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Abstract

In this paper we develop a new model for forecasting high-frequency intraday conditional

discrete return densities and volatility by using deep learning. Specifically, we model the

conditional distribution by a modified Skellam distribution with the mean following an auto-

regressive specification and train feedforward neural networks in order to generate predictions

for the underlying high-frequency volatility. Four different specifications are tested including

different set of features and parameters. Then we conduct a comprehensive walk-forward

forecasting experiment in order to compare the forecasting accuracy for the proposed models.

All the proposed models beat the empirical non-parametric forecasting rules considered. The

new forecasting procedure also provides better out-of-sample forecasts compared to all Space

State Models considered in the thesis. We also conclude that new variables have predictive power

for the volatility process: the bid-ask spread, high-low interval spread and the volume traded.

According to our model estimates, all these variables appear to have a positive non-linear S

shaped relation with volatility.
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1 Introduction

As argued in Morier and Valls Pereira (2023), modelling and predicting asset returns

distributions is a principal research goal in finance. In the last decades this topic received a

growing attention, especially regarding the measurement of the second moment - the volatility.

And in more recent years the topic expanded to intraday volatility measuring and forecasting.

There are many studies using intraday prices to forecast daily volatility (see Andersen et al.

(2001),Barndorff-Nielsen and Shephard (2002), and Hansen and Lunde (2006)) and, more recently,

papers using this data to analyse and forecast the intraday price dynamics itself (see Engle and

Sokalska (2012) and Koopman et al. (2017)).

In the first paper we modelled the intraday price dynamics by using the Modified Skellam

distribution for the conditional density of the intraday returns, while using non-linear non-

Gaussian state space models for modelling the volatility dynamics, in a similar way to Koopman

et al. (2017). The characteristics that motived this choice are that volatility is unobservable,

changes through time and possess a clustering pattern. This features are well-known for a long

time for daily volatility (see Shephard (2005) for a review).

In this paper we also model intraday conditional return densities with focus on volatility

dynamics modelling, but we emphasize the non-linearity of the volatility response to its own

past and usual explanatory variables. In order to capture such features we model the volatility

dynamics through deep neural networks. Previous works have shown evidence for non-linearities

for the volatility process not captured by traditional GARCH processes which can be captured by

such networks. They also show the ability for such networks in dealing with other non-traditional

explanatory variables for predicting volatility. See Donaldson and Kamstra (1997); Hajizadeh

et al. (2012); Kristjanpoller et al. (2014); Bucci (2019)).

Our work contributes to this literature first by extending the deep neural network modelling

to the intraday high-frequency time frame. To the best of authors knowledge there is no previous

comprehensive work analyzing the intraday volatility forecast at a time frame lower than 1 minute

and considering Skellam-like distributions. We believe that actually this time frame is more

suitable for neural networks than the daily time frame, as the distributions are non-Gaussian

and the data is abundant and noisy.

Our approach is more flexible than the State-Space and GARCH approaches, in the sense

that is easier to include new explanatory variables as we do not need to specify a ‘correct’

functional form for the input variable’s impact on the volatility process. The neural network

approach is motived by its ability to universally approximate non-linear functions, so we learn the

functional form during the estimation. Building on this advantage we include new explanatory

variables (bid-ask spread, high-low spread and volume) and test for their impact on the forecasts.

We analyze the sensivity of changes of these input variables in the forecasts and analyzing the

changes in the predictive power added for the inclusion of these variables.

Lastly, we use the neural network not only to forecast volatility, we actually forecast

conditional densities in a similar way to Koopman et al. (2017, 2018). And we compare the results

with models derived from from the approach of such papers, which are tougher benchmarks than

the usual GARCH models. We show the ability for the networks for forecasting the conditional

densities and volatilities, testing for the forecasting performance in a comprehensive walk-forward
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forecasting study.

The rest of this paper is organized as follows. Section 2 gives a brief overview on the Deep

Learning approach, describing neural networks, the optimization process and design issues.

Section 3 describes the base model and its variants. Section 4 describes the data. Section 5

gives details on the Training (optimization) procedure. Section 6 and 7 describes the estimation

results and results related to the forecasting exercise. Section 8 concludes.

2 Deep Learning Approach: an Overview

According to Goodfellow et al. (2016), machine learning is essentially a form of applied

statistics with increased emphasis on the use of computers to statistically estimate complicated

functions and a decreased emphasis on proving confidence intervals around these functions.

Machine learning is more concerned about making models to forecast, rather than learning about

parameters.

The central challenge in machine learning is that models must perform well on new, previously

unseen inputs — not just those on which our model was trained. The ability to perform well

on previously unobserved inputs is called generalization. A model has its hyper-parameters

chosen in a validation set, is typically trained (fitted) to a training set (in-sample) and tested on

the test set (out-sample). The objective is thus designing the model that has the lowest test

(generalization) error.

All the emphasis in machine learning is on making models that have low test error. There is

no need to attain a maximum likelihood estimate, for instance, and for many machine learning

algorithms there are no guaranties that any in-sample estimates are optimal in any sense. The

terminology ’optimizing’ or ’fitting’ is substituted by ’learning’ to emphasize such difference.

2.1 Neural Networks and Deep Learning

Deep learning is the part of machine learning that use models that rely on Deep Artificial

Neural Networks. We now motivate the use of such procedure.

One might presume that learning a nonlinear function requires designing a specialized model

family for the kind of nonlinearity this function presents. Our interest in feedforward networks

with hidden layers for this paper is based on the fact that they provide a universal approximation

framework. The universal approximation theorem (see Hornik et al. (1989) and Cybenko (1989))

states that a feedforward network with a linear output layer and at least one hidden layer

with any “squashing” activation function (like the logistic sigmoid activation function) can

approximate any Borel measurable function between finite-dimensional spaces with any non-zero

amount of error, provided that the network has enough hidden units. The derivatives of the

feedforward network can also approximate the derivatives of the function arbitrarily well (see

Hornik et al. (1990)).

The existence of such approximating neural network does not mean we can feasibly attain

such network by training a network design with just one layer. The approximating network

might involve a too large width to be feasible. Goodfellow et al. (2016) argue that for many

problems increasing the depth of the network results in better approximating function, reducing
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the width needed. More complex relations can be modeled this way with less network nodes.

The authors compare this structure with a prior that the function being modeled is composed of

chain composition of simpler transformations. And in practice deeper modern neural networks

have shown a better generalization error.

2.2 Optimization

As mentioned, the objective of machine learning is different from classical statistics and this

reflects on how optimization is done in machine learning, especially for Deep Learning. Finding

the global minimum on the training set is unfeasible for most neural network designs, as the

optimization problem involved is complex. And this is not actually the objective, which is in fact

generating the model with the lower generalization error possible. So training a deep learning

model is significantly reducing a loss function L1 in the training sample with the hope that this

procedure will reduce other loss function L2 in the test sample.

The typical optimization procedure in Deep Learning is described in the algorithm below.

The typical loss function consists of a sum through samples. At each step a ‘mini-batch’ of

samples is taken from the training set (possibly at random) and the gradient for the loss is

calculated using only these samples. If all the training sample is used on the ‘mini-batch’, we

call the optimization method ‘batch’ gradient descent (otherwise it is called ‘minibatch’ gradient

descent).

Then the model parameters are updated using the gradient times some ‘Learning Rate’,

which might be a fixed parameter (in case of the Stochastic Gradient Descent) or may be adaptive

(in the case of Adam or RMSprop, for instance). This procedure is repeated for a number of

times, until the training set is passed by the procedure for a maximum number of times. The

’number of epochs’ is such number of passages. Some procedures also specify some early stopping

criteria, often related to the loss function applied in some other test set.
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Algorithm 1: Basic Deep Learning Optimization Algorithm

Result: Trained Network parameters θ

input : learning rate εk (or adaptive method for generating it)

input : Method for calculating gradients from minibatchs, θ and previous gradients

input : Maximum number of epochs: maxEpochs

input : Starting θ: θ0

k ← 0 ;

θ ← θ0 ;

while k < maxEpochs do

while can sample from training set do

Sample m minibatch samples from training set (without replacement);

Compute gradient g ;

apply update: θ ← θ − εkg ;

if early stopping criteria met then

return θ;

end

end

k ← k + 1 ;

reset training set returning all samples to it;

end

3 Model

In this section we develop the base model used in the rest of this paper, its variants, the

features and the network design.

Let yt ∈ Z be the integer-valued variable representing the price changes for the asset at time

t. We represent the price changes by integers as we are focused in high frequency price changes.

At high frequency the price changes are discrete as stocks are traded in multiples of a tick size.

So we represent again the price changes as integer multiples of the tick size for each stock.

Let p(yt|Ft−1; θt) be the time-varying conditional probability mass function’s (pmf’s), where

Ft := {X1, . . . , Xt} is the filtration (information set) at time t and θt collects all the pmf’s

parameters. The Xt is a vector of variables that might include yt. Our main goal in this paper is

to find p(·), Xt and θt that provide best out of sample forecasts for the distribution of yt. That

is, we are searching for the best conditional density forecasts, which are also functions of the

volatility forecasts.

3.1 Base Model

Like in Koopman et al. (2017) and Koopman et al. (2018), we consider only the case where

p(·) is given by the Modified Skellam Distribution. As shown in the first paper, this distribution

has a good match for the intraday return’s distribution and have a parameterization that turns

easier to study volatility. So we have p(yt|Ft−1; θt) = pII(yt; i, j, k, µt, σ
2
t , γ), where pII is given
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by

pII(yt; i, j, k, µ, σ
2, γ) :=


ps(yt;µ, σ

2) for yt /∈ {i, j, k}
ps(yt;µ, σ

2)− γ∆
2 for yt ∈ {i, j}

ps(yt;µ, σ
2) + γ∆ for yt = k,

(1)

where γ satisfies 2 min(ps(i, µ, σ
2), ps(j, µ, σ

2)) > γ∆ > −ps(k, µ, σ2) and ps denotes the Skellam

pmf. As in the paper 1 we set (i, j, k) = (−1, 1, 0). The Skellam pmf is given by

ps(y;µ, σ2) := exp(−σ2)

(
σ2 + µ

σ2 − µ

)
I|y|(

√
σ4 − µ2), (2)

where I|y| is the Bessel I Function with |y| degrees of freedom.

Now we need only to specify the functional forms of σt and µt. All models considered in this

paper, including the ones used for comparison follow the structure described so far. And this

includes the models in paper Morier and Valls Pereira (2023). The functional for for µt is also

the same of that paper. Thus µt is given by:

µt = δyt−1 (3)

which is different from Koopman et al. (2017) that uses µt = constant.

We model σt by a nonlinear function of Xt that will be approximated by a deep Feed Forward

Neural Network. So the functional form of σt is simply

σt = F (Xt−1) (4)

where the F function represents the Neural Network. In the Machine Learning nomenclature, Xt

represents the features we consider in our model. The features themselves might be generated

by another model, making a Hybrid model.

3.2 The Features

We follow Donaldson and Kamstra (1997); Hajizadeh et al. (2012); Kristjanpoller et al. (2014)

and use a Hybrid model, using outputs from another model as a feature for the neural network.

In particular we used the output of a simple EWMA model, with its λ parameter estimated

in-sample. The EWMA model is given by

σ̂2
t = λy2

t−1 + (1− λ)σ̂2
t−1 (5)

we also denote EWMA forecast for time t by ewt, that is, ewt := σ̂2
t .

We also include yt and y2
t as features. The idea for including y2

t is that the simple EWMA

process might be unable to capture all the (possibly nonlinear) impact of the innovation y2
t , even

if it does already include such input. The yt is included to capture asymmetric reactions of the

volatility process regarding the sign of the return that have long being documented in the daily

volatility forecasting literature (see Glosten et al. (1993) and Engle and Ng (1993)).

A salient feature of intraday volatility is seasonality. This aspect has been documented in

many studies (e.g Andersen and Bollerslev (1997)). There are several reasons for deterministic
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seasonality, including the usual schedule for economic and company news releases, lunch-time,

the market opening and market closing. A common pattern is a high volatility on the market

opening, which falls through the lunch-time and rises again over day afternoon until the makert

close. As shown in Andersen (1996), the intraday volatility is also related to the volume of

trading activity, which is itself influenced by the events just described.

We model the seasonality pattern using a parsimonious specification through cubic splines.

The treatment is similar to the one used in Harvey and Koopman (1993) and Koopman et al.

(2017). Specifically, we write st as a zero-sum cubic spline function

st = β′Wt. (6)

Wt is calculated as described in Poirier (1973). β is a K× 1 vector of parameters associated with

K + 1 spline knots. In this paper instead of using fixed coefficients β like in equation (6), the

splines join the features of the neural network. So they might interact in a non-linear way with

all other features in determining the volatility forecast. As in the case of Morier and Valls Pereira

(2023) we considered K = 3 for generating Wt, and the four resulting spline knots are fixed at

the times 10:00, 12:00, 13:30 and 17:00, representing the market open, lunch time and market

close. So Wt has dimension 3 and we denote the three resulting features as W1,W2,W3.

Last set of features is composed of 3 new variables not considered, at the same time, in

previous papers, which are not traditionally considered in volatility models. The first is the

closing bid-ask spread, denoted by ba. When the volatility rises market liquidity providers

including market makers, traders and HFT algorithms tend to be less aggressive in attending the

market final orders. In the case of high frequency data, a large bid-ask spread also mechanically

affect the volatility by increasing the bid-ask bounce effect. In any case this variable is expected

to affect the volatility and is included for this reason. See Wyart et al. (2008) for a reference on

this effect.

The second variable form this set is the High-Low interval spread for the last 10 seconds,

denoted by hl. There is a vast literature relating the daily high-low interval to the volatility,

and though our time frame is short (10 seconds), this variable is also expected to have some

predictive value for the volatility. The intuition is simple: the more volatile the market, the

wider this range should be. This is true for a continuous Brownian Motion (i.e. by the Reflection

Principle) and is also expected for the discrete setting we are interested. See Yang and Zhang

(2000), for instance, for the usage of this data for volatility forecasting in the daily time frame.

The last variable we consider is the volume of trade for the last 10 seconds, denoted by v.

The volume of trade is related to the intensity of the market activity and is reported to rise/fall

leading and lagging volatility rises and falls (see Xu et al. (2006)). The relation between volume

and price changes is so relevant that some authors argue that intraday bar time series (like ones

considered in this paper) are better analyzed by making regular intervals in terms of volume

traded instead of time in order to make the return distributions more close do iid (see de Prado

(2018)). There are also data vendors that offer the data formed this way.

All the features above are z-score normalized before entering the Neural Network input. The

parameter for such normalization (mean and standard deviation) are estimated in-sample and

kept unchanged for the test-sample.
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3.3 Network Design

As the objective is to approximate an arbitrary non-linear function on the features, and

there are just a few of them, we use a fully connected feedforward neural network. This type

of network is characterized by the fact that information flows from the input layer, passing to

hidden layers and arriving at the output layer without any cycles. Fully connected means that

between any two layers all nodes are connected.

Following the modern deep learning practice, we choose a large depth (number of layers) and

width (neurons per layer). We use 20 layers, each with 10 neurons. As the other hyper-parameters

for the model, these parameters were tested on a validation, set prior to the data used for

estimating the models. They are not necessarily the best hyper-parameters for a forecasting

network, but in our tests the forecasting capabilities do not change much for large networks.

As the network is fully connected, this design means that we have 2000 weight parameters to

estimate and 20 bias parameters. Although it might seem that are too many parameters, each

training sample we use for this paper consists of about 20.000 data points.

Networks with a larger depth are usually harder to train, but are able to capture more

complex relations between the input variables. Depending on the activation function, the depth

can make problems associated with vanishing gradients worse (Goodfellow et al. (2016)) and are

more computationally expensive - which was a problem in the past, but not nowadays.

In order to compensate for the difficulty in training these deep networks, we make three

design choices:

1. A relatively high width (10 neurons)

2. Use the Leaky ReLU activation function

3. Use a customized initiation procedure

The first choice, picking a high width, alleviates the problem of vanishing gradients by simply

adding more terms to the output expression, adding more paths so that the information can flow

from the input layer to the output layer. So this choice makes less likely that the dead neurons

(neurons with too low gradient) affect the entire network. See Zagoruyko and Komodakis (2016)

for a discussion on the effects of network width on training.

The second choice tackles the vanishing gradients problem directly, by using an activation

function whose gradient never vanishes. The LeakyReLU activation function (Maas et al. (2013))

is defined as:

LeakyReLU(x) := {[l]x x ∈ (0,∞), 0.01x otherwise (7)

The gradient of LeakyReLU never vanishes, attaining a minimum value that is strictly greater

than zero. This is different than the more standard activation functions tanh, sigmoid and ReLU.

Worth mentioning that even tough the gradient never vanishes completely, it can be as low as

1e-40 on the composition of the 20 layers, so that although this choice alleviates the problem,

we can still have dead neurons in practice.

The third choice refers to the initiation of the weights for the network, which will be described

in greater detail in section 5. In short we initiated an entire path of weights from the input
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feature ew to the output as ones, setting all bias coefficients as zero, except for the last one,

which was set to a positive number. This choice of initiation made the starting parameters of

the network resemble ew, making the gradients not vanishing and the computations for the

log-likelihood loss derived from (1) more stable.

Let I = 8 be the number of features, L = 20 the number of layers and H = 10 the width of

the network. The final definition for the neural network, that is, for the function F is given by

the following equations:

h
(0)
t = leakyReLU(W (in)Xt + b(in))

h
(i)
t = leakyReLU(W (i)h

(i−1)
t + b(i)), for i ∈ {1, . . . , L}

σ2
t+1 = F (Xt) = |W (out)h

(L)
t + b(out)|

(8)

where W (in) is (I ×H), W (i) is (H ×H),W (out) is (H × 1), b(in) is (H × 1), b(i) is (H × 1) and

b(out) is (1× 1).

3.4 Model Variants

In order to measure the impact of different components of our model, we estimate a total of

4 versions of the model, including the final model and 3 simplified versions.

The table 1 resumes the characteristics of the models. The most basic is NN0, in which we

force γ and δ to zero and we use the same features used in paper 1 (that is, we exclude ba, hl and

v). So this model use the standard Skellam distribution, with no model for the mean (µt = 0).

The next is NNv, which is like NN0, except that we include the variables ba, hl and v. In

NNv,γ we allow γ to be different than zero. The final model is NNv,γ,µ, in which we also model

the mean using equation (3).

Table 1: Model Variant description

model Features γ δ

NN0 all except ba,hl, and v γ = 0 δ = 0

NNv all γ = 0 δ = 0

NNv,γ all estimated δ = 0

NNv,γ,µ all estimated estimated

4 Data

Like in Morier and Valls Pereira (2023), our dataset is formed by intraday prices for four

Brazilian Stocks: Petrobras (PETR4), Vale (VALE3), Itau-Unibanco (ITUB4) and Bradesco

(BBDC4) for the entire year of 2018. These stocks are among the most liquid Brazilian stocks.

The data used in this paper consists of the closing trading prices for the intraday interval of 10
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seconds obtained from B3 exchange by using Thomson Reuters Datascope service. Taking all

four stocks together, our dataset consists of more than 2.3 billion prices.

It is worth noting that even using the 10 seconds time frame (instead of the 1 second) we still

have to deal with a lot of missing values, as the stocks do not necessarily trade every 10 seconds

interval. Regarding this issue we also take the same approach of Koopman et al. (2018), by only

updating the model when trading activity occurs. So we do not pad missing price changes with

0 price changes as done in Koopman et al. (2017). We consider not trading as different event

than trading at the last price and we also want to make the analysis in this paper comparable

to the analysis on the rest of the thesis.

We consider all prices ranging from the market opening at 10:00 to the market closing at

17:00. We model the intraday price changes, so we discard the overnight price changes in the

cases where we estimate the model through more than one day. We apply a data-cleaning

procedure before the analysis, in order to clean for exchange reporting errors, as recommended

by Brownlees and Gallo (2006).

For descriptive statistics on the dataset refer to the data section of the paper Morier and

Valls Pereira (2023), and reproduced in the section, Part I: Data, of the supplementary material

of this paper.

5 Training Procedure

In this section we describe in more detail the training procedure applied for the networks,

along with the estimation of other parameters. The network parameters and the parameters γ

and δ are estimated together using the procedure described in this section.

5.1 Loss Function and Regularization

As the objective is to forecast a conditional density along with the volatility, we choose the

base loss function to be the log-likelihood loss for both the training and testing procedures. In

order to avoid over-fitting we add L2 norm penalization to the loss function, commonly know as

weight decay. So the loss function expression is given by

L(y) = −
∑
t

log (p(yt|Ft−1; θt))−
α

2
‖W‖22 (9)

where W = {W (in),W (out)} ∪ {W (i)}i∈{1,...,L} is the vector containing all weights in the model.

The coefficient for the L2 penalty is a model hyper-parameter and was obtained using a

presample in 2017 by trial and error. We used α = 100.

5.2 Optimization Algorithm

The Stochastic Gradient Descent (SGD) and its variants are probably the most used op-

timization algorithms for machine learning in general and for deep learning in particular. It

consists in estimating the gradient using a mean of the minibatchs gradient estimates over a

batch of data. The parameters are then updated using a hyper-parameter called learning rate
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times the gradient estimate. So it is a first order gradient descent method where the estimates

are updated using just a sub-sample of data.

The main difficulty in using SGD is appropriately setting the learning rate hyper-parameter as

its choice greatly determines the predictive power of the trained model (according to Goodfellow

et al. (2016)). If the learning rate is too high the algorithm makes the objective function to

decay faster but becomes non-robust, failing to keep the objective function decaying. If it is too

low, the optimization simply gets too much time to finish. And as one can see by the Newton’s

Method, it is better to have a lower learning rate when the curvature is higher and conversely.

In order to avoid such difficulties associated with the SGD method, we use the Adamax

algorithm. It is an adaptive method introduced in Kingma and Ba (2014) in which the gradients

are re-scaled by using the inverse of the weighted L∞ norm applied to the previous calculated

gradients. Adamax is a version of the Adam algorithm introduced in the same paper, which in

its usual form uses the L2 instead of L∞.

Regarding the batch size, we used all the sample at once for each step of the optimization,

so we actually used a ‘batch gradient descent’ method. As discussed in greater detail in the

supplementary material of this paper, we used GPU for training the networks so having a greater

batch size did not impact significantly the processing time. By using all data the gradients are

calculated with more precision. We used 2000 epochs for optimizing each network, with no early

stopping.

This above algorithm performed well in our pre-sample tests and was selected.

5.3 Initialization

Initialization is an important and not well understood part of the optimization process in

deep learning. The starting values for the neural network heavily affects the results of the

optimization process. In our case, the loss function used both for training and testing may not

be numerically stable depending on the network outputs, which increases the concern regarding

the initialization.

One standard initialization for the weights, which is default in many Deep Learning frame-

works is given in equation (10)

W
(k)
i,j ∼ U

(
− 1
√
mk

,
1
√
mk

)
(10)

where k ∈ {in, 1, . . . , L, out} is the layer, i, j are matrix coordinates and mk is the number of

columns for the matrix W (k).

We tested this initialization in our procedures and the results were unstable. For concluding

the forecasting exercise in the next section we need to estimate more than a thousand different

networks, so we need a robust optimization procedure.

So we changed this initialization scheme replacing the first column for matrices W
(k)
i,j by the

vector (0, . . . , 0, 1)T . This makes the output for the first neuron for all layers to be exactly the

first feature, ew. We also set the bias b to zero for all layers except for the first one, which had a

positive value in order to make sure that the value is positive. This is needed because ew is a

z-score, and could be negative and we need to keep the value in domain where leakyRelu is the
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identity function.

With this new initialization scheme the output for the network resembles the output for

the EWMA model at the starting of the optimization and the optimization became much more

robust, converging for the solutions presented in this paper with just one optimization trial.

Regarding the parameters outside the neural network, we initialized both γ and δ as zero.

6 Training and Forecasting Exercise

We applied the procedure in the previous section for training all the model variants in table

1. As done in paper 1, we estimated the models for all 5 consecutive business days periods of

2018, testing the model forecasts for the following 5 business days. The 5 days period was chosen

so that the daily volatility seasonality can be better captured by the models.

In order to compare for the forecasts of the neural network models we used estimates for the

models used in the paper Morier and Valls Pereira (2023):

SSM: State space model described in Morier and Valls Pereira (2023) with µt = δyt−1

SS: State space model described in Morier and Valls Pereira (2023) with µt = 0

EW: σt is estimated by an EWMA process: σ̂2
t = λy2

t−1 + (1− λ)σ̂2
t−1. λ is estimated using the

fit sample (previous week). µ and γ are set to zero

M1: σt is estimated non-parametrically by a moving average process using a rolling window of

the past 90 returns. µ and γ are set to zero

M2: σt is estimated non-parametrically by a moving average process using a rolling window of

the past 900 returns. µ and γ are set to zero

E: the pmf of yt is determined by the empirical probabilities of yt on the fit sample.

The results for the exercise are described in the next two sections. The computational details

of the implementation is described at the supplementary material of this paper.

7 Estimation Results

In this section we describe the main in-sample results for the training exercise described in

last section. We compare the results obtained in Morier and Valls Pereira (2023)

7.1 Parameter Estimates

Now we describe the estimation results for the most complete model NNv,γ,µ. The model

was estimated for 48 different 5 business days periods for all the four equities in our list.

We report the descriptive statistics for the parameter estimates at the table 2. For each

equity / parameter we report the sample mean for the parameter estimates on the first row

and the standard deviation in parenthesis on the second row. Notice that these statistics refer

to estimates in different samples, so the mean and standard deviations are only indicative of
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common estimated values through the year.They should not be interpreted as estimates and

significance test statistics.

Table 2: Descriptive Statistics for the NN parameter estimates

Bradesco Itau-Unibanco Petrobras Vale

δ -0.200 -0.186 -0.225 -0.173

(0.034) (0.036) (0.075) (0.041)

γ 0.125 0.346 -0.103 0.307

(0.111) (0.136) (0.089) (0.174)

We notice that δ is negative for all stocks, exactly as in Morier and Valls Pereira (2023).

This implies a negative dependency of the mean on previous returns, which is the expected value

as noted in Morier and Valls Pereira (2023). We notice also that γ is only negative for Petrobras,

also like in Morier and Valls Pereira (2023). In fact the estimates show different but similar

values when compared to the estimates for SSM and SS models.

The similarities are more prominent when we compare the point estimates for each sample.

Figures 1 and 2 shows the estimates for γ and δ respectively for both NNv,γ,µ and SSM models.
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Figure 1: Estimates for γ

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

On both cases the lines plotted are similar for both models, although the level for the SSM

model tended to be a little bit lower than for the neural network. This similarity shows the

robustness of both estimation procedures, as the estimation procedures are totally different and

the models are in fact also different.

14



Figure 2: Estimates for δ

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

7.2 Filtered Volatility Example

We now compare volatility estimates from the Neural Network model NNv,γ,µ and the SSM

model. For the SSM model we used the Bootstrap Particle Filter in order to obtain the filtered

forecasts. Figure 3 shows the path of the filtered volatility for the day July 6, 2018 for both

models. Observe that the volatility decreases during the day as predicted by the mean seasonality

in Morier and Valls Pereira (2023).

Note also that the volatility estimates for both models are strikingly similar, which is again

a robustness check on the procedure of both models - as the models and procedures are totally

different in both case. The volatility forecast for the Neural network appears to be little less

volatile than the volatility forecast for the SSM model.
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Figure 3: Filtered Forecast Volatility for July 6, 2018

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

7.3 Intraday Seasonality

In this sub-section we analyze the descriptive statistics for the volatility seasonality. Figure

4 depicts the seasonality for the NNv,γ,µ model, showing the mean and two percentiles for the

volatility predicted by the model for each time of the day in the entire sample. Observe that

for all stocks have a sharp decrease in the mean volatility predicted from the opening to the

end of the day. This effect is also documented in Koopman et al. (2017). As stated in Morier

and Valls Pereira (2023), one possible reason is that on the starting of the trading session there

is more information for the markets to digest, including all the overnight news and economic

releases, that are more common in the morning.
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Figure 4: Average Seasonality for 2018

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

The concept show in the figures is different however than the one show in figure 11 of Morier

and Valls Pereira (2023). In that paper we plotted the theoretical seasonality arriving from the

seasonality splines estimated in that model. Now we show percentiles for the model prediction

directly. So we have more variability in the sample now, as the volatility varies not only because

of the seasonality - the variability is also related to shocks. The curves are also less smooth

beacuse there is no spline structure behind this estimates.

We can see in this figure an interesting pattern not captured by the splines: A spike in

the volatility at the very ending of the trading session. This is actually the close auction, that

happens on the last 5 minutes of the trading session for Brazilian equities. The splines are not

able to capture this because of the smoothness imposed by such structure.

7.4 Non-linear Sensivity Analysis

As discussed in section 2, Deep Learning method is focused in building models that are good

for forecasting. It is usually hard to get a deeper understanding on how the networks deal with

each input feature, especially because the output of the network might be a highly non-linear

function of the inputs. And the inputs interact with themselves inside the network, making

interpretations harder.

Besides such difficulties, our objective in this section is to get a better understanding on how
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the trained networks react to changes in the features, on average. We want to answer questions

about what to expect in terms of volatility when the bid-ask spread rises, or if there is any

detected relation between volume and volatility.

We make two exercises. First, we shock all input variables by adding one standard deviation,

one at a time keeping the other constant, for the whole training sample. Then we compute

the changes in the prediction for the volatility for each stock, for each sample time. Table 3

reports the descriptive statistics for these sensibilities, reporting means and standard deviations

aggregating through time. The standard deviations are reported below the means, in parenthesis.

Table 3: Standardized Sensivity to shock in variables

ew y y2 ba hl v W0 W1 W2

Itau-Unibanco 0.30 -0.0023 0.078 0.13 0.090 0.036 0.082 0.028 -0.012
(0.12) (0.021) (0.036) (0.044) (0.028) (0.033) (0.060) (0.033) (0.027)

Bradesco 0.26 -0.0039 0.060 0.095 0.061 0.022 0.067 0.021 -0.011
(0.083) (0.022) (0.033) (0.051) (0.025) (0.025) (0.042) (0.022) (0.026)

Vale 0.35 -0.0094 0.083 0.11 0.092 0.076 0.12 0.051 -0.0016
(0.13) (0.024) (0.037) (0.059) (0.033) (0.054) (0.088) (0.038) (0.030)

Petrobras 0.20 -0.0092 0.032 0.033 0.049 0.053 0.036 0.0098 -0.0023
(0.11) (0.015) (0.021) (0.019) (0.031) (0.036) (0.038) (0.026) (0.014)

We observe that, on average, the models estimated point to a positive relation between the

ew variable and the volatility output of the network, with a one standard deviation shock in

that variable changing the volatility forecast between 0.20 and 0.35 depending on the stock.

The relation with y is negative on average, which is the expected sign for this sensibility, but

with a low average value and a high dispersion. So the networks do not appear to be highly

sensible to this variable, at least for a shock keeping all other variables constant. But as the

relations modelled are non-linear, this input feature can interact with others leveraging its effects.

The relation with y2 is clearly positive for all stocks, but with a impact below ew. The

variables ba, hl and v all have positive effects in the output volatility, on average, for all stocks.

As discussed before, this is the expected sign for the impact of these variables according to the

literature.

The last three features, W0, W1 and W2 are the seasonality splines. The first two tend to

have positive values, with a higher values for the first, while the latter small negative values

(with high relative dispersion). This is similar to the estimates of the coefficients β0, β1 and

β2 for the model SSM in the table 4 of Morier and Valls Pereira (2023), although in that table

coefficients for β1 are small negative on average.

In the second exercise we shock the input features by values ranging from -10 standard

deviations and 10 standard deviations, keeping all other features constant. We shock all features,

except for the seasonality splines. These shocks were again computed for the whole training

sample, like in the previous exercise. The objective is to get an understanding on the non-

linearities in the impact of each variable, holding all else constant. Observe that most input
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variables are fat tailed, so that shocks with 10 standard deviations actually happen frequently in

the sample. The results are reported on the figures collected a table 4.

Table 4: Non-linear sensivity to standardized shocks of selected variables

Itau-Unibanco Bradesco Petrobras Vale

ew

y2

y

hl

ba

v

The solid line reflects the mean effect for the shock for each variable, while the dashed lines

represent the 25% and 75% percentiles for the shocks. Looking at the figures in table 4 we can

readily see that the higher relative dispersion of the impact is attained at the variable y. The

other variables have a relatively lower dispersion.

Regarding the non-linearity of the effects, most variables have a S shaped impact format,

where the effect for the impact is diminished for high absolute valued shocks. Perhaps the most

salient effect is for the ew feature, where the impact seems to have a floor for negative values.
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The concavity for negative values is also salient for hl, ba and v, for most stocks.

8 Forecasting Exercise Results

We now report the results for the walk-forward forecasting exercise described at section 6.

We follow Koopman et al. (2017) and compare the forecasting performance of the models using

log-likelihood loss. This measure is used because it takes into account the entire conditional

density forecast into account, being able to compare models regarding not only the volatility

forecasts but also forecasts for the mean and the format of the conditional distributions, including

the tails and the frequency of zeros. So we are evaluating the capacity for the models to forecast

not only the volatility, but their ability to forecast the conditional densities. For the forecast of

time t and for all models, we use only data up to t− 1.

Also following Koopman et al. (2017) and the methodology applied in paper 1, we compare

the forecast performance by using Diebold-Mariano (DM) Statistics. In tables 5 and 6 we

compute the mean log-likelihood Loss (column Log Loss) for each 10 seconds interval and the

Diebold Mariano statistics comparing each model with the models NNv,γ and NNv,γ,µ (columns

DMv,γ and DMv,γ,µ). We used all the 2018 sample for computing this statistic, using the density

prediction and the realized return yt for every 10 seconds period - so this is a huge sample (more

than 500,000 points) for each comparison. A positive number means that the model in the row

outperforms the model in the column, while a negative number means the opposite.

Table 5: Forecasting Results - Itau-Unibanco and Bradesco

Bradesco Itau-Unibanco

Log Loss DMv,γ DMv,γ,µ Log Loss DMv,γ DMv,γ,µ

NN0 1.761 -30.13 -69.49 1.945 -46.35 -73.06

NNv 1.755 -6.379 -63.01 1.936 -32.07 -63.85

NNv,γ 1.754 - -62.03 1.933 - -53.62

NNv,γ,µ 1.737 62.03 - 1.919 53.62 -

EW 1.764 -28.19 -61.14 1.949 -41.11 -64.28

M1 1.772 -37.02 -63.15 1.959 -49.34 -68.00

M2 1.801 -78.92 -98.27 1.987 -83.51 -97.81

E 1.789 -53.56 -71.86 1.968 -50.97 -65.34

SS 1.761 -19.09 -53.49 1.948 -37.34 -61.49

SSM 1.742 23.71 -11.68 1.932 1.640 -28.56

Looking at the columns Log Loss and DMv,γ,µ for both tables 5 and 6, we can see that

the model NNv,γ,µ outperforms all other neural network specifications and also outperform all

other comparing models, including the SS and SSM models. This out-performance is highly

statistically significant as the DM statistic closest to zero is -11.68 and the this statistic has a

standard normal distribution asymptotically.

Looking at the columns Log Loss and DMv,γ we also see that the final NN version with
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no mean modelled NNv,γ outperforms all models except for the models with mean modelled

(NNv,γ,µ and SSM). This shows the importance of modelling the mean for this kind of models,

which is a novelty of the present work - regarding discrete high-frequency densities.

It also worth noting that this consistency in outperforming this set of models were not

obtained by the SS model. This model actually did not outperform the EWMA model for Vale

at the same sample, as pointed by the table 6 in Morier and Valls Pereira (2023). Another

interesting point to note is that although NNv,γ did not outperform SSM for all stocks, it did

outperform for one of them (Vale).

Table 6: Forecasting Results - Petrobras and Vale

Petrobras Vale

Log Loss DMv,γ DMv,γ,µ Log Loss DMv,γ DMv,γ,µ

NN0 1.476 -32.03 -75.98 2.018 -35.09 -62.28

NNv 1.473 -17.88 -71.08 2.012 -24.47 -57.65

NNv,γ 1.471 - -68.67 2.010 - -52.60

NNv,γ,µ 1.448 68.67 - 1.997 52.60 -

EW 1.480 -35.90 -75.36 2.023 -31.29 -53.89

M1 1.486 -46.21 -80.39 2.033 -41.99 -59.74

M2 1.500 -71.67 -98.33 2.065 -82.16 -94.76

E 1.517 -98.75 -119.1 2.046 -45.70 -58.24

SS 1.477 -26.17 -71.23 2.027 -37.60 -57.88

SSM 1.453 31.53 -12.58 2.015 -9.123 -36.13

We arrange the comparing DM Statistic for comparing all the models individually in table 7.

The calculation is exactly the same as the tables 5 and 6, but now we can compare all pair of

models. A positive number means (again) that the model in the row outperforms the model in

the columns, where a negative number means the opposite.

We can see that even the simplest neural network model considered, NN0, outperforms the

EW model for all stocks - which does not happen even for the SS model, that underperforms

EW for Vale. NN0 also outperforms SS for all stocks, altough the outperformance for Bradesco

is not statistically significant (DM=-0.5). Recall that this model does not even allow γ to be

different from zero and uses the same input variables as SS.

Comparing the performance of NNv and NN0 we see that the newly added variables (ba, hl

and v) significantly enhances the predictive power for the model. NNv beats NN0 by a high

margin, with DM statitics above 20 in absolute value terms.

Comparing NNv,γ and NNv we also see that including the γ the forecasts’ loss becomes

significantly lower, also by a large margin. Finally, comparing NNv,γ,µ and NNv,γ we see again

the importance of modelling the mean. This appear to be the single most important feature

comparing the forecasting performance, as the DM statistics of this last comparison is even

higher in absolute terms then the last comparisons.
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Table 7: DM Statistics Results

Itau-Unibanco

NNv,γ,µ NNv,γ NNv NN0 EW SS

SSM -28.6 1.6 7.9 24.8 27.5 42.6

SS -61.5 -37.3 -27.5 -7.3 3.1 -

EW -64.3 -41.1 -33.6 -14.7 - -

NN0 -73.1 -46.4 -35.0 - - -

NNv -63.9 -32.1 - - - -

NNv,γ -53.6 - - - - -

Bradesco

NNv,γ,µ NNv,γ NNv NN0 EW SS

SSM -11.7 23.7 24.5 37.3 41.4 46.0

SS -53.5 -19.1 -17.3 -0.5 9.2 -

EW -61.1 -28.2 -27.0 -12.4 - -

NN0 -69.5 -30.1 -28.9 - - -

NNv -63.0 -6.4 - - - -

NNv,γ -62.0 - - - - -

Petrobras

NNv,γ,µ NNv,γ NNv NN0 EW SS

SSM -12.6 31.5 34.7 40.7 47.4 45.6

SS -71.2 -26.2 -15.3 -4.3 12.8 -

EW -75.4 -35.9 -29.6 -20.9 - -

NN0 -76.0 -32.0 -24.2 - - -

NNv -71.1 -17.9 - - - -

NNv,γ -68.7 - - - - -

Vale

NNv,γ,µ NNv,γ NNv NN0 EW SS

SSM -36.1 -9.1 -5.4 5.8 10.9 33.5

SS -57.9 -37.6 -32.3 -19.6 -7.9 -

EW -53.9 -31.3 -26.8 -13.4 - -

NN0 -62.3 -35.1 -27.2 - - -

NNv -57.7 -24.5 - - - -

NNv,γ -52.6 - - - - -

We also computed the DM statistic individually for each 5-day period. We show the results

for the comparison with the NNv,γ model in figure 5 and the comparison with the NNv,γ,µ model

in figure 6. We can see in the figures that all previously reported out-performances are consistent

through most of the 5-days samples, with few points of exception.

Each point in these figures represent the statistics applied to the 5-days period, which

constitutes more than 20.000 data points. In figure 3 we see that the test statistics are similar

for all models compared to NNv,γ , and they oscillate around the level of -5.
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Figure 5: Weekly DM Score for NNv,g Model

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

In figure 6 we see that the test statistics are similar for all models compared to NNv,γ,µ,

except for the SSM model, and they oscillate around the level of -10. The comparison with the

SSM yields a smaller statistic (in absolute value terms), mostly ranging from -2 to -5.
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Figure 6: Weekly DM Score for NNv,g,m Model

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

9 Final Remarks

In this paper we developed a new model for forecasting discrete high-frequency densities and

volatility. The model is composed of a deep feed-forward neural network to forecast volatility,

an AR model for the mean and uses the Modified-Skellam distribution for computing densities.

We are unaware of any other works using Deep Learning to predict volatility at this time-scale.

Besides the forecasting performance, this model is easier to implement and computationally

faster than the State Space counterparts.

We used this model to forecast conditional intraday discrete high-frequency densities and

volatilities, contributing to the nascent literature on this subject. In this new model we added new

variables not present in previous papers on high frequency volatility forecasting, including the

bid-ask spread, the high-low interval spread and the volume traded. We conducted a sensibility

analysis of the networks estimated and found that these variables affected the volatility forecasts,

finding a positive relation between all of them and the volatility. We also showed that this relation

is not linear, appearing to have an S shape (with more concavity on for negative shocks). We

also included the previous price change in the model, but sensibility analysis was not conclusive.

We show that the inclusion of these variables increase the prediction power of the model.

We compare the in-sample filtered volatilities, seasonality, and common parameters obtained
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with the Neural Network Model with the State Space models derived at paper 1 - and find

many similarities. But, more interestingly, we conducted an extensive out-sample walk-forward

forecasting exercise, involving the entire year of 2018 and about 2 billion data points of price

changes of four distinct stocks. The new Neural Network model showed the best forecasting

performance for all the stocks when compared to State Space Models and EWMA models.

This outperformance was consistent between all the stocks, across time and with and without

modeling the mean of the density.
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Supplentary Material for the paper Forecasting Intraday Volatil-

ity and Densities using Deep Learning

In the supplemntary material for the paper Forecasting Intraday Volatility and Densities

using Deep Learning it is presented to parts. This first part is a description of the data used in

this paper and also in Morier and Valls Pereira (2023). The second part is the computational

aspects for this paper.

Part I: Data

Our dataset is formed by intraday prices for four Brazilian Stocks: Petrobras (PETR4), Vale

(VALE3), Itau-Unibanco (ITUB4) and Bradesco (BBDC4) for the entire year of 2018. These

stocks are among the most liquid Brazilian stocks. The data used in this paper consists of the

closing trading prices for the intraday interval of 10 seconds obtained from B3 exchange by using

Thomson Reuters Datascope service. Taking all four stocks together, our dataset consists of

more than 2.3 billion prices.

In the literature we have studies with approaches similar to this paper that uses both 1

second (Koopman et al. (2017)) and 10 seconds time interval (Koopman et al. (2018)). The first

one is concerned with the volatility dynamics, analyzing univariate time series while the second

makes a multivariate analysis. The 10 seconds time frame is more convenient for the multivariate

analysis as it raises the probability of the joint event of simultaneous trading for the assets

considered in the analysis, as argued in Koopman et al. (2018). A reason for using 10 seconds

interval even in the univariate case is that although we chose the most liquid Brazilian stocks,

these stocks are less liquid than the American counterparts used in Koopman et al. (2017). For

these two reasons we chose the 10 seconds interval for the three papers in this thesis. There is

a last advantage in this choice: it makes the whole thesis comparable and based in the same

dataset, which is described in this section.

It is worth noting that even using the 10 seconds time frame (instead of the 1 second) we

still have to deal with a lot of missing values, as the stocks do not necessarily trade every 10

seconds interval. Regarding this issue we also take the same approach of Koopman et al. (2018),

by only updating the model when trading activity occurs. So we do not pad missing prices as

done in Koopman et al. (2017). Repeating prices when trading activity do not occur has the

effect of equating the event of no trade in a time t to the (different) event of a trade happening

in time t with the same price as t− 1, which is not desirable. This procedure would inflate the

number of zero price changes.

We consider all prices ranging from the market opening to the market closing. We model the

intraday price changes, so we discard the overnight price changes in the cases where we estimate

the model through more than one day. We apply a data-cleaning procedure before the analysis,

in order to clean for exchange reporting errors, as recommended by Brownlees and Gallo (2006).

In table 8 we show descriptive statistics for the entire sample. We notice that there is high

occurrence of no change in price (0’s) and changes of magnitude 1 (±1). The distribution for all

stocks is also fat tailed, as the minimum and maximum price changes are more than 30 times
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the standard deviation. This last fact can also be checked by looking at the 0.1% and 99.9%

percentiles that are more than 5 times the standard deviation. These occurrences shows not

only a fatter than normal distribution, but also fatter than the Skellam or Modified Skellam

distributions.

Table 8: Descriptive Statistics for the 2018 Sample

# prices %0 %±1 std min max 0.1% 99.9%

Itau-Unibanco 585,142 33 36 1.90 -58 38 -9 9
Bradesco 583,730 36 40 1.57 -63 35 -8 7
Petrobras 587,000 43 43 1.24 -33 26 -6 5
Vale 567,534 31 36 2.09 -49 53 -11 11

Note: We report prices as the number of 10 seconds closing prices considered in the sample, %0 as

the percentage of 0 price changes, %± 1 as the percentage of %± 1 price changes, std as the standard

deviation, min as the minimum price change in ticks, max as the maximum price change in ticks, 0.1% as

the 0.1% percentile of price changes in ticks and 99.9% as the 99.9% percentile of price changes in ticks

the data, including whatever notes are needed.

In figure 7 we plot the histograms for the price changes for the selected stocks in the entire

year of 2018. In order to make this plot we discard the most severe price changes, that is, we

only consider the percentiles 0.1% to 99.9%, as the minimum and maximum values exceed the

range of the graphs. We can see from this plots that the price changes takes few values most of

the time emphasizing the need for a discrete distribution for this data.

We also note from figure 7 that the least volatile stock in terms of tick volatility, Petrobras,

attains less values most of the time for its price changes, while compared with the others. This

does not mean that Petrobras stock is less volatile than the others considering usual price log

returns . In fact, Petrobras stock is more volatile than the other in this sample. The histogram

dispersion for each stock is actually determined by the stock volatility divided by the ratio of the

tick size to its price. And for our sample this ratio is higher for Petrobras than for the others.

This fact forces the price changes to attain less distinct values most of the time.
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Figure 7: Histogram for price changes in 2018

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

Note: In figure 8 we plot the price changes for the selected stocks in number of ticks for a

selected date (June 20, 2018). We can see again that Petrobras price changes attain less distinct

values than the other stocks.
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Figure 8: Price changes for assets on June 20, 2018

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

Part II: Computational Aspects

The computations needed for the exercises in this article would be very hard to carry a few

years ago. Recent advances in IT, both for hardware and software made the tasks in this work

less difficult. In this appendix we describe the technologies used in this work.

A Working in Parallel with GPU and CUDA

One of the main advances in hardware for the last decade is the cheap availability of parallel

processing. First, we now have access to GPU units, that were popularized in along the 2000’s

decade. And they were specialized for deep learning tasks over the last decade.

A graphics processing unit (GPU) is a specialized processor unit initially designed to accelerate

the creation of images for output to a display device. GPUs are used in embedded systems,

mobile phones, personal computers, workstations, and game consoles. Their highly parallel

structure makes them more efficient than general-purpose central processing units (CPUs) for

algorithms that process large blocks of data in parallel. In a personal computer, a GPU can be

present on a video card or embedded on the motherboard.

The chip maker NVIDIA created the CUDA (Compute Unified Device Architecture), which
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is a parallel computing platform and application programming interface (API) model. It allows

software developers and software engineers to use a graphics processing unit (GPU) for general

purpose processing. The CUDA platform is a software layer that gives direct access to the

GPU’s virtual instruction set and parallel computational elements, for the execution of compute

kernels. In top of CUDA, nVidia maintains a set of specialized libraries. Three of them are of

great interest for the computations involved in this work: cuBLAS, cuSOLVER and cuDNN.

The NVIDIA cuBLAS library is a fast GPU-accelerated implementation of the standard

basic linear algebra subroutines (BLAS). NVIDIA cuSOLVER library provides a collection

of dense and sparse direct solvers with the intent of providing useful LAPACK-like features,

such as common matrix factorization and triangular solve routines for dense matrices, a sparse

least-squares solver and an eigenvalue solver. Lastly, the NVIDIA CUDA Deep Neural Network

library (cuDNN) is a GPU-accelerated library of primitives for deep neural networks. The

cuDNN library provides highly efficient implementations for standard routines such as forward

and backward convolution, pooling, normalization, and activation layers.

The CUDA framework became the standard framework for general processing in GPU’s.

Fortunately end users do not need to deal with this infrastructure directly. The availability

of cuBLAS, cuSOLVER and cuDNN made easy for software developers to develop high level

packages that build in the CUDA architecture in order to make scientific computing. As in the

case of BLAS and LAPACK for the CPU’s, most users actually access the libraries transparently,

using high level wrappers. This is the case for Pytorch, Tensorflow and MXNet, which are deep

learning frameworks backed by Google, Facebook and Apache Foundation, respectively. They

provide generic access to classes implementing Deep Learning features that can run either in CPU

or GPU, with almost the same code. They also provide generic matrix / tensor libraries that

make the use of BLAS, LAPACK, cuBLAS and cuSOLVER transparent to the user, computing

the transformations on both CPU and GPU with the same interface.

For the present work we computed all the Neural Network training procedures on the GPU,

running four training problems at the same time. We used a gaming notebook with a CUDA

enabled NVIDIA GeForce GPU. The networks were coded using Pytorch framework. We trained

four models, for four stocks and 48 periods (768 models) for 2000 epochs. The training took less

then 1 day to complete. We estimate that using the CPU the computation wold be about 20

times slower.

B Distributed Computing: AWS EC2 Cluster

Parallelizing computations over the GPU is a great and economical way of processing many

tasks in a short period of time. However, this approach is no panacea: there are limitations and

practical difficulties in using GPU.

First, not all problems are well suited for processing in parallel. A great example is time

series analysis. Most time series models contain some time dependency, which likely involves a

recurrence that usually must be computed sequentially. The task of computing an AR model

for 20.000 timestamps or running a Kalman filter for the same lenght cannot be parallelized.

And these applications were ubiquitous in papers 1 and 2 computations. When the task cannot
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be parallelized, it makes absolutely no sense to use GPU’s, as each processor in the GPU has

limited capabilities when compared with the CPU. In these cases computing in GPU is actually

slower. The GPU main advantage is the number of processors and this advantage is not relevant

in these scenarios.

Second, some times it is hard to write a code that runs entirely on the GPU even when the

problem can be parallelized. Taking the example of the Kalman filtering, one cannot parallelize

the filtering procedure from one time series, but could make the filtering of several time-series

at the same time. And this would be the case of the Kalman Simulator Smoothing algorithm

used to sample for Gaussian distribution obtained by the NAIS procedure. So that part of the

algorithm could be parallelized. But in order to do this on the GPU, one would need to write

extremely efficient compiled functions for the Kalman Filtering over the GPU, with custom

Kernels, which is hard and time consuming. Another difficulty faced is the possible unavailability

of certain specialized mathematical functions over the GPU.

So we opted to compute the models of the first two papers on the CPU. The computations

involved the optimization of 2 models for 4 stocks over 48 periods in the first paper, and 2

models for 2 pairs of stocks over 48 periods in the second paper. The forecasting part was also

computationally expensive for the State Space models in both papers, as the Bootstrap Particle

Filter was used. These two papers involved the computation of the estimation procedure of 960

models and the computation of the particle filtering for 768 models. Computing all these models

over a single desktop using one CPU would take many days to complete, possibly some weeks.

So we opted to use a cluster on Amazon AWS EC2 to make such computations, distributing the

computing process through 5 instances, each with 72 processors each. we used the c5.18xlarge

instance type. The computations took about 1 day to complete.

C Approximating Functions

Another difficulty faced is the unavailability of certain specialized mathematical functions

over the GPU. This is the case for the modified Bessel I function, needed for the Skellam pmf

computation. Actually, even the computation of this function on the CPU is too slow, as it

involves the expansion of series for computing each value. The function might not be numerically

stable also, even when using the exponential scaled version.

So we opted to approximate this function by splines. The same was done with the 2

dimensional Gaussian CDF function, needed for the Gaussian copula computation. The imple-

mentations became faster and more numerically stable, maintaining the differentiability needed

for the optimizations.

D Compiling Python Code

A final important topic concern how to generate low level efficient code for implementing

specialized algorithms needed for the paper. The language of choice for this paper was python

because of its easy of use, it does have large scientific and generic computing libraries and

because it is open source. But the language is not particularly fast. This is not a problem if the
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problem at hand is not computationally intensive or if most of the computation can be done by

calling compiled code already available in python libraries. Unfortunately the computations for

this work did not fell into any of these two categories.

Using python to write the time-series loops needed for the algorithms in this work would

lead to implementations 5 to 10 times slower than low level code implementations, making the

computations unfeasible in practice. Writing this code directly in a low level language would

be too time consuming for the purposes of the current work. Our solution involved generating

low level compiled code using python package Numba. Numba allows on-the-fly/transparent

compilation of python code, approaching low level C/Fortran Speed. Only a subset of the Python

language is supported, so some effort compatible code is needed. But it involves much less effort

than writing C/Fortran specialized functions.
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