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Abstract  

Context: Due to technological advances in instrumentation and digital signal processing, 

non-invasive methods for detecting structural damage have become increasingly important 

in recent years. Vibration-based structural health monitoring techniques (SHM) allow the 

identification of presence and location of damage from permanent changes in the 

fundamental frequencies of the signals. A method successfully employed focused on 

damage detection is the Empirical Mode Decomposition (EMD). Another underutilized 

method in this field of study is the Singular Spectral Analysis (SSA). In this paper, we 

describe both methodologies and perform a simulation study to compare them and identify 

which one is more effective in detecting structural damage. 

Method: We applied the methods on a reference study known as benchmark SHM problem 

to facilitate the comparison between the methods. In order to evaluate the effectiveness of 

both methods, we proposed to perform a Monte Carlo type simulation study. To control the 

included random noise and other factors inherent to the simulation, we repeated the 

procedure 1000 times for each type of damage.  

Results: When the damage is severe, both methods have good performance. However, 

when the damage is slight, the change in fundamental frequency is not apparent. But we 

observed a significant change in the amplitude level, in this case the SSA perform the best 

results. 
Conclusions: The EMD and SSA methods, along with a high pass filter, detects severe 

damage when the acceleration records have low or no noise. When the acceleration records 

are contaminated with noise, the likelihood of the EMD detecting the damage decreases 

dramatically. One of the advantages of the SSA over the EMD is that, for medium or mild 

damage patterns, the SSA does not require filters or the use of the Hilbert transform to detect 

the damage. In general, we found that SSA is more effective in detecting damage. 
 

Keywords: Hilbert-Huang Transform, Signal Analysis, Structural Health Monitoring, Time-

Frequency Analysis. 

 

 

 

Resumen  

Contexto: Debido a los avances tecnológicos en instrumentación y procesamiento digital 
de señales, los métodos no invasivos para la detección de daños estructurales han ganado 
cada vez mayor importancia en los últimos años. Las técnicas de monitoreo de salud 
estructural basadas en vibraciones (SHM) permiten identificar la presencia y ubicación del 
daño a partir de cambios permanentes en las frecuencias fundamentales de las señales. 
Un método que se ha implementado con éxito enfocado a la detección de daño es la 
descomposición modal empírica (EMD) y otro método poco explorado en este campo de 
estudio, es el análisis singular espectral (SSA). En este artículo describimos ambas 
metodologías y realizamos un estudio de simulación para compararlas e identificar cuál de 
ellas es más efectiva en la detección del daño estructural. 



Método: Aplicamos los métodos en un estudio de referencia conocido como SHM para 
facilitar la comparación entre los métodos. Para evaluar la efectividad de ambos métodos 
se propone un estudio de simulación tipo Monte Carlo. Para contralar la inclusión de ruido 
aleatorio y otros factores inherentes a la simulación el procedimiento fue repetido 1000 
veces para cada tipo de daño. 
Resultados: Cuando el daño es severo ambos métodos tienen buen desempeño. Cuando 

el daño es leve el cambio en la frecuencia fundamental no es aparente, pero se observo un 

cambio significativo en el nivel de amplitud, en este caso el método SSA se conduce a 

mejores resultados. 

Conclusiones: Los métodos EMD y SSA junto con filtros pasa altos cuando los registros 
de aceleración no tienen ruido o este es bajo. Cuando los registros de aceleración están 
contaminados con ruido la probabilidad de detección de daño del EMD decrece 
drásticamente. Una de las ventajas del SSA sobre el EMD es que para patrones de daño 
medios, este no requiere filtros o el uso de la transformada Hilbert para detectar el daño. 
En general se encontró que el SSA es más efectivo para la detección del daño. 
Palabras clave: Transformada Hilbert-Huang, Análisis de Señales, Monitoreo de Salud 
Estructural, Análisis Tiempo-Frecuencia. 
 

1. Introduction 

1.1. General Aspects 

In recent decades, some researchers paid special attention to avoid sudden failure of 

structural components through early detection of damage. Therefore, there are several 

techniques for damage analysis including vibrations-based methods. However, it is 

necessary to implement a time series-based algorithm for the monitoring to process the 

large amount of information provided by sensors and simplify it to measure the structural 

condition. 
 

Some methodologies that give good results for damage detection are the Hilbert-Huang 

Transform (HHT), which combines EMD with Hilbert Spectral Analysis. Additionally, a new 

approach is the SSA, which has been employed in recent years; in [1] and [2] claim that 

singularities can be associated with cracks, damage, or environmental changes. 

Specifically, SSA is a time-series analysis technique that decomposes the signal into 

specific principal components that describe its trend, fundamental frequencies, and 

singularity effects. 

 

EMD and SSA allows decomposing a signal into monocomponent signals (signals with a 

single fundamental frequency). Once the decomposition is obtained, it is possible to use 

Hilbert Spectral Analysis to study the decomposed signals in the time-frequency domain and 

observe whether there is a change in the natural frequencies, i.e., structural damage and 

this is valid in a wide field of applications, for example for the detection of brain damage [3]. 

. 

This study compares the effectiveness of these two methods for detecting structural damage 

based on a simulation study applying these methodologies to the dynamic acceleration 

response of a four-story steel structure that contains different damage patterns. We 

generated this acceleration response through a computer program called Datagen, which 

simulates a reference problem known as the benchmark SHM problem developed by the 

structural health research group IASC-ASCE [4]. 



 

 

1.2. Background 

Structural health monitoring based on the vibration of structures is one of the main reasons 

why different tools are developed to study structural damage from changes in natural 

frequency, since this is associated with the mass and stiffness matrix of the structure. 

Generally, the mass tends to remain constant, so if there are changes in frequency, these 

will be caused by changes in stiffness; if this variation is preserved over time, then there is 

damage in the structure, for example, in [5] performed a modal identification and detection 

of damage in beam-type structures by studying methods based on natural frequency 

changes. 

 

In [6] uses instantaneous phase data obtained from a single-component decomposition for 

damage detection of a three-story building. In [7] proposed a damage index called the "EMD 

energy damage index" for structural damage detection, and corroborated its applicability 

through numerical and experimental studies. In [8] presents the state of the art on the 

beginnings and advances in diagnostic and damage detection studies, and develops a new 

methodology for system identification and damage detection using actual output data from 

vibration records, based on the direct application of Time and Frequency Averaging 

Representation (MTFR) and Frequency Domain Decomposition (FDD). 

 

In [9] performs a comparative review study on different damage detection methods, including 

ARMA models, parameter identification tools, NexT/ERA identification systems, damage 

index, EMD, EMD+ HHT (Hilbert-Huang Transform), AR models, and others. These 

methods applied to the benchmark problem allow analyzing the advantages and 

disadvantages of each of these methods and their detection capability for different damage 

patterns.  
 

Recent research implements different methodologies for vibration-based damage detection. 

For example, in [10] uses the recursive spectral singular analysis algorithm to identify 

structural damage, using inputs a single channel in real time and produces a lagged Hankel 

time matrix of the series; This method allows obtaining information about the current state 

of the structure, in this case a cantilever beam subject to seismic excitation. [11] proposes 

the multivariate empirical modal decomposition for the location of damage in structures 

using measurements. [12] uses the EMD with adaptive noise to identify the presence, 

location, and severity of damage in a steel truss bridge model; In this paper, they build the 

object of study under laboratory conditions and they experimentally subject the bridge to 

white noise excitations. 

 

In [9] confirms that EMD, together with Hilbert transform, can detect specific damage 

patterns. Then, this paper verifies this result and also implements the SSA, which is still an 

innovative algorithm for structural damage detection in the field of civil engineering. 

 

2. Materials and methods  

In this section, some concepts regarding damage are briefly explained as well as some 

mathematical concepts that are associated with the time-frequency analysis methods. 

 



2.1 Levels of Structural Damage  

In civil engineering, the concept of damage has different meanings and interpretations. In 

this study, structural damage is defined as changes (almost always permanent) of structural 

properties such as stiffness, strength, dynamic properties, or losses of acceptable structural 

performance according to pre-established behavioral criteria [8].  

 

The effects of damage in a structure can be classified into four levels as follows [13]: 

 

- Level 1. Determines the presence of damage in the structure. 

- Level 2. Level 1+ determines the geometric location of the damage. 

- Level 3. Level 2+ the quantification of the severity of the damage. 

- Level 4. Level 3+ the prediction of the remaining service-life of the structure. 

 

Generally, vibration-based damage identification methods that do not use a structural model 

mainly provide Level 1 and 2 damage identification. 

 

2.2 Empirical Mode Decomposition (EMD)  

EMD is a methodology for decomposing a given signal into a set of elementary signals called 

"Intrinsic Mode Functions" (IMFs), defined by the following conditions [14]: 

 

1) The number of extremes (max and min) and zero crossings must not differ by more 

than one. 

2) At any instant, the average between the envelope of maximum points and envelope 

of minimum points must be close to zero. 

 

The iterative procedure proposed by Huang to obtain the IMFs is as follows: 

 

1) Identify the extreme points of the function 𝑥(𝑡) (max and min) 

 

2) Interpolate between the maximum points using a cubic spline to obtain an 

envelope max ( )e t
 similarly with the minimum points to obtain min ( )e t

. The 

envelopes should cover the entire signal. 

3) Calculate the average of the envelopes 
( )
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4) Calculate   ( ) ( ) ( )h t x t m t= −
, where 

( )h t
 is the IMF candidate. Steps 1) through 4) 

should be iterated with 
( )h t

 as the new function until the two conditions described 

above for IMFs are met. 

5) Once the conditions have been met, 
( )h t

 becomes the first IMF. 

6) Calculating the residue   ( ) ( ) ,r t x t IMF= −  ( )r t  becomes the new function, and 

the steps are repeated to find the next IMF . 

7) The procedure is repeated until the residual can be considered negligible or 

constitutes a monotonic function (no max or min).  

 



In summary, this process is based on generating envelopes defined by max and min of a 

series and subtracting the average of these envelopes from the initial series. 

 

2.3 Singular Spectral Analysis (SSA)  

This method incorporates classical time series analysis elements, like classical spectral 

analysis [15], digital signal processing, dynamic systems, and multivariate statistics. SSA 

consists of the decomposition of an original signal into a set of uncorrelated components 

from which three characteristics can be extracted: trend, oscillation, and noise [16] [17]. 

Such decomposition is based on the Karhunen-Löeve covariance matrix. This procedure is 

developed in four steps: 

 
 

1) Step 1: Decomposition of the time series 
 

Let 
 1 2, , , NY y y y= 

be the observed series time of size N . Consider the matrix X  of 

dimension L K  given by 
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L  is the length of the window such that 2 , 1L N K N L  = − +  is the number of column 

of the matrix X   and each 
( )1, , ,1 .

T

i i i LX y y i K+ −=   
 Choosing the length L  is one of 

the biggest challenges when working with SSA, mainly for non-stationary series, since a 

large window may require higher computational efforts, and a small window may separate 

the noise from the trend components.  
 

Note that X  is a matrix of trajectories known as the Hankel matrix, with the property that 

the component ,i jy
 of row i  and column 

j
  satisfies that , 1, 1 1, 1,i j i j i jy y y− + + −= =

 leading to 

X   have equal elements over the antidiagonals. 

 

 

2) Step 2: Decomposition of X  into singular values (SVD) 
 

Let 
TW XX=  be a square matrix  L L , then we find the positive eigenvalues 

( )1 2λ λ λd 
 of W  and their corresponding eigenvectors 1 2, , , dU U U

. The square 

root of the eigenvalues 
λi  of W  are known as the singular values of the matrix X  and 



the corresponding eigenvectors iU
 are the left singular vectors of the matrix X . 

 

Other singular vectors computed by Equation (2) refer to the right singular vectors of the 

matrix X, 
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Each eigentriplet 
( )λ , ,i i iU V

 of the matrix X  determines the corresponding components 

and all eigentriplets determine a d -dimensional subspace in 
LR . Then, 
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                                   (3) 

 

and the matrix X  can be expressed as  

 

                           1 2 .dX X X X= + ++
                          (4) 

 

3) Step 3: Grouping of eigentriplets 

 

This step selects the desired components among all the components that were obtained in 

Step 2; usually, the selection criterion is made a priori, which can be a problem since the 

SSA projects the original data into different orthogonal components, but it is not easy to find 

all the components with the required information since this depends on the window length 

that was chosen in Step 1. 

 

Once we obtain the expression (2), in this step, the set of indexes is partitioned 
1, ,d

 in 

m  disjoint subsets 1, , .mI I
Let 1, , pI i i= 

then the resulting matrix IX
 corresponding to 

group I  is defined as 1
,

pI i iX X X= ++
these matrices are calculated for each group 

1, , mI I
 and the expansion of (2) leads to the decomposition 

 

                              
1 2

.
mI I IX X X X= + ++                        (5) 

 

The procedure of choosing the sets 1, , mI I
 is called eigentriplet clustering; furthermore, a 

relation given by (6) can be defined, which quantifies the degree of approximation the 

windows of the original signal. 
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4) Step 4: Averaging of the diagonals. 
 

In the reconstruction of the required signal from the selected components, each matrix jIX
 

of the decomposition given in Equation (5) is transformed into a new series of length N , 

using the procedure of averaging over the diagonals, which defines the value of the time 

series as an average of the diagonals corresponding to each matrix in 
.

jIX
 

 

This procedure is based on the following: let ,( )i jQ q=
  be any L K -size matrix, each 

element 
( ), ,i jq i j l+ =

 becomes an element of Hankel's matrix, thus 
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This is known as the Hankelization procedure and applying it to all components of jIX
 

matrices produce a reconstructed series 

( ) ( ) ( )( )1 , ,
k k k

NX x x= 
. Therefore, the initial series 

1 2, , , Ny y y
 is decomposed into the sum of m  reconstructed series, as follows: 

                 

( )

1
, 1, , .
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Y x t N

=
= =                       (8) 

 

Each component contributes part of the retained energy obtained from the original series; 

clearly, the greater the number of components, the greater the information collected from 

the initial series. For this reason, another challenges in working with SSA:  identifying the 

number of components to be used in the reconstruction procedure. In order to solve this, 

specific experimental tests are performed together with the eigenvalue analysis in order to 

have better accuracy in choosing the number of components needed for the reconstruction 

process. 
 

The residual tr  can be calculated by considering the difference between both series, the 

original and the reconstructed series, as follows: 

 

                                 
.t t tr Y Y= −
                                          (9) 

 



2.4 Structural Health Monitoring Benchmark Problem  

Applying different methodologies to different structures can generate specific difficulties 

when making comparisons between them. In this sense, the structural health monitoring 

research group IASC-ASCE developed a series of reference problems known as benchmark 

SHM problems divided into two phases. This section details the first phase of this study, 

based on the simulated response of a test structure, on which the two methodologies for 

damage detection will be applied. 

 

2.4.1 Benchmark Structure 

 

The benchmark problem structure is a four-story steel structure with three portal frames in 

each direction, 2.50 m spans, and 3.60 m floor height. The elements are made of 300 W hot 

rolled steel with a nominal yield strength of 300 MPa. The sections are unusually designed 

for a scale model. All columns are oriented so that their strong axis is in the x-direction and 

their weak axis in the y-direction. To the inter-story beams, their strong axis is in the z-

direction. There are two diagonal suspenders on each floor of each exterior face, which can 

be removed to simulate damage. There is one floor slab per compartment; four 800 kg slabs 

on the first level, four 600 kg slabs each on the second and third levels, and the fourth level 

there are four 400 kg slabs or three 400 kg slabs and one 550 kg slab to create some mass 

asymmetry. 

 

Through the benchmark problems and using the finite element method, it is possible to 

generate a dynamic analysis in time with 12 or 120 degrees of freedom (DOF). The 12 DOF 

restricts all motions except two horizontal translations and one rotation per floor, and the 

120 DOF has only one constraint. The nodes at the base have the exact horizontal 

translation and rotation in the plane. On the other hand, the columns and floor beams are 

modeled as Euler-Bernoulli beams, and the braces are bars without bending stiffness [4]. 

 

The damage patterns introduced in the structure are shown in Table 1 and the damage 

patterns are shown in Figure 1. In reference [9] affirms “removal of braces in the story, which 

leads to stiffness reduction, is considered as major damage scenario and the weakening of 

beam column joint by loosening of bolts or reduction of stiffness for braces is considered as 

minor damage scenario of the structure.” Therefore, the severe damage patterns include 

patterns 1 and 2, the medium damage patterns are patterns 3, 4, and 5, and the slight 

damage pattern is pattern 6. The modeled damage patterns are predefined, and the analysis 

is carried out accordingly. 



 
 

 
Figure 1. The damage scenarios for benchmark structure [9] 

4. Results  

4.1 Identification of Damage Time Instants and Locations  

To study the sensitivity of these methods in detecting these damages, Table II sets some 

parameters in the simulation study of the benchmark problem; the force is calculated using 

the FAST Nigam-Jennings method, 1% damping is fixed to the critical. Similarly, all 

Table I 
Benchmark Problem Damage Cases [9] 

Damage patterns Damage Nature 

 

Damage patterns 1 No stiffness in 1st floor braces 

Damage patterns 2 Damage pattern 1+ No stiffness in 3rd floor braces 

Damage patterns 3 No stiffness is one 1st floor brace 

Damage patterns 4 Damage pattern 3 + No stiffness in one 3rd floor brace 

Damage patterns 5 Damage pattern 4+ beam-column connection weakened 

Damage patterns 6 2/3 stiffness in one 1st floor brace 

 

 



acceleration records were simulated up to 80s; for clarity of the graphics, only 30s and 50s 

are shown in the figures, both for the EMD and the SSA. 
 

 
Figure. 2 we can observe the acceleration records of the first and second floors for damage 

pattern 1 and 2, respectively, without noise. To these signals, we applied a high pass 

filter=250 Hz. In Figures 3(a), 3(b), we observed that on the first floor, the damage occurs at 

35s, while, in the second floor, the damage occurs at 40s. It is clear from the results that, if 

the noise pollution is either zero or very small, the EMD method is capable of detecting the 

damaging time instants and locations. The same happens when applying the SSA, in its 

Reconstructed Components (RCs) in Figure 4, in the first floor, the peak occurs at 35s and 

in the second floor at 40s.  
 

 
(a) 

 
(b) 

Figure 1 Acceleration records: (a) first floor, (b) second floor. All graphs correspond to 

damage pattern 2. 
 

 

 

 

Table II 
Fixed Model Parameters in the Simulation Study 

Parameter Value 

e 1% 
dt 0.001 
t 80 s 
F 150 

Findx 1 

 



 
Figure 3 IMF1: (a) First Floor, (b) Second Floor. All graphs correspond to damage  

pattern 2. 
 

 

 
Figure 4 RC for damage pattern 1 and 2: (a) first floor, (b) second floor 

 

When the acceleration records are polluted by noise and if the resulting magnitude of the 

damage spike is smaller than the noise levels, then the damage spike will merge in the 

noise. For example, in Figure 5, we generated a signal with a noise level of 10% and damage 

pattern 2. It corresponds to the acceleration records of the first floor. 

 

It is worth mentioning that the model considers two sensors on each floor (one on the left 

side and the other on the right side); therefore, there are two acceleration records for each 

floor. Figure 2 only shows one acceleration record per floor since both are identical when 

the structure is symmetrical and the signal is not contaminated. However, when the signal 

contaminates with noise, acceleration records of each sensor per floor are different. But in 

this paper, we only show the sensor on the right side of the first floor as shown in Figure 5. 

(a) 

(b) 



By processing the signals through the EMD, we obtained the first IMF presented in Figure 6 

using a high pass=250 Hz to filter the sensor signal on the right side. However, it was not 

possible to identify the discontinuity peak which is confused with noise in either of them. 

According to [18], the ability of the EMD to detect signal damage at a noise level of 10% is 

about 30% in the benchmark problem. 
 

 
 

Figure 2. First floor acceleration records for damage pattern 2: Sensor on the right side 
 

 

 

 
 

Figure 3. First IMFs for damage pattern 2 with a highpass filter: Sensor on the right side 

of the first floor 
 

To overcome this difficulty, first we identified if there is a change in frequencies (i.e., if there 

is damage) using the Fourier transform and then we used the Hilbert-Huang transform to 

identify the instant at which this change occurs. In Figure 7, we applied the Fourier transform 

to acceleration records, where we observed that each of the four natural frequencies is 

divided into two frequencies. This division may indicate the occurrence of damage and it is 

quite evident in the first and second natural frequency. 

 
Figure 4. Fourier transform for damage pattern 2: Sensor on the right side of the first floor 
 

To identify the instant in which the damage occurs, we decided to use a bandpass filter and 

to perform the frequency-time decomposition using the Hilbert-Huang transform. Figure 7 

show that the first natural frequency could be between 5 Hz and 10.5 Hz. Therefore, we 

used a bandpass filter (bandpass (X,[5 10.5], Fs)), then we applied the EMD as shown in 

Figure 8; the first plot corresponds to the filtered signal and the others are the IMFs 

corresponding to the decomposition of the measured signal in the first modal response. 

Applying the Hilbert-Huang transform to all the IMFs, we obtained the frequency-time 

decomposition of the first modal response.  



 

Figure 9 shows the frequency vs. time. We observed that the average frequency of the first 

mode changes from 9.6 Hz to 5.6 Hz at time instant t=40s. Therefore, we detected the time 

instant in which the damage occurs accurately. Although in the other modal responses, the 

splitting of the natural frequencies is not so prominent. If we apply the Hilbert-Huang 

transform, the frequency vs. time plots also show that the change occurs at the 40s. 

 

 
Figure 5. EMD for damage pattern 2 with a bandpass filter: Sensor on the right side of the 

first floor 

 

 

Figure 6. Hilbert-Huang transform for the first modal response (damage pattern 2): Sensor 

on the right side of the first floor. 

 



Then we applied the SSA. In Figure 10, we presented the reconstructed components (RC) 

of this method; we applied to the signal a bandpass filter (bandpass (X,[5 10.5], Fs)). 

Although in the RC1 and RC2 components, we already observed a change in the signal 

behavior at 40s, we decided to apply the Hilbert transform to each of these RCs. In Figure 

11, we present the Hilbert transforms of RC1 for the sensor. We observed that the average 

frequency of the first mode changes from 9.6 Hz to 5.6 Hz at t=40s. Therefore, we detected 

accurately when the damage occured using the SSA, and the results agree with the EMD’s 

results. 

 

Figure 7  RC for damage pattern 2: Sensor on the right side of the first floor. 

 

Figure 8 Hilbert-Huang transform for RC1 (damage pattern 2): Sensor on the right side of 

the first floor. 

 

 

 



In Figure 12, we showed the acceleration records of the first and second floors for damage 

pattern 4. To these signals, we applied a bandpass filter (bandpass(X,[37.5 48], Fs))  (it 

obtained from the Fourier transform). Then we used the EMD method; we presented the first 

intrinsic modal functions (IMF) for each of the floors in Figure 13. On all floors, there is a 

significant change in the behavior of the signal at the 40s. Additionally, we applied the Hilbert 

transform shown in Figure 14, where the frequency change is small since this damage 

pattern is medium damage. However, there is a significant change in the amplitude level at 

the 40s. The accelerations of the other floors have the same behavior. 

 

(a) 

 

(b) 

Figure 9 Acceleration records: (a) first floor, (b) second floor. All plots correspond to 

damage pattern 4 obtained from the sensor on the right side in the x direction. 

 

(a) 

 

(b) 

Figure 10  IMF 1: (a) first floor, (b) second floor. All plots correspond to damage pattern 4, 

obtained from the sensor on the right side in x direction. 

 



 

(a) 

 

(b) 

Figure 11  Hilbert-Huang transform for the first modal response: (a) first floor, (b) second 

floor. All plots correspond to damage pattern 4. 

 

Then we applied the SSA. In Figure 15, we presented the reconstructed components (RC), 

where, unlike the EMD, it is not necessary to apply any filter. Although in the RC1 and RC2 

components, we observed a change in the signal behavior at the 40s, we then applied the 

Hilbert transform to each of these RCs. In Figure 16, we presented the Hilbert transforms of 

RC1 for both sensors. Like the EMD, the frequency change is small, but it is clear that there 

is a significant change in the amplitude level at the 40s. 

 



 

(a) 

 

(b) 

Figure 12  RC for damage pattern 4: (a) first floor, (b) second floor 

 

 

(a) 



 

(b) 

Figure 13  Hilbert-Huang transform for RC1 (damage pattern 4): (a) first floor, (b) second 

floor, (c) third floor, (d) fourth floor. 

 

In Figure 17, we illustrated the acceleration record of of the first and second floors for 

damage pattern 6. To these signals, we applied a bandpass filter (bandpass (X,[37.5 48], 

Fs)) (it obtained from the Fourier transform). Subsequently, we used the EMD method; we 

presented the first IMF for each of the floors in Figure 18, where we observed that the signal 

changes at the 40s in floors 1 and 4. This is further verified when we applied the Hilbert 

transform (see Figure 19), where the frequency change is not so evident in any of the floors. 

However, on floors 1 and 4, we observed a change in the signal's amplitude at the 40s. In 

contrast, on floors 2 and 3, there is no significant change for this reason it was not necessary 

to include the graphs. This could indicate that the damage only occurs on floors 1 and 4. 

 

 

(a) 

 

(b) 

Figure 14  Acceleration records: (a) first floor, (b) fourth floor. All graphs correspond to 

damage pattern 6. 



 

(a) 

 

(b) 

Figure 15. IMF 1: (a) first floor, (b) fourth floor. All graphs correspond to damage pattern 

6. 

 

 

(a) 

 

(b) 

Figure 16 Hilbert-Huang transform for the first modal response: (a) first floor, (b) fourth 

floor. All plots correspond to damage pattern 6. 



Then we applied the SSA; in Figure 20, we presented the reconstructed components (RC). 

Unlike the EMD, it is not necessary to apply any filter. On floors 1 and 4, we observe a 

change in the amplitude of the signal at the 40s, while in floors 2 and 3, there is no significant 

change; this could indicate that the damage only occurs in floors 1 and 4 or that the damage 

in floors 2 and 3 is too slight and the method does not detect it, we can verify this result in 

the amplitude levels shown in the Hilbert transform in Figure 21. 

 

 

(a) 

 

(b) 

Fig 17. RC for damage pattern 6: (a) first floor, (b) fourth floor 



 

(a) 

 

(b) 

Figure 18 Hilbert-Huang transform for RC1 (damage pattern 6): (a) first floor, (b) fourth 

floor. 

 

4.2 Comparative Analysis Between EMD and SSA  

 

From the previous section, we could state that when the damage is severe, the characteristic 

frequency of the signal changes over time, so that the empirical distribution of the 

frequencies is bimodal, which indicates the presence of two characteristic frequencies of the 

signal, one before and the other after the damage. On the other hand, when there is no 

damage, the signal retains its fundamental frequency over time.  

 

In order to evaluate the effectiveness of both methods, we proposed to perform a Monte 

Carlo type simulation study, in which initially we generated a vibration signal for each type 

of damage, like those performed in the previous section, where the noise is Normal of zero 

mean and one variance. The null hypothesis is that the distribution of frequencies is 

unimodal, in which case there is no change in the fundamental frequency of the signal, 

versus the alternative hypothesis of the presence of more than one mode, indicating 

structural damage. If the p-value of the statistical test is less than 0.05 (the significance 



level), we reject the null hypothesis, and the test detects damage. To control the included 

random noise and other factors inherent to the simulation, we repeated the procedure 1000 

times. The result of the 1000 simulations is the percentage of detection under each damage 

scenario. 

 

In Figure 22, we showed the results of this simulation study, where we presented the 

detection percentage for each of the methods. We concluded that for severe damage, both 

methods identify the damage ideally. However, for damage patterns 3, 4, and 6, the 

detection capacity of both methods, evaluated through the identification of the change in 

frequencies, decreases substantially. This result is because, for these damage patterns, the 

frequency variation is 1 Hz or less, as presented in [18]. Generally, SSA presents better 

statistics than EMD. The script to apply the hypothesis test was done in Python language. 

 

 

Figure 19  Percentage of damage identification for each method 

 

5. Conclusions  

The EMD method, along with a high pass filter, detects severe damage when the 

acceleration records have low or no noise. 

 

When the acceleration records are contaminated with noise, the likelihood of the EMD 

detecting the damage decreases dramatically. To reduce the noise phenomenon, we used 

the Hilbert transform. Then, the EMD, along with a bandpass filter and Hilbert transform, 

allows the detection of severe, medium, and light damage with a noise level of 10%. 

 

The SSA method and highpass filters detect severe damage when the acceleration records 

have low or no noise. 



 

When the acceleration records are contaminated with noise and the damage patterns are 

severe (patterns 1 and 2), the SSA, a bandpass filter, and Hilbert transform can effectively 

detect the damage. 

 

When the damage is medium or mild (patterns 3, 4, and 6), the SSA detects the damage 

without any filter and it is not necessary to apply the Hilbert transform in any of its 

components (RC).  

 

One of the advantages of the SSA over the EMD is that, for medium or mild damage 

patterns, the SSA does not require filters or the use of the Hilbert transform to detect the 

damage. 

 

When the damage is severe, both methods showed a noticeable change in the fundamental 

frequency. However, when the damage is slight, the change in fundamental frequency is not 

apparent. But we observed a significant change in the amplitude level. In general, we found 

that SSA is more effective in detecting damage. 
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