations in coefficients

associated with the main effects of predictors and the interactions between predictors tend to

be linked to different state variables, which suggests that different classes of predictors capture

distinct market attributes.

Our paper is connected to a growing literature that employs machine learning methods to

support portfolio choice decisions; see Kelly and Xiu (2023) for a recent review of the literature.

Li and Rossi (2020), DeMiguel, Gil-Bazo, Nogales, and Santos (2023), and Kaniel, Lin, Pelger,

and Van Nieuwerburgh (2023) employ ML methods to construct prediction-based portfolios

of mutual funds, whereas Gu et al. (2020) focuses on prediction-based stock portfolios. ML

methods have also been used in economic and financial forecasting. For instance, Rapach,

Strauss, and Zhou (2013), Chinco, Clark-Joseph, and Ye (2019), and Freyberger, Neuhierl, and

Weber (2020) use the lasso and the elastic net to select regressors for stock return prediction,

whereas Dong, Li, Rapach, and Zhou (2022) employs ML to predict the aggregate market excess

return. Bai and Ng (2009), Buchen and Wohlrabe (2011), Döpke, Fritsche, and Pierdzioch

(2017), and Kauppi and Virtanen (2021) use the boosting method for macroeconomic forecasts.

A common denominator across these studies is that employing variable selection methods leads
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to improved results compared to those obtained with standard statistical methods.

Our paper is mostly connected with the works of Simon, Weibels, and Zimmermann (2022)

and Lamoureux and Zhang (2024). Simon et al. (2022) formulates a mean-variance parametric

portfolio policy using a non-linear functional form based on deep neural networks. In our

paper, we preserve the linear functional form and model non-linearities via second-order and

cross-product variable transformations. While the approach of Simon et al. (2022) can capture

non-linearities in a flexible way, our method is highly interpretable and allows us to understand

not only which how many predictors survive the different variable selection processes but also

how why a selected predictor is important according to a given method. Lamoureux and Zhang

(2024) uses the parametric portfolio approach to study whether an investor with power utility

can exploit the predictability contained in a set of six characteristics. Our paper, on the other

hand, focuses on minimum-variance portfolios and considers a much larger cross-section of

predictors, which allows us to understand the extent to which ad-hoc sparsity is detrimental to

portfolio construction.

The rest of the paper is organized as follows. Section 2 describes the dataset used in the

paper. Section 3 details the portfolio strategies as well as the methods for variable selection

and regularization. Section 4 presents the results of an empirical application. Finally, Section

5 concludes.

2 Data

We use the dataset of 95 monthly firm characteristics utilized in Gu et al. (2020). The

database was downloaded from Dacheng Xiu’s homepage (https://dachxiu.chicagobooth.

edu/download/datashare.zip).4 Stock returns are sourced from CRSP. Our sample spans

from January 1970 to June 2019 (a total of 594 months).

We perform feature engineering to augment the original dataset containing the main effects

of the 95 predictors. Specifically, for each firm characteristic, we obtain the square values and
4Table A.6 of the supplementary material of Gu et al. (2020) brings additional details of the characteristics.

The supplementary material can be download at https://dachxiu.chicagobooth.edu/download/ML_supp.
pdf. Although the original data set used in Gu et al. (2020) contains 94 characteristics, the data set available
Dacheng Xiu’s homepage contains one additional characteristic, market value of equity (mve0). Although mve0
is highly correlated with another measure of firm size in the data set (mvel1), we opted to retain both variables.
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cross-products among all predictors; that is, we define pred2
i,t and predi,t × predj,t for i ̸= j to

denote the second-order and interaction effects, respectively.5 The augmented dataset contains

the predictors’ main effects, the second-order effects, and the interaction effects. The final set

contains 4,610 predictors. The total number of firms in our sample is 15,701, with the fewest

firms in January 1973 (1,443 firms) and the most firms in December 1997 (5,128 firms).

To alleviate the impact of extreme observations, we cross-sectionally winsorize each predictor

at the 1st and 99th cross-sectional percentiles, as in Green, Hand, and Zhang (2017). We also

follow Brandt et al. (2009) and standardize each predictor so that its cross-sectional mean is zero

and its standard deviation is one. Missing characteristic values are set to zero. The resultant

standardized predictor is a long-short portfolio that goes long on stocks whose characteristics

are above the cross-sectional average and short on stocks whose characteristics are below the

cross-sectional average.

We report in Table 1 descriptive statistics of the predictor returns, which are defined as

rpredt+1 = pred⊺
t rt+1

Nt

,

where predt is the standardized predictor long-short portfolio at time t, rt+1 is the vector of

stock returns at time t + 1, and Nt is the number of stocks at time t. The Table reports

the average monthly return, the standard deviation of monthly returns, the 25th and 75th

percentiles, and the correlation of the predictor return with the equally weighted and value-

weighted portfolio returns. The first four rows report aggregate values across i) all predictors,

ii) predictors’ main effects, iii) predictor’s second-order effects, and iv) predictors’ interaction

effects. The remaining rows report individual statistics for the top and bottom 10 predictors

within each category, sorted in terms of average monthly return.

The overall average monthly return of all predictors is slightly negative at -0.003%, with

a standard deviation of 0.523% and a near-zero correlation with the equally weighted and

value-weighted portfolio returns. We find similar results for the subgroups of main effects,

second-order effects, and interaction effects, except that second-order effects display higher
5The predictors Convertible debt indicator (convind), Dividend initiation (divi), Dividend omission (divo),

R&D increase (rd), Secured debt indicator (securedind), and Sin stocks (sin) are defined as binary variables and
therefore we do not consider their second-order effects. Additionally, the squared value of the predictor beta is
not computed since its second-order effect is represented by the predictor betasq.
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correlations with the equally weighted and value-weighted portfolio returns. The analysis of the

top and bottom 10 predictors within each category, on the other hand, reveals a wide variation

in performance. For instance, among the top-10 main effects, industry momentum (indmom)

shows the highest average return of 0.3%, while book-to-market (bm) shows the lowest at 0.1%.

The interaction between illiquidity and size (ill×mve0) earns the highest average return (0.9%),

whereas the interaction between short-term reversal and financial statement score (mom1m×ps)

earns the lowest (-0.4%). We also observe substantial variation (between -0.4 and 0.6) in the

correlations of the top and bottom 10 predictors with the equally weighted and value-weighted

portfolio returns.

3 Methods

We now describe the portfolio optimization framework considered in the paper, as well as the

ML methods used to identify predictors that are helpful for the portfolio minimum-variance

construction problem. First, we review the parametric portfolio policy of Brandt et al. (2009)

and its minimum-variance reformulation as an unconstrained regression problem. Second, we

discuss how alternative variable selection methods can be introduced into this framework.

Finally, we discuss the approach to interpret the importance of the selected predictors.

The parametric policy is a portfolio optimization task aimed at maximizing utility. This

is achieved by adjusting a benchmark portfolio (such as equally weighted or value-weighted

portfolios) using a series of asset-specific predictors to enhance the investor’s utility. Specifically,

the benchmark portfolio is modified by adding a weighted sum of long-short portfolios. These

portfolios are derived from K predictors that are normalized cross-sectionally to have a mean of

zero and a standard deviation of one. The parametric policy strictly involves equity investments,

explicitly excluding any allocation to risk-free assets.

The composition of the parametric portfolio at a given time t, denoted as wt(θ) ∈ RNt , is

expressed as follows:

wt(θ) = wbt + 1
Nt

K∑
k=1

xk,tθk = wbt + Xtθ

Nt

, (1)

where θ⊺ = (θ1, θ2, . . . , θK) ∈ RK is a 1 × K vector of coefficients, Xt = [x1,t, x2,t, . . . , xK,t] ∈

RNt×K represents a matrix of asset characteristics at time t, wb,t ∈ RNt is the benchmark
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portfolio at time t, xk,t ∈ RNt is the standardized long-short portfolio for the kth predictor, θk

is the associated coefficient for the kth predictor, and Nt is the total number of stocks at time

t. The standardization ensures that the average of xk,tθk across all assets is zero, leading to

an optimal portfolio where deviations from the benchmark weights sum to zero, and the total

portfolio weights are always equal to one.

The return of this parametric portfolio at a subsequent time point, t + 1, denoted as rp,t+1,

is given by

rp,t+1(θ) = rb,t+1 + θ⊺rc,t+1, (2)

where rt+1 ∈ RNt is the return vector at time t + 1, rb,t+1 = w⊺
b,trt+1 represents the benchmark

portfolio’s return, and rc,t+1 = X⊺
t rt+1
Nt

is the predictor return vector at that time. This predictor

return vector encapsulates the returns from the long-short portfolios related to the K predictors,

adjusted by the number of assets, Nt. The equation reveals that the return on the parametric

portfolio is a sum of the benchmark return and the yield from a linear combination of the

characteristic portfolios.

3.1 Minimum-variance parametric portfolios

A very large body of literature on portfolio optimization considers the minimum-variance policy;

see, for instance, Green and Hollifield (1992), Jagannathan and Ma (2003), Clarke, De Silva,

and Thorley (2006), DeMiguel and Nogales (2009), and Clarke, De Silva, and Thorley (2011)

just to name a few. This strategy performs well as it is more robust than the mean-variance

policy since it does not require estimating mean returns, which is a notoriously difficult task.

We assume a minimum-variance investor who solves the following problem:

min
θ

1
2var [rp,t+1(θ)] ≡ 1

2E
[
(ṙp,t+1(θ))2] , (3)

where ṙp,t+1(θ) is the portfolio return vector centered on zero, i.e. ṙp,t+1(θ) = rp,t+1(θ) − r̄p(θ)

and r̄p(θ) is the mean portfolio return. In practice, one minimizes the empirical version of
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eq. (3) using a sample with T observations, defined as

min
θ

1
2

1
(T − 1)

T −1∑
t=1

(ṙb,t+1 + θ⊺ṙc,t+1)2 , (4)

where ṙb,t+1 and ṙc,t+1 are, respectively, the mean-centered benchmark return and predictor

return. It is straightforward to note that the portfolio loss function in (4) can be formulated as

a regression problem. Specifically, the optimal parameter θ∗ in eq. (4) can be estimated with a

time-series regression without an intercept,

ṙb,t = −θ⊺ṙc,t + ϵt, (5)

where ϵt is the error term. The corresponding ordinary least squares (OLS) solution of (4) is

given by

θ̂ = −Σ̂−1
c σ̂bc, (6)

where Σ̂c is the sample covariance matrix of the predictor-return vector rc, and σ̂bc is the sample

vector of covariances between the benchmark portfolio return rb and the predictor-return vector

rc.6

The OLS solution of the empirical minimum-variance portfolio problem in (6) suffers from

a major drawback: when K > T , that is, when the number of predictors exceeds the number

of data points, the OLS solution is poor or unfeasible since the sample covariance matrix Σ̂c

is no longer positive definite. This poses a serious limitation to the use of standard regression

methods in estimating the parameters of the minimum-variance parametric portfolios when the

dimension of the predictor space is high.
6The regression formulation of the parametric minimum-variance portfolio problem in (5) differs from existing

portfolio-regression formulations. For instance, Britten-Jones (1999) shows that the tangency portfolio can be
obtained by a regression of a constant l onto a set of asset’s excess returns, without an intercept term. Kempf
and Memmel (2006) show that the global minimum-variance portfolio can be obtained by regressing the returns
of a given asset i onto the differences between the returns of asset i and all other assets. The portfolio-regression
formulation adopted in the paper is closer to that developed in DeMiguel et al. (2020) as it is based on the
parametric-portfolio formulation.
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3.2 Variable selection methods

We will now discuss the three classes of variable selection methods that help solve the empirical

minimum-variance parametric portfolio problem in eq. (4) in situations where the number of

predictors can exceed the number of data points. The three major classes of variable selection

procedures considered are regularization methods, Bayesian methods, and ensemble methods.

3.2.1 Regularization

We consider a formulation of the unconstrained regression in (4) in which a regularization term

is added to encourage sparsity,

min
θ

1
2

1
(T − 1)

T −1∑
t=1

(ṙb,t+1 + θ⊺ṙc,t+1)2 + Ωλ (θ) , (7)

where Ωλ (θ) defines the penalization function and λ denotes the penalization hyperparameters.

Next, we describe the five penalty-based methods used in the paper.

Ridge Hoerl and Kennard (1970) proposed the ridge estimator to reduce mean squared error

of the OLS at the cost of some bias. The idea is to add a penalty proportional to the

squared magnitude of the coefficients. The ridge penalization is defined as

Ωλ (θ) = λ
K∑

k=1
θ2

k, (8)

where λ is the regularization hyperparameter that controls the strength of the penalty.

The decrease in mean squared error compared to the OLS occurs for some intermediate

value of λ, for which the reduction in variance of θ̂ that solves (8) surpasses the bias

induced by the regularization. Ridge regression offers the advantage of a computationally

straightforward analytic solution. However, in this approach, coefficients associated with

less relevant predictors are gradually shrunk toward zero but never precisely reach it.

Consequently, ridge regression is not well suited for predictor selection (see, for example,

Masini, Medeiros, and Mendes, 2023).

Least absolute sum of squares operator (lasso) With the objective of performing vari-

able selection jointly with regularization, Tibshirani (1996) proposed the lasso, where the
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penalty is the absolute magnitude of the coefficients. The formulation becomes

Ωρ (θ) = ρ
K∑

k=1
|θk|, (9)

where ρ is the regularization hyperparameter. Due to the specific nature of the constraint

in the lasso, reducing ρ sufficiently will result in some coefficients being precisely zero.

Consequently, the lasso exhibits a form of continuous subset selection, providing a sparse

estimator of the paremeter vector θ (see, for example, Hastie, Tibshirani, Friedman, and

Friedman, 2009).

Adaptive lasso (adalasso) Although the lasso is a consistent method for variable selection

under certain conditions, there exist scenarios where the lasso is inconsistent for this

purpose. Zou (2006) proposed the adalasso regression, which is a modified version of the

lasso regression based on adaptive weights used to penalize coefficients differently,

Ωρ,ϕ (θ) = ρ
K∑

k=1
ϕk|θk|, (10)

where ϕk are weights typically set as the inverse of the absolute values of the estimates

from an initial ridge regression, and ρ is the regularization parameter. As the lasso, the

adalasso also delivers sparsity and efficient estimation algorithm, but enjoys the oracle

property (Fan and Li, 2001), meaning that it has the same asymptotic distribution as the

OLS conditional on knowing the variables that should enter the model.

Elastic net Introduced by Zou and Hastie (2005), the elastic net strategically combines the

merits of both lasso and ridge regression, and the penalization function becomes

Ωλ,ρ (θ) = λρ
K∑

k=1
|θk| + λ(1 − ρ)

K∑
k=1

θ2
k. (11)

The L1-norm term (λρ
∑K

k=1 |θk|) can be used to control the sparsity of the estimated

parameter vector θ and the L2-norm term (λ(1−ρ) ∑K
k=1 θ2

k) to increase its stability. For

the case with ρ = 0, the objective function includes only the L2-norm term, and thus,

elastic net is equivalent to ridge regression. If, on the other hand, ρ = 1, the objective
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function includes only the L1-norm term, and lasso regression is performed. The elastic

net regression can offer advantages over using either lasso or ridge alone, particularly in

the presence of correlated predictors, when it outperforms the lasso (see, for example,

Zou and Zhang, 2009).

Smoothly clipped absolute deviation (SCAD) The SCAD penalization introduced by

Fan and Li (2001) combines the strengths of both ridge and lasso by offering a penalty

that varies with the coefficient’s magnitude. The objective function can be expressed as

Ωp (θ) =
K∑

k=1
pλ(θk), (12)

where pλ(θ) is the SCAD penalty function defined as

pλ(θ) =


λ|θ| if |θ| ≤ λ,

− |θ|2−2aλ|θ|+λ2

2(a−1) if λ < |θ| ≤ aλ,

(a+1)λ2

2 if |θ| > aλ,

where a > 2 is a fixed parameter, typically set to 3.7 based on empirical evidence and λ

controls the penalty’s intensity. Unlike ridge, SCAD allows some coefficients to be exactly

zero and, unlike lasso, the larger coefficients are shrunk less severely. A drawback of the

SCAD penalty is that it is non-convex, which makes computation more difficult. We

adopt the coordinate descent algorithm for non-convex penalized regression proposed in

Breheny and Huang (2011) who provide a fast, efficient and stable algorithm for solving

(12).

3.2.2 Bayesian variable selection

From a Bayesian point of view, variable selection is accomplished by specifying a prior

distribution over the model parameters. A Bayesian counterpart to (5) can be written as

ṙb,t = −θ⊺ṙc,t + ϵt, ϵt ∼ N(0, σ2
ϵ ), θ ∼ p(θ|ω), (13)
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where p(θ|ω) defines the prior distribution over θ, and ω collects all hyperparameters. It is

interesting to note that the maximum a posteriori probability estimator, obtained by minimizing

the negative log-posterior, is equivalent to classical approaches of penalized regression, and

specific choices of prior distributions can generate all classical penalized regressions presented

above (see, for example, Bhadra, Datta, Polson, and Willard, 2019). A successful global-local

shrinkage prior is the horseshoe (Carvalho, Polson, and Scott, 2010), which can be defined as

θ ∼ p(θ|λi, τ) ∼ N(0, λ2
i ), λi|τ ∼ C+(0, τ), τ ∼ C+(0, 1), (14)

where C+ denotes the half-Cauchy density, whose support is the non-negative real line.

The main advantages of the horseshoe prior are its tail- and sparse-robustness properties.

These properties are a byproduct of its spike at zero and the heavy tails produced by the scale

mixture of normals defined by (14), which shrink weak signals toward the origin while still

allowing strong signals to remain unshrunk due to their heavy tails.

3.2.3 Ensembles

The ensemble approach to variable selection consists of integrating multiple models to identify

and select the most significant variables in a given data set. Techniques such as bagging

(Breiman, 1996) and boosting (Freund and Schapire, 1996; Zhang and Yu, 2005) are commonly

used, where models are trained on various subsets or reweighted instances of the data. In

this paper, we consider the L2-boosting method of Bühlmann and Yu (2003) which falls under

the umbrella of boosting algorithms. The L2-boosting method is based on the principle of

improving a model’s predictive power by sequentially adding weak learners across a maximum

of m∗ iterations, where m∗ is a hyperparameter that must be tuned. When the number of

covariates K in a data set is large (and when selecting a small number of relevant covariates is

desirable), boosting is usually superior to standard estimation techniques for regression models

(such as backward stepwise linear regression, which, for example, cannot be applied if K is

larger than the number of observations T ). Algorithm 1 provides a pseudocode to implement

the L2-boosting for minimum-variance parametric portfolios.7

7In Algorithm 1, θ̂[m] is the estimated value of θ obtained during the m-th iteration of the boosting algorithm,
and θ̂m is the estimated value of θ obtained after m iterations of the boosting algorithm.
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3.2.4 Choice of hyperparameters

In each estimation window, the regularization hyperparameters for ridge, lasso, elastic net, and

SCAD are determined through five-fold cross-validation, as discussed in Hastie et al. (2009,

Chapter 7). This involves setting a range of potential values for the hyperparameters. The

sample is segmented into five segments, referred to as “folds.” For each j in the range from 1

to 5, the jth fold is excluded, and the remaining four are used to generate predictions for each

hyperparameter value. The prediction error, or cross-validation error, for each hyperparameter

value is then calculated on the excluded jth fold. This procedure is repeated across all five folds.

The hyperparameter value that results in the lowest average cross-validation error is chosen.

As for the L2-boosting method, the hyperparameter of interest is the maximum number of

boosting iterations, which is analogous to an early stopping criterion. Stopping the algorithm

too early will not capture important features of the data. Terminating the process too late

can lead to the well-known issue of overfitting. We follow Hurvich et al. (1998) and Schmid

and Hothorn (2008) and employ the corrected AIC criterion to select the optimal number of

iterations, m∗,

AIC(m) = log
(
vâr

[
rm

p,t+1
])

+ 1 + dfm/t

1 − (dfm + 2)/t
, (15)

where df is the effective number of degrees of freedom after m iterations of the boosting

algorithm.8 As m increases, vâr
[
rm

p,t+1
]

decreases, and dfm increases. Therefore, the optimal

number of iterations, m∗, is the one that corresponds to the smallest AIC. Finally, we set the

step size ν to a fixed value of 0.10.

Finally, we perform full hierarchical Bayes estimation of the Bayesian regression model in

(13) and (14) and learn about the hyperparameter τ in each estimation window. Estimation is

performed using the efficient algorithm proposed by Bhattacharya, Chakraborty, and Mallick

(2016), and the global-local parameters τ and λi are updated using the slice sampler of Polson,

Scott, and Windle (2014).
8We also experimented with the five-fold cross-validation method in order to tune the maximum number of

boosting iterations for the L2-boosting method. The results in terms of portfolio performance are slightly worse
than those obtained with the corrected AIC criterion.
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3.3 Interpreting predictor importance

We are also interested in understanding how and why a selected predictor is important from a

minimum-variance portfolio construction perspective. Drawing on the approach developed in

DeMiguel et al. (2020), we rewrite the minimum-variance optimization problem in eq. (3) as a

quadratic optimization problem,

min
θ

(1/2)θ⊺Σ̂cθ + θ⊺σ̂bc, (16)

where Σ̂c is the sample covariance matrix of the predictor return vector rc, and σ̂bc is the

sample vector of covariances between the benchmark portfolio return rb and the predictor-

return vector rc. Eq. (16) decomposes the minimum-variance utility function into the variance

of the predictor return vector, (1/2)θ⊺Σ̂cθ, and the covariance of the predictor returns with

the benchmark returns, θ⊺σ̂bc. This decomposition reveals that the utility achieved by a given

method is fundamentally determined by two complementary aspects: i) the ability to select

predictors that contribute to decrease the variance-covariance of the predictor return vector,

and ii) the ability to select predictors that contribute to decrease the covariance of the predictor

return vector with the benchmark return vector.

Eq. (16) allows us to evaluate the importance of a individual predictor. For that purpose,

we calculate their marginal contributions using the first-order derivative of eq. (16),

Predictor importance = ∂

∂θ

Å1
2θ⊺Σ̂cθ + θ⊺σ̂bc

ã
(17)

= diag(Σ̂c)θ︸ ︷︷ ︸
own-var.(pred.)

+ Σ̂c − diag(Σ̂c)θ︸ ︷︷ ︸
cov.(pred.)

+ σ̂bc.︸︷︷︸
cov.(bench.)

The ith, i = 1, . . . , K, component of the right-hand side in (17) is the marginal contribution

of the ith term to the parametric portfolio minimum-variance utility; that is, the marginal

change in minimum-variance utility associated with a unit increase in the weight that the

parametric portfolio assigns to the ith term. The marginal contribution of an individual

predictor can be decomposed into three terms: the predictor’s own variance, diag(Σ̂c)θ, the

predictor’s covariance with other predictors, (Σ̂c − diag(Σ̂c))θ, and the covariance between the

predictor and benchmark portfolios, σ̂bc.
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4 Empirical application

We now perform an empirical analysis of the performance of minimum-variance parametric

portfolios when employing alternative regularization and variable selection methods discussed

in Section 3.2. The parametric portfolios are obtained by assuming an equally weighted (EW)

benchmark portfolio. Two reasons motivate our choice of this benchmark portfolio. First,

the well-documented good performance of this strategy relative to more sophisticated ones, as

extensively discussed in DeMiguel et al. (2009). Second, Lassance and Martín-Utrera (2020)

shows that the EW strategy emerges naturally in a mean-variance context since an optimal

mean-variance portfolio can be viewed as a linear combination of the EW portfolio and an

arbitrage portfolio.9

We consider two alternative configurations of the data set discussed in Section 2. First, we

implement parametric portfolios using only the original 95 predictors mentioned in Gu et al.

(2020, 2021). Second, we utilize the augmented set of 4,610 predictors, which includes second-

order and cross-product transformations. This enables us to understand the extent to which

non-linear transformations of firm characteristics improve portfolio performance.

Given our interest in the minimum-variance strategy, the most relevant performance metric

is the out-of-sample ex-post (i.e. realized) standard deviation of out-of-sample portfolio returns.

However, it is also common in the literature to report performance in terms of risk-adjusted

returns measured by the Sharpe ratio (SR) both before and after transaction costs. The out-

of-sample evaluation works as follows. First, we choose a window over which to perform the

estimation. The total number of monthly observations in the dataset is Ttot = 594 and we choose

an estimation window of T = 120. Second, using the return data over the estimation window,

we compute the minimum-variance parametric portfolios using the ML methods detailed in

Section 3.2. Third, we repeat this rolling-window procedure for the next month by including

the data for the next month and dropping the data for the earliest month. We continue doing

this until the end of the dataset is reached. At the end of this process, we have generated

Ttot − T = 474 portfolio weight vectors, wj
t , for t = T, . . . , Ttot − 1 and for each strategy j.

Holding the portfolio wj
t for one month gives the out-of-sample return net of transaction costs

9We obtain qualitatively similar results when assuming a value-weighted benchmark portfolio.
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at time t + 1:

rj
t+1 =

Ä
wj

t

ä⊤
rt+1 − c × |wj

t −
Ä
wj

t−1

ä+
|,

where |wj
t −
Ä
wj

t−1

ä+
| denotes the monthly portfolio turnover, c is the level of transaction costs,

and
Ä
wj

t−1

ä+
is the portfolio for the jth strategy before rebalancing at time t, that isÄ

wj
t−1

ä+
= wj

t−1 ◦ (et−1 + rt) ,

where et−1 is the Nt−1 dimensional vector of ones and x ◦ y is the element-wise product of

vectors x and y. Then, for each portfolio we study, we compute the annualized out-of-sample

standard deviation and the SR of returns net of transaction costs:

σ̂j =
Ç

12
Ttot − T

Ttot−1∑
t=T

(Ä
wj

t

ä⊤
rt+1 − µ̂j

)2
å1/2

,”SR
j

= µ̂j − Rft

σ̂j
,

where µ̂j = 12
Ttot −T

∑Ttot −1
t=T

Ä
wj

t

ä⊤
rt+1 and Rft denote the risk-free rate at time t.10

We consider two levels of transaction costs: 0 basis points (b.p.) and 10 b.p. We also

test for the statistical significance of the differences in the portfolio variances and the Sharpe

Ratio (SR) of the two portfolios by using the two-sided p-value of the prewhitened HACP W test

described by Ledoit and Wolf (2011) and Ledoit and Wolf (2008) for the portfolio variance and

the SR, respectively. Specifically, we test for differences in portfolio variances and SR of the

various strategies in relation to those of the minimum-variance parametric portfolio obtained

when all 4,610 predictors are used in conjunction with the lasso variable selection method.

Competing strategies. We also implement alternative portfolio strategies for comparison

purposes. First, we implement the classic equally weighted (EW) and value-weighted (VW)

strategies. These two strategies do not require estimating model parameters and are easily

scalable to large cross-sections of assets. In a parametric portfolio context, investing in these two

strategies corresponds to an extreme regularization of the parameters, in which all coefficients

are set to zero. Second, we implement the minimum variance parametric portfolios using the
10The risk free rate was obtained from Ken French’s data library web site.
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characteristics from the 3-factor (market, size, and value) and 5-factor (market, size, value,

profitability, and investment) models of Fama and French (1993) and Fama and French (2015),

respectively. Finally, we implement the minimum variance portfolios using the 95 characteristics

along with the traditional OLS method to estimate the coefficients of the parametric policy.

4.1 Results

We report in Table 2 the out-of-sample standard deviation of minimum-variance portfolio

returns. The Table allows us to draw several important conclusions. First and foremost,

the choice of the variable selection approach matters: the different methods lead to minimum-

variance parametric portfolios with varying performance. We observe that the lasso method

results in minimum-variance portfolios with lower portfolio risk compared to all other methods

for both configurations of the data set. Three methods emerge as the best performers in terms of

the standard deviation of portfolio returns: lasso, elastic net, and L2-boosting. The best overall

performance in terms of annualized standard deviation of portfolio returns is achieved when

using the 4,610 predictors and the lasso method (8.3%). This figure, however, is statistically

indistinguishable from that obtained with the elastic net (8.4%) and with the L2-boosting

(8.8%) methods.

Second, all variable selection methods lead to minimum-variance parametric portfolios that

outperform those obtained with ad-hoc selected characteristics, as well as portfolios obtained

using the OLS method. Specifically, using the characteristics from the popular 3-factor and

5-factor models leads to a portfolio standard deviation of 15%, whereas using the OLS method

leads to a portfolio standard deviation of 18%, and both figures are substantially higher relative

to those obtained with ML-based portfolios. Furthermore, the classic EW and VW strategies

also exhibit higher standard deviations than the ML-based portfolios.

Third, we observe a notable decrease in the standard deviation of portfolio returns

performance when utilizing the expanded set of 4,610 predictors compared to the original

95 predictors. For the lasso method, the standard deviation decreases by approximately 9%,

dropping from 9.1% to 8.3% – and the difference is statistically significant. Similarly, the

adalasso method shows a decrease of about 5%, whereas the elastic net method also experiences

a reduction of approximately 9%. The L2-boosting method exhibits a modest decrease in
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standard deviation of about 2% with the augmented data set, while the Bayesian horseshoe

method yields similar results in both configurations of the data set.

It is interesting to note that the opposite result is obtained when using the ridge method:

the portfolio standard deviation increases when using the augmented data set. The rationale

for this result lies in the inherent features of the ridge approach: the dense estimation obtained

with the ridge methods implies that all predictors are Incorporated into the model to some

extent. With such a large number of predictors, the dense estimation demands very strong

regularization to properly estimate the model. As a result, all coefficients are shrunk to very

small values, and the ridge method with the augmented data set begins to resemble that

of the classic EW strategy, which is the benchmark portfolio policy used in the parametric

portfolio; see eq. (1). Not surprisingly, the standard deviation of the ridge-based portfolios

with the augmented data set is close to that obtained with the EW and VW strategies. This

outcome highlights a limitation of the ridge method in scenarios where the predictor set is

vastly expanded relative to the number of data points.

Table 3 reports the annualized Sharpe ratios both before and after transaction costs of

10 basis points, along with the average monthly turnover of all strategies. We observe that

portfolios based on the lasso, elastic net, and SCAD methods perform poorly in terms of

Sharpe ratio, both before and after transaction costs. For example, the after-fee Sharpe ratio

obtained with the lasso method varies between -0.12 and -0.32 depending on the data set

configuration. When transaction costs are taken into account, only the L2-boosting and ridge

methods yield parametric portfolios with positive Sharpe ratios (1.076 and 0.814 when using the

95 characteristics).11 The L2-boosting portfolio is the best performer in terms of before- and

after-fee Sharpe ratios among all competing strategies. We also observe that the Sharpe ratios

obtained with the augmented data set are often worse than those obtained with the restricted

data set, indicating that increasing the predictor space can negatively affect performance in

terms of risk-adjusted returns due to lower average portfolio returns.

The results in Table 3 reveal a much larger dispersion in risk-adjusted performance across

variable selection methods relative to the dispersion observed in the standard deviation of

portfolio returns, as shown in Table 2. This suggests that differences in the Sharpe ratio are
11Similar to the findings in Table 2, the performance of ridge-based portfolios in terms of risk-adjusted returns

is comparable to that obtained with the equally weighted portfolio strategy.
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driven mostly by the average portfolio returns rather than the standard deviation of portfolio

returns. Moreover, Table 3 indicates an apparent superiority of the L2-boosting method. To

help understand the differences in risk-adjusted performance across methods, eq. (2) shows that

the differences in parametric portfolio returns are fully determined by differences in θ⊺rc, since

the term rb is the same for all parametric portfolio strategies. In other words, the predictors

selected by each method and how each method invests in the selected predictors are the main

drivers of performance in terms of returns.

Figure 1 plots the average values of the aggregate monthly returns for the predictors selected

with each method. Specifically, the figure displays the average values of θ⊺rc calculated across all

rolling estimation windows. Consistent with the results reported in Table 3, minimum-variance

portfolios obtained with the L2-boosting method achieve the highest value (1% per month),

whereas the SCAD method achieves the lowest (-1% per month). As expected, the predictor

return obtained with the ridge method is very close to zero, as its performance resembles that

of the benchmark strategy.

One important limitation of Figure 1 is the lack of information about which individual

predictor contributes the most to performance in terms of (aggregate) predictor returns. To

complement the results in Figure 1, we plot in Figure 2 the returns on the top-10 and bottom-10

individual predictors for each method. We observe that the interaction between size (mve0) and

zero trading days (zerotrade) contributes the most to the positive risk-adjusted performance

obtained with the L2-boosting method (0.22% per month). For the other methods, the negative

returns among the bottom-10 predictors are often larger in magnitude relative to those of the

top-10 predictors, which helps explain not only the negative performance in terms of aggregate

predictor return displayed in Figure 2, but also the negative performance in terms of risk-

adjusted returns reported in Table 3.

The fourth column of Table 3 reports the average monthly portfolio turnover. We observe

that portfolio turnover is significantly influenced by the choice of variable selection methods.

Lasso, elastic net, and L2-boosting achieve portfolio turnovers around 1.5, whereas ridge-based

portfolios have a much lower turnover of around 0.2. All variable selection methods yield

portfolios with much lower turnover relative to that obtained with OLS-based portfolios (5.14).

Ad-hoc selected characteristic-based portfolios and traditional benchmark strategies, such as
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EW and VW portfolios, typically have lower turnover compared to ML methods. This is

because these strategies are based on simpler allocation rules that do not change frequently

with market conditions and, consequently, require less portfolio rebalancing.

We also report in Table 4 the performance of the various portfolio strategies in terms of

maximum drawdown and value-at-risk (VaR) based on the historical simulation method with

99% confidence. The Table shows that adalasso and L2-boosting methods outperformed all

other benchmarks in terms of both maximum drawdown and VaR. Out of all the methods, L2-

boosting demonstrated the most superior performance, with a maximum drawdown of 38.6%

and a VaR of 7.4%. The OLS method performed poorly compared to the other methods,

with a maximum drawdown of 68.9% and a VaR of 14.8%. These results show that ML-based

portfolios are also effective in minimizing tail risks.

In summary, the results reported in Tables 2 to 4 reveal that selecting predictors with

variable selection methods leads to minimum-variance portfolios with superior performance

relative to traditional OLS methods and ad-hoc characteristic-based portfolios, in terms of

lower risk, smaller maximum drawdowns, and VaR. Moreover, the results obtained with the

L2-boosting method showed that lower portfolio risk can be achieved without compromising

risk-adjusted returns: the performance measured by the Sharpe ratio is substantially higher

relative to all other competing strategies, even when transaction costs are taken into account.

4.2 Predictor importance

To further understand the aspects that contribute to the performance of minimum-variance

portfolios, we study the profile of selected predictors as well as their distribution across predictor

classes (main effects, second-order effects, and interaction effects.). The results reported in

Table 5 reveal distinct patterns in predictor selection across different methods. Specifically,

the average number of selected predictors varies from 16 (SCAD) to 75 (L2-boosting). The

best performing method in delivering portfolios with lower risk (lasso) selects 33 predictors on

average. This result suggests that the number of selected predictors vastly exceeds the number

of variables used in popular factor models, suggesting that ad-hoc sparsity can be detrimental

to portfolio performance.

The “class-relative percentage” panel in Table 5 reports the distribution of the selected
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predictors within each class (main effects, second-order effects, and interaction effects) for each

method. Across all methods, interaction effects consistently account for the highest percentage

of selected predictors. This finding is not surprising, given the composition of the predictor

space: with a total of 4610 predictors, only 95 (2.1%) are main effects, 88 (1.9%) are second-

order effects, and the remaining 4427 (96%) are interaction terms. Thus, interaction effects

naturally represent the largest pool of potential predictors and are expected to make up the

majority of selected predictors simply due to their abundant quantity. Despite this expectation,

the distribution across classes varies by method, reflecting each method’s tendency to prioritize

different classes of predictors. For example, SCAD places a much higher emphasis on main

effects (16%) compared to other methods, such as adalasso (0.8%) and L2-boosting (1.4%). In

contrast, methods like adalasso and elastic net devote a higher percentage to interaction effects.

The “difference from equal-importance” panel in Table 5 shows how each method’s selection

deviates from a benchmark based on equal-importance weighting. If the classes were equally

important, one would expect the selection of predictors to be proportional to the number of

predictors available in each class. Therefore, deviations from this equal-importance benchmark

reveal which classes are being over- or under-selected relative to what would be expected by

chance. We observe that lasso, elastic net, horseshoe and SCAD underrepresent interaction

effects compared to an equal-importance distribution, as shown by the negative deviations for

this class, and overrepresent main effects and second-order effects, as shown by the positive

deviations for these classes.

We also investigate the importance of individual predictors using the method described

in Section 3.3. Figures 3, 4, and 5 show the marginal contributions of the top-20 selected

predictors for lasso, elastic net, and L2-boosting, respectively.12 Each Figure breaks down

the contributions into three components: the predictor’s own variance, its covariance with

other predictors, and its covariance with the benchmark portfolios (see Eq. (17)). Predictor

importance based on own-variance (left-hand plot) is ranked in ascending order: predictors

whose own variance leads to smaller increases in the objective function (Eq. (16)) are more

important. Predictor importance based on the correlation with other predictors (center plot)

and on the correlation with the benchmark portfolio (right-hand plot) is ranked in descending
12Marginal contributions are calculated across the out-of-sample period, and the reported values are averages

across all estimation rounds.
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order: predictors with lower covariance with other predictors and with the benchmark portfolio

contribute more to decrease the objective function and are thus more important. Finally,

predictors with a positive (negative) parametric-portfolio coefficient are in blue (red).

Figures 3-5 show that the importance of individual predictors varies across methods. Some

predictors like market beta, return volatility (retvol), idiosyncratic volatility (idiovol), and

maximum daily return (maxret) are selected by lasso and elastic net mainly for their ability

to improve investors’ utility because of their covariance with the benchmark portfolio. These

results align with those reported in Scherer (2011), who argue that risk-based characteristics

are important drivers of the minimum-variance portfolio allocations. These four predictors have

a negative parametric-portfolio coefficient, indicating that stocks with higher values on those

predictors are assigned lower weights in the minimum-variance portfolio. The lasso method also

prioritizes stocks with higher values of size (mvel1 ) and short-term reversal (mom1m). As for

the L2-boosting method, square values of one-year momentum (mom12m_sq) are important

because they covary with the benchmark portfolio, whereas square values of short-term reversals

(mom1m_sq) matter because they have low covariance with the other predictors.

It is also remarkable that interactions between risk-based and liquidity measures are among

the most important predictors for the three methods. For instance, interactions between market

beta and standard deviation of liquidity (beta×std_dolvol), liquidity and idiosyncratic volatility

(dolvol × idiovol), and bid-ask spread and liquidity (baspread × dolvol) are among the most

important predictors for the three methods. To understand how these three interactions connect

to optimal portfolio allocations, we plot in Figures 6 to 8 the average minimum-variance

portfolio weight across standardized values of the first characteristic and across quintiles of

the second characteristic. We find that stocks with lower liquidity get higher weights, and this

result is stronger for stocks with lower idiosyncratic volatility. Stocks with low market betas get

higher weights, and this result is stronger for stocks with higher standard deviation of liquidity.

Finally, we observe a pronounced u-shaped non-linear relation between bid-ask spreads and

portfolio weights, as well as a pronounced interaction with volatility-based predictors.

The analysis of predictor importance shown in Figures 3-5 allows us to draw three

main conclusions. First, we show that risk-based predictors are not the only class of

important predictors for constructing minimum-variance portfolios. Our results reveal that
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size-, momentum-, and liquidity-based predictors are also among the most important predictors

via their main effects as well as non-linear transformations (especially interactions). Second, we

observe that some predictors that help decrease portfolio risk can also help increase portfolio

returns in some situations. For instance, in the case of the L2-boosting method, Figure 16 shows

that the interaction between size and zero trading days appears among the most important

predictors that help decrease portfolio risk via its lower correlation with the benchmark

portfolio. This predictor also contributes to increasing portfolio returns, as reported in Figure

2.

We also study the economic significance of the most important risk-based and liquidity

predictors as well as their interactions. Table 6 presents the regression results of selected

parametric-portfolio predictor coefficients on three state variables: investor sentiment, market

liquidity, and economic recession. Panel A shows the main effects of each predictor, while

Panel B reports the interaction effects. For the predictor beta the results indicate a significant

relationship with investor sentiment across all methods, with consistently negative coefficients.

Additionally, the variations in the beta parametric-portfolio coefficient is also significantly

associated with the recession indicator in the L2-boosting method, where it shows a negative

coefficient.

Moreover, some of the interaction effects show significant relationships with state variables

even when the corresponding main effects are not significant. This suggests that interactions

may capture more complex or nuanced dynamics that are not apparent in the main effects

alone. For instance, The dolvol_x_idiovol interaction also exhibits significant relationships

with investor sentiment across several methods, all with positive coefficients. The liquidity

variable has significant effects on the beta_x_idiovol interaction the L2-boosting method,

showing a negative coefficient.

Finally, we also examine the temporal dynamics of the estimated coefficients of the selected

characteristics with the lasso, elastic net, and L2-boosting methods across all estimation rounds.

For that purpose, we plot in Figures 9 to 17 a heatmap of the estimated coefficients for the

features’ main effect, second-order effect, and interactions, respectively. The Figures reveal

that the selection of relevant characteristics and the strength of their effects exhibit substantial

variations over time. Many characteristics appear and disappear from the chosen subset,
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suggesting that the importance of firm characteristics for portfolio choice is highly time-varying.

4.3 Are the portfolios implementable?

To assess the practicality of implementing the ML-based minimum-variance portfolios, Table

7 reports descriptive statistics of the distribution of portfolio weights across all estimation

rounds. The Table shows that the minimum and maximum weights of the ML-based portfolios

are not extreme, ranging from -0.8% to 0.8%. These values are well within the acceptable

range for traditional investment strategies. Moreover, the proportion of negative weights (short

proportion) is also relatively low, hovering around 30%. This suggests that the ML-based

portfolios are long-biased and do not involve excessive short selling.

It is interesting to note that, according to Green and Hollifield (1992), the presence of a

dominant first principal component (or factor) would result in extreme negative weights in

minimum-variance portfolios. Our results seem to contradict this finding, as they indicate the

absence of extreme weighting. One plausible explanation for our results is that our methodology

involves constructing a minimum-variance portfolio using a multitude of characteristics-based

factors. In this situation, DeMiguel et al. (2020) and DeMiguel, Martin-Utrera, and Uppal

(2024) show that exploiting multiple factors leads to trading diversification (i.e. netting of

trades across factors), which helps reduce extreme positions in individual stocks.

4.4 Screening predictors

The results reported in Table 3 show that selecting a few predictors ad hoc, as in the

popular 3-factor and 5-factor models, leads to minimum-variance parametric portfolios with

poor performance relative to those obtained with ML variable selection methods. To avoid

selecting predictors ad hoc, we implement the marginal screening (MS) method of Fan and

Lv (2008) which employs a data-driven approach to screen a vast pool of predictors based

on their individual correlations with the target variable. MS is computationally efficient,

making it well-suited for ultrahigh dimensions. Moreover, MS ensures the exact recovery of

true non-zero coefficients under specific sparsity and signal strength conditions (see Genovese,

Jin, Wasserman, and Yao, 2012). Algorithm 2 describes the procedure for implementing the
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MS method.

We implement the MS method to screen the augmented set of 4,610 features to select the best

3, 5, 10, and 50 predictors. We then use the selected predictors to construct minimum-variance

portfolios. The results reported in Table 8 reveal that selecting only the top-3 predictors

using MS leads to minimum-variance portfolio returns with an annualized standard deviation

of 10.7%, which is substantially lower relative to those obtained when using ad-hoc selected

characteristics, as reported in Table 3. The performance of the MS methods peaks when the

top-10 predictors are selected (9.5%). However, the performance of screening-based portfolios

is worse than those obtained with the variable selection methods, as reported in Table 3. We

conclude from this analysis that although MS is a much better alternative in comparison to

selecting predictors ad-hoc, the use of more sophisticated variable selection methods can offer

further improvements.

5 Concluding remarks

This paper provides evidence that machine learning (ML) can be a powerful tool for selecting

variables relevant for optimal portfolio choice. We focus on directly parameterizing portfolio

weights as a function of lagged firm-level predictors. By employing ML variable selection

methods on a large pool of features and their second-order and cross-product transformations

(4,610 predictors), we find that ML can identify a subset of important variables that outperform

traditional low-dimensional factor models in terms of lower risk and higher risk-adjusted

returns. We also find that the choice of variable selection method matters, with different

methods selecting different subsets of features. The L2-boosting method emerged as the

most comprehensive approach, as it was able to identify predictors that minimize risk, reduce

covariance with the benchmark, and increase risk-adjusted portfolio returns.

Our findings have several implications for practitioners. First, they suggest that ML can be

a valuable tool for improving portfolio performance. Second, they highlight the importance of

accounting for the interaction between variables in the portfolio construction process. Third,

they indicate that the number of selected features relevant to the portfolio construction problem

is greater than the number of variables used in popular factor models. As a result, practitioners

28



should consider using ML variable selection methods to identify a subset of important variables

for their portfolios.
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Table 1: Descriptive statistics of predictor returns

The table reports descriptive statistics of predictor returns. The following statistics are reported: average monthly return, the
standard deviation of monthly returns, the 25th and 75th percentiles, and the correlation of the predictor return with the equally
weighted and value-weighted portfolio returns (ρew and ρvw, respectively). The first four rows report aggregate values across i) all
predictors, ii) predictors’ main effects, iii) predictor’s second-order effects, and iv) predictors’ interaction effects. The remaining
rows report individual statistics for the top and bottom 10 predictors within each category sorted in terms of average monthly
return.

Mean Std. 25th (%) 75th (%) ρew ρvw

return (%) deviation (%)

All predictors -0.003 0.523 -0.233 0.232 0.02 0.04

Main effects -0.009 0.797 -0.367 0.352 0.04 0.06

Second-order effects -0.024 0.706 -0.373 0.273 0.26 0.17

Interaction effects -0.002 0.513 -0.227 0.229 0.02 0.04

Top-10 main effects
indmom 0.309 1.545 -0.360 1.039 -0.12 -0.04
agr 0.275 0.653 -0.063 0.541 -0.21 -0.34
mom12m 0.270 1.863 -0.354 1.096 -0.33 -0.13
ill 0.205 1.206 -0.424 0.555 0.25 -0.07
mve0 0.186 0.917 -0.273 0.715 -0.57 -0.13
sp 0.154 0.783 -0.301 0.506 0.20 -0.01
mom6m 0.148 1.946 -0.399 0.941 -0.39 -0.21
rd_mve 0.139 0.658 -0.171 0.356 0.45 0.25
orgcap 0.105 0.668 -0.227 0.364 0.34 0.13
bm 0.102 0.639 -0.258 0.448 -0.21 -0.24

Bottom-10 main effects
mom1m -0.561 1.859 -1.125 0.211 -0.40 -0.25
maxret -0.310 2.117 -1.353 0.479 0.69 0.43
turn -0.248 1.533 -1.002 0.475 0.59 0.60
chmom -0.248 1.289 -0.723 0.285 -0.33 -0.25
invest -0.212 0.547 -0.494 0.111 0.24 0.35
retvol -0.197 2.569 -1.472 0.708 0.73 0.47
lgr -0.192 0.454 -0.417 0.033 0.44 0.41
chcsho -0.179 0.506 -0.420 0.077 0.34 0.42
sgr -0.172 0.542 -0.433 0.127 0.41 0.41
hire -0.170 0.530 -0.413 0.118 0.27 0.36

Top-10 second-order effects
ill_sq 0.208 0.985 -0.325 0.516 0.25 -0.04

Table 1 continued on next page
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Table 1 continued from previous page

Mean Std. 25th (%) 75th (%) ρew ρvw

return (%) deviation (%)
mom12m_sq 0.170 1.506 -0.561 0.667 0.70 0.54
indmom_sq 0.132 1.303 -0.548 0.712 0.53 0.41
rd_mve_sq 0.114 0.539 -0.161 0.290 0.42 0.21
mom6m_sq 0.106 1.817 -0.695 0.644 0.67 0.49
sp_sq 0.087 0.610 -0.265 0.385 0.26 0.02
mve0_sq 0.087 0.618 -0.231 0.460 -0.61 -0.20
std_dolvol_sq 0.086 0.823 -0.307 0.561 -0.23 -0.44
orgcap_sq 0.072 0.551 -0.203 0.271 0.29 0.07
ps_sq 0.071 0.713 -0.193 0.416 -0.52 -0.26

Bottom-10 second-order effects
maxret_sq -0.322 1.749 -1.192 0.311 0.61 0.33
turn_sq -0.257 1.175 -0.814 0.293 0.52 0.53
retvol_sq -0.227 2.276 -1.366 0.539 0.66 0.39
agr_sq -0.195 0.516 -0.457 0.072 0.61 0.52
invest_sq -0.183 0.481 -0.437 0.062 0.47 0.40
chcsho_sq -0.144 0.419 -0.339 0.081 0.29 0.37
lgr_sq -0.139 0.415 -0.354 0.074 0.52 0.39
grltnoa_sq -0.135 0.381 -0.323 0.053 0.39 0.35
sgr_sq -0.130 0.538 -0.432 0.122 0.56 0.39
hire_sq -0.127 0.465 -0.379 0.102 0.60 0.46

Top-10 interaction effects
ill × mve0 0.953 0.988 0.272 1.417 0.09 -0.15
mom1m × mom6m 0.496 1.522 -0.150 0.888 0.31 0.19
mom12m × mom1m 0.364 1.405 -0.223 0.754 0.26 0.13
mve0 × std_turn 0.333 0.934 -0.120 0.759 -0.17 0.19
agr × maxret 0.326 0.764 -0.053 0.642 -0.31 -0.36
agr × retvol 0.318 0.798 -0.058 0.660 -0.34 -0.38
baspread × mve0 0.317 0.887 -0.124 0.750 -0.33 0.10
agr × baspread 0.292 0.785 -0.077 0.611 -0.32 -0.33
maxret × mom12m 0.291 1.869 -0.232 1.111 -0.30 -0.11
mve0 × retvol 0.287 0.917 -0.124 0.753 -0.31 0.12

Bottom-10 interaction effects
mom1m × retvol -0.562 1.890 -1.063 0.217 -0.35 -0.21
maxret × mom1m -0.491 1.705 -0.944 0.165 -0.30 -0.18
baspread × mom1m -0.478 1.907 -1.012 0.249 -0.33 -0.18

Table 1 continued on next page
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Table 1 continued from previous page

Mean Std. 25th (%) 75th (%) ρew ρvw

return (%) deviation (%)
idiovol × mom1m -0.472 1.763 -1.012 0.262 -0.37 -0.23
mom1m × tang -0.443 1.396 -0.859 0.109 -0.37 -0.23
beta × mom1m -0.440 1.798 -1.040 0.289 -0.38 -0.26
age × mom1m -0.435 1.064 -0.810 0.061 -0.42 -0.27
dolvol × mom1m -0.410 1.730 -0.899 0.251 -0.39 -0.26
mom1m × std_dolvol -0.409 1.484 -0.834 0.186 -0.34 -0.20
mom1m × ps -0.403 1.173 -0.779 0.105 -0.40 -0.27
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Table 2: Standard deviation of out-of-sample minimum-variance portfolio returns
The table reports annualized out-of-sample (OOS) standard deviation of portfolio returns for the minimum-variance parametric
portfolio strategy when the ML methods discussed in Section 3.2 are used to perform variable selection and regularization. The
table also reports the performance of the minimum-variance strategy when using only the market, size, value, profitability, and
investment characteristics as well as the performance of the equally weighted and value-weighted strategies. The ML-based portfolios
are implemented with two alternative configurations of the data set discussed in Section 2: using only the original 95 predictors
used in Gu et al. (2020, 2021) and ii) all 4,610 predictors including the second-order and cross-products transformations. One,
two, and three asterisks indicate that the differences in portfolio variance with respect to those of the lasso strategy with 4,610
predictors are significant at the 10%, 5% and 1% level, respectively.

Std. dev. of OOS
portfolio returns

market, size, value 0.150***
market, size, value, profit., invest. 0.146***
equally weighted 0.183***
value-weighted 0.158***

OLS 0.176***

Lasso
(95 characteristics) 0.091*
(4,610 characteristics) 0.083

Adalasso
(95 characteristics) 0.097**
(4,610 characteristics) 0.091**

Elastic net
(95 characteristics) 0.092
(4,610 characteristics) 0.084

Ridge
(95 characteristics) 0.117***
(4,610 characteristics) 0.158***

Horseshoe
(95 characteristics) 0.089*
(4,610 characteristics) 0.094**

Scad
(95 characteristics) 0.100***
(4,610 characteristics) 0.091**

L2-boosting
(95 characteristics) 0.090**
(4,610 characteristics) 0.087
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Table 3: Out-of-sample performance statistics of various portfolio policies
The table reports annualized out-of-sample risk-adjusted portfolio returns measured by the Sharpe ratio (SR). Minimum-variance
parametric portfolio are obtained when using the ML methods discussed in Section 3.2 to perform variable selection and
regularization. The table also reports the performance of the minimum-variance strategy when using only the market, size,
value, profitability, and investment characteristics as well as the performance of the equally weighted and value-weighted strategies.
The ML-based portfolios are implemented with two alternative configurations of the data set discussed in Section 2: using only
the original 95 predictors used in Gu et al. (2020, 2021) and ii) all 4,610 predictors including the second-order and cross-products
transformations. The table also reports the average monthly turnover of each strategy. Panels A and B report results assuming
two alternative levels of transaction costs (T.C.): 0 basis points (bp) and 10 bp. One, two, and three asterisks indicate that the
differences in portfolio Sharpe ratios with respect to those of the lasso strategy with 4,610 predictors are significant at the 10%,
5% and 1% level, respectively.

SR Turnover SR
before T.C. after T.C. (10 bp)

market, size, value 0.690*** 0.34 0.662***
market, size, value, profit., invest. 0.991*** 0.51 0.949***
equally weighted 0.454 0.16 0.444**
value-weighted 0.509* 0.11 0.500***

OLS -0.075 5.14 -0.428*

Lasso
(95 characteristics) 0.112* 1.77 -0.121
(4,610 characteristics) -0.156 1.14 -0.320

Adalasso
(95 characteristics) 0.292*** 2.31 0.004*
(4,610 characteristics) 0.142** 2.36 -0.169

Elastic net
(95 characteristics) 0.107* 1.72 -0.119
(4,610 characteristics) -0.164 1.15 -0.328

Ridge
(95 characteristics) 0.842*** 0.27 0.814***
(4,610 characteristics) 0.557** 0.15 0.545***

Horseshoe
(95 characteristics) 0.378*** 1.07 0.233***
(4,610 characteristics) 0.194** 3.48 -0.251

Scad
(95 characteristics) 0.087 2.21 -0.178
(4,610 characteristics) -0.339** 2.46 -0.664***

L2-boosting
(95 characteristics) 1.220*** 1.04 1.076***
(4,610 characteristics) 1.153*** 1.67 0.925***
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Table 4: Out-of-sample portfolio drawdown and value-at-risk
The table reports the maximum drawdown and the value-at-risk (VaR) based on the historical simulation method with 99%
confidence for the alternative portfolios strategies implemented in the paper.

Maximun Drawdown VaR (99%)

market, size, value 52.7% 11.3%
market, size, value, profit., invest. 54.2% 12.2%
equally weighted 56.8% 13.1%
value-weighted 52.9% 11.4%

OLS (95 characteristics) 68.9% 14.8%

Lasso
(95 characteristics) 53.7% 6.5%
(4,610 characteristics) 55.9% 7.9%

Adalasso
(95 characteristics) 49.2% 8.3%
(4,610 characteristics) 40.8% 7.7%

Elastic net
(95 characteristics) 54.1% 7.1%
(4,610 characteristics) 55.3% 7.9%

Ridge
(95 characteristics) 48.3% 9.8%
(4,610 characteristics) 53.6% 11.4%

Horseshoe
(95 characteristics) 47.1% 6.7%
(4,610 characteristics) 49.3% 7.4%

Scad
(95 characteristics) 59.6% 8.2%
(4,610 characteristics) 68.3% 7.1%

L2-boosting
(95 characteristics) 38.6% 7.4%
(4,610 characteristics) 39.2% 6.0%
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Table 5: Predictor selection
The table presents the average total number of selected predictors for each method, alongside the percentage distribution across predictor classes—main effects, second-order effects, and interaction
effects. The “Class-relative percentage” panel shows the proportion of selected predictors within each class. The “Difference from equal-importance” panel displays the deviation of each class’s
proportion from an equal-importance benchmark, indicating if certain predictor classes are over- or underrepresented relative to an equal distribution. All values are averaged across all estimation
rounds.

Class-relative percentage Difference from equal-importance

Numer of selected Main effects Second-order Interaction Main effects Second-order Interaction
predictors effects effects effects effects

Lasso 33 5.5% 7.2% 87.3% 3.5% 5.2% -8.7%

Adalasso 62 0.8% 2.5% 96.7% -1.3% 0.6% 0.7%

Elastic net 60 4.8% 6.5% 88.7% 2.7% 4.6% -7.3%

Horseshoe 47 3.5% 2.8% 93.7% 1.5% 0.9% -2.3%

Scad 16 16.0% 4.4% 79.5% 14.0% 2.5% -16.5%

L2-boosting 75 1.4% 1.8% 96.8% -0.7% -0.2% 0.8%40



Table 6: Economic significance of the most important predictors
This table reports the regression results of selected predictor coefficients on state variables, including the investor sentiment index
from Baker and Wurgler (2006), the liquidity index from Pástor and Stambaugh (2003), and the NBER recession indicator. The
results are presented for six different estimation methods: Lasso, Adalasso, Elastic-Net, Scad, L2-Boosting, and Horseshoe. Panel A
reports the results for the main effects of each predictor, while Panel B shows the interaction effects. One, two, and three asterisks
indicate that the estimated coefficient is significant at the 10%, 5% and 1% level, respectively. A dash (“-”) indicates that the
predictor was not selected by the method or that the estimation coefficient is equal to zero.

Lasso Adalasso Elastic-net Scad L2-Boosting Horseshoe

Panel A: Main effects

beta
sentiment -0.208*** -0.097*** -0.152*** -0.475*** -0.135*** -0.312**

recession -0.087 0.025 0.155 0.077 -0.173*** 0.205

liquidity -0.127 -0.058 -0.060 0.222 -0.199 0.166

dolvol
sentiment - - 0.001 0.031 - -0.004

recession - - 0.002 0.064 - 0.003

liquidity -0.001 - 0.001 -0.016 - -0.074

idiovol
sentiment 0.022 - 0.003 -0.067 - 0.068*

recession -0.040 - -0.045* 0.047 - 0.051

liquidity 0.008 - 0.004 -0.264 - 0.205

Panel B: Interactions

beta_x_dolvol
sentiment -0.012*** 0.020*** -0.014* -0.038*** - 0.055

recession -0.017*** 0.019 -0.012 -0.059** - 0.086

liquidity -0.022 -0.083 -0.03 -0.170 - -0.082

dolvol_x_idiovol
sentiment 0.184*** 0.001 0.198*** 0.219*** 0.046*** 0.027

recession 0.005 0.001 -0.016 0.016 0.023 0.076

liquidity 0.257 -0.004 0.154 0.072 -0.115 -0.477

beta_x_idiovol
sentiment - - -0.007 -0.013 0.050*** 0.024

recession - - -0.048*** -0.011 0.052*** 0.008

liquidity - - -0.040 -0.134 -0.243** -0.050

41



Table 7: Portfolio weight statistics
The table reports descriptive statistics of the distribution of portfolio weights of the various strategies considered. The columns
reports the time series averages of the minimum weight, maximum weight, and fraction of negative weights (short proportion).

Minimum Maximum Short
weight (%) weight (%) proportion (%)

market, size, value -0.143 0.578 0.426
market, size, value, profit., invest. -0.352 0.543 0.379
equally weighted 0.000 0.067 0.000
value-weighted 0.000 0.432 0.000

OLS (95 characteristics) -1.760 1.753 0.442

Lasso
(95 characteristics) -0.422 0.477 0.379
(4,610 characteristics) -0.318 0.395 0.329

Adalasso
(95 characteristics) -0.663 0.710 0.386
(4,610 characteristics) -0.834 0.821 0.333

Elastic net
(95 characteristics) -0.401 0.443 0.371
(4,610 characteristics) -0.315 0.382 0.324

Ridge
(95 characteristics) -0.105 0.075 0.152
(4,610 characteristics) -0.029 0.051 0.022

Horseshoe
(95 characteristics) -0.297 0.532 0.384
(4,610 characteristics) -0.494 0.825 0.431

Scad
(95 characteristics) -0.431 0.566 0.397
(4,610 characteristics) -0.446 0.534 0.371

L2-boosting
(95 characteristics) -0.406 0.454 0.325
(4,610 characteristics) -0.696 0.657 0.328
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Table 8: Performance of minimum-variance parametric portfolios with marginal
screening
The table reports annualized out-of-sample (OOS) standard deviation of the minimum-variance parametric portfolio returns when
the marginal screening (MS) method of Fan and Lv (2008) is used to screen the pool of 4,610 predictors to select the best 5, 10, and
50 predictors. The table also reports the average monthly turnover of each strategy. Panels A and B report results assuming two
alternative levels of transaction costs: 0 basis points (b.p.) and 10 b.p. One, two, and three asterisks indicate that the differences
in portfolio variance and in Sharpe ratios with respect to those of the lasso strategy with 4,610 predictors are significant at the
10%, 5% and 1% level, respectively.

Std. dev. of OOS
portfolio returns

Top-3 predictors 0.107***

Top-5 predictors 0.105***

Top-10 predictors 0.095**

Top-50 predictors 0.103***
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Figure 1: Predictor returns
The figure plots the average values of the aggregate monthly returns for the predictors selected with each method. Average values of θ⊺rc calculated across all rolling estimation windows.
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Figure 2: Individual predictor returns
The figure plots the returns on the top-10 and bottom-10 individual predictors for each method.
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Figure 3: Lasso predictor importance
The figure plots marginal contributions of the top-20 selected predictors for the lasso method. The figure breaks down the
contributions into three components: the predictor’s own variance, its covariance with other predictors, and its correlation with the
benchmark portfolios (see Eq. (17)). Importance based on own-variance (left-hand plot) is ranked in ascending order: predictors
whose own variance leads to smaller increases in the objective function (Eq. (16)) are more important. Importance based on
covariance with other predictors (center plot) and correlation with the benchmark portfolio (right-hand plot) is ranked in descending
order: predictors with lower covariance with others and with the benchmark portfolio contribute more to decrease the objective
function and are thus more important. Finally, predictors with a positive (negative) parametric-portfolio coefficient are in blue (red).
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Figure 4: Elastic net predictor importance
The figure plots marginal contributions of the top-20 selected predictors for the elastic net method. The figure breaks down the
contributions into three components: the predictor’s own variance, its covariance with other predictors, and its correlation with the
benchmark portfolios (see Eq. (17)). Importance based on own-variance (left-hand plot) is ranked in ascending order: predictors
whose own variance leads to smaller increases in the objective function (Eq. (16)) are more important. Importance based on
covariance with other predictors (center plot) and correlation with the benchmark portfolio (right-hand plot) is ranked in descending
order: predictors with lower covariance with others and with the benchmark portfolio contribute more to decrease the objective
function and are thus more important. Finally, predictors with a positive (negative) parametric-portfolio coefficient are in blue (red).
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Figure 5: L2-boosting predictor importance
The figure plots marginal contributions of the top-20 selected predictors for the L2-boosting method. The figure breaks down the
contributions into three components: the predictor’s own variance, its covariance with other predictors, and its correlation with the
benchmark portfolios (see Eq. (17)). Importance based on own-variance (left-hand plot) is ranked in ascending order: predictors
whose own variance leads to smaller increases in the objective function (Eq. (16)) are more important. Importance based on
covariance with other predictors (center plot) and correlation with the benchmark portfolio (right-hand plot) is ranked in descending
order: predictors with lower covariance with others and with the benchmark portfolio contribute more to decrease the objective
function and are thus more important. Finally, predictors with a positive (negative) parametric-portfolio coefficient are in blue (red).
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Figure 6: Portfolio weights, liquidity and idiosyncratic volatility
The figure plots the average minimum-variance portfolio weights (vertical axis) across values of the standardized liquidity (dolvol) and across quintiles of idiosyncratic volatility (idiovol).
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Figure 7: Portfolio weights, market beta and standard deviation of liquidity
The figure plots the average minimum-variance portfolio weights (vertical axis) across values of the standardized market beta (beta) and across quintiles of standard deviation of liquidity

(std_dolvol).
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Figure 8: Portfolio weights, bid-ask spread and liquidity
The figure plots the average minimum-variance portfolio weights (vertical axis) across values of the standardized bid-ask spread (baspread) and across quintiles of liquidity (dolvol).
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Figure 9: Lasso coefficients: first-order effects
The figure plots the estimated coefficients of the features’ first-order effects when using the lasso method across all estimation rounds.
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Figure 10: Lasso coefficients: second-order effects
The figure plots the estimated coefficients of the features’ second-order effects when using the lasso method across all estimation rounds.
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Figure 11: Lasso coefficients: interactions
The figure plots the estimated coefficients of the features’ interaction effects when using the lasso method across all estimation rounds.
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Figure 12: Elastic net coefficients: first-order effects
The figure plots the estimated coefficients of the feature’s first-order effects when using the elastic net method across all estimation rounds.
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Figure 13: Elastic net coefficients: second-order effects
The figure plots the estimated coefficients of the feature’s second-order effects when using the elastic net method across all estimation rounds.
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Figure 14: Elastic net coefficients: interactions
The figure plots the estimated coefficients of the feature’s interactions when using the elastic net method across all estimation rounds.
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Figure 15: L2-boosting coefficients: first-order effects
The figure plots the estimated coefficients of the feature’s first-order effects when using the L2-boosting method across all estimation rounds.
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Figure 16: L2-boosting coefficients: second-order effects
The figure plots the estimated coefficients of the feature’s second-order effects when using the L2-boosting method across all estimation rounds.
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Figure 17: L2-boosting coefficients: interactions
The figure plots the estimated coefficients of the feature’s interactions when using the L2-boosting method across all estimation rounds.
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Algorithms

The L2-boosting algorithm commences by initializing the parameter vector, θ̂[0], to zero and

setting the initial portfolio weights, wt(θ̂0), equal to the benchmark weights, wbt . The algorithm

then enters a loop that continues until a predefined stopping iteration m∗ is reached. In each

iteration m, the algorithm systematically goes through each of the K characteristics. After

evaluating all K characteristics, the algorithm selects the characteristic, k∗, that minimizes the

empirical objective function in eq. (4). It then updates the parameter vector θ̂[m] to be zero for

all elements except for the k∗-th element, which is set to θ̂
[m]
k∗ . The algorithm also updates the

parameter vector θ̂m using a step size ν ∈ (0, 1), and accordingly adjusts the portfolio weights,

wt(θ̂m), based on these updated parameters. The iteration counter m is incremented, and the

process repeats until the termination criterion is met.

Algorithm 1 L2-boosting for minimum-variance parametric portfolios
1: Initialize θ̂[0] = 0, wt(θ̂0) = wbt and rb0 = wt(θ̂0)⊺rt+1
2: Set m = 1
3: while m ≤ m∗ do
4: for k = 1 to K do
5: Solve the empirical investor problem for the k-th characteristic:
6: Minimize the objective function

1
2

1
(T − 1)

T −1∑
t=1

Ä
ṙbm + θ

[m]
k ṙck,t+1

ä2

7: using the estimator:
θ̂

[m]
k = − σ̂bm−1ck

σ̂2
ck

8: end for
9: Choose k∗ that minimizes the objective function for all k

10: Set θ̂[m] to zero except for the k∗-th element, which is θ̂
[m]
k∗

11: Update θ̂m using a step size ν:

θ̂m = θ̂m−1 + νθ̂[m], m ≥ 1

12: Update wt(θ̂m):
wt(θ̂m) = wbt + θ̂⊺mXt/Nt, m ≥ 1

13: Update rbm :
rbm = wt(θ̂m)⊺rt+1

14: m = m + 1
15: end while
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Algorithm 2 Marginal Screening
Require: Design matrix X ∈ Rn×p, response vector y ∈ Rn, model size k
Ensure: Estimated coefficients β̂Ŝ for the selected variables

1: Compute the product XT y to obtain a vector in Rp

2: Compute the absolute values
∣∣XT y

∣∣ to get the marginal correlations
3: Identify Ŝ, the index set of the k largest entries in

∣∣XT y
∣∣

4: Extract the submatrix XŜ from X using the indices in Ŝ

5: Compute β̂Ŝ =
(
XT

Ŝ
XŜ

)−1
XT

Ŝ
y to estimate the coefficients for the selected variables.

return β̂Ŝ
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