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Abstract: Continuous-variable quantum key distribution (CV-QKD) enables secure key exchange by ex-
ploiting the quantum properties of optical field quadratures. While CV-QKD protocols offer strong poten-
tial due to their compatibility with existing optical infrastructure, their practical deployment is limited by
the high computational complexity of digital signal processing (DSP) and post-processing tasks. Operations
such as low-density parity-check (LDPC) decoding for information reconciliation (IR), privacy amplifica-
tion (PA), carrier recovery (CR), phase recovery (PR), and statistical estimation must be performed under
stringent real-time, energy, and security constraints. Conventional programmable hardware platforms com-
prising general-purpose central processing units (CPUs) and graphics processing units (GPUs) often lack the
efficiency required for secure and efficient CV-QKD processing in embedded or resource-constrained envi-
ronments. In contrast, hard-coded application-specific integrated circuit (ASIC) solution do not provide the
flexibility demanded by evolving protocols. This paper do a overview on hardware adaptation strategy based
on the open fifth-generation Reduced Instruction Set Computing (RISC-V). By leveraging its modularity
and extensibility, we explore the design of custom instruction sets and dedicated co-processors is explored
to accelerate critical CV-QKD operations. This includes architecture-level enhancements for DSP and post-
processing modules, such as CR, PR, IR, PA, and parameter estimation. The proposed approach facilitates
co-design between evolving QKD protocols and hardware implementations, enabling transparent, efficient,
and scalable solutions. The RISC-V-based methodology addresses CV-QKD challenges through specialized
instruction extensions for dedicated processing and custom co-processors for real-time operations. Further-
more, RISC-V can enhance energy efficiency via dynamic voltage scaling and low-power modes, while its
open-source nature ensures cryptographic transparency and security verification. Ultimately, this work es-
tablishes a foundation for energy-efficient and quantum-secure processor architectures capable of meeting
CV-QKD demands and advancing cryptographic hardware.
Keywords: Quantum key distribution, Hardware acceleration, RISC-V architecture, Post-processing, Se-
cure communication.

1. Introduction

Designing secure, efficient, and reconfigurable

next-generation cryptographic systems hardware

has become a critical task [1]. In this context, open

and modular architectures such as the RISC-V of-

fer a unique opportunity to rethink how computing

platforms are tailored to quantum communication

protocols, enabling hardware/software co-design

that aligns with both flexibility and long-term trust

[2].

This discussion becomes even more relevant when

applied to CV-QKD systems [3]. While CV-QKD

protocols offer significant advantages, such as

compatibility with existing optical infrastructures

and higher key generation rates, they impose sub-

stantial computational demands during the post-

processing phase. Tasks like LDPC [4] used into

IR, parameter estimation [5], and Toeplitz hash

for PA require high throughput, numerical preci-

sion, and efficient memory usage, often in real-

time or embedded environments [6]. Traditional
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programmable platforms, such as general-purpose

CPUs [7], DSPs [8], and GPUs [9], face limita-

tions in terms of energy consumption and scala-

bility. In contrast, hard-coded ASICs do not pro-

vide flexibility for long-term protocol adaptation.

This exposes a clear gap: developing secure quan-

tum protocols is not sufficient on its own, as the

supporting hardware must also be adapted accord-

ingly [10].

In light of this challenge, this work proposes a the-

oretical approach for hardware adaptation using

the RISC-V architecture to support CV-QKD sys-

tems. The central research question is: how can

RISC-V be tailored to meet the specific compu-

tational requirements of quantum key distribution

based on continuous variables, while ensuring en-

ergy efficiency, hardware-level security, and archi-

tectural flexibility? The hypothesis is that through

custom instruction extensions, dedicated func-

tional units, and secure hardware mechanisms, it is

possible to design computing platforms optimized

for CV-QKD DSP and post-processing tasks such

as IR, PA, CR, PR, and parameter estimation,

all within an auditable and customizable frame-

work [11]. The objective of this article is to ex-

plore a conceptual overview of how RISC-V can

serve as an option for hardware platforms special-

ized in quantum cryptographic applications, with

a focus on CV-QKD. By identifying the computa-

tional bottlenecks in the post-processing pipeline,

and mapping them to architectural opportunities

within the RISC-V ecosystem, this work outlines

a direction for the development of open, efficient,

and secure quantum hardware platforms, suitable

for real-time operation and embedded deployment

[1].

The structure of this paper is organized as fol-

lows: Section 2 presents the fundamental concepts

of Continuous-Variable Quantum Key Distribu-

tion (CV-QKD) systems, emphasizing the post-

processing algorithms and their associated com-

putational challenges. Section 3 introduces the

RISC-V philosophy, providing the necessary ar-

chitectural background to understand its potential

for domain-specific customization. Section 4 ex-

plores the opportunities of leveraging RISC-V ar-

chitectures to address the identified performance,

flexibility, and security gaps in CV-QKD imple-

mentations. Section 5 discusses the expected ben-

efits, open challenges, and potential research di-

rections. Finally, Section 6 concludes the paper by

summarizing the contributions and reinforcing the

role of hardware adaptation in advancing secure

quantum communication

2. Fundamentals of CV-QKD Systems

CV-QKD protocols rely on the transmission of

quantum states encoded in the conjugate quadra-

tures of the electromagnetic field. These quadra-

tures, denoted as X̂ and P̂ (representing the ampli-

tude and phase quadrature operators), correspond

to orthogonal components of the optical field. Un-
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like discrete-variable QKD (DV-QKD), which en-

codes information in discrete degrees of freedom

such as photon polarization or arrival time, CV-

QKD leverages continuous quadrature measure-

ments, enabling the use of standard telecommu-

nications components like coherent detectors [11].

2.1. Transmission with Alice and Bob

A typical implementation of a CV-QKD system in-

volves a transmitter (Alice) and a receiver (Bob),

as shown in Figure 1. Alice prepares coher-

ent states by modulating the amplitude and phase

quadratures operators (X̂ and P̂) of a laser beam

using Gaussian-distributed random numbers with

electro-optic modulators. The modulated light is

then sent through a quantum channel, which can

be either an optical fiber or a Free-Space Optics

(FSO) link [12].

Bob receives the optical signal and performs

quadrature measurements using either: homodyne

detection, randomly selecting to measure either

X or P quadrature per measurement interval; or

heterodyne detection, simultaneously measuring

both quadratures. Both methods require a local

oscillator phase-synchronized with Alice’s laser.

The measurement results are continuous values

(not binary) that are later discretized during post-

processing. This process is highly sensitive to

channel loss and noise, meaning not all data is use-

ful for key generation [3].

It is assumed that a potential eavesdropper (Eve)

may intercept and resend the signal transmitted

through the quantum channel. When perform-

ing quantum measurements, Eve introduces dis-

turbances detectable as excess noise in Bob’s mea-

surements due to the quantum no-cloning theorem

and uncertainty principle.

Using parameter estimation techniques, Alice and

Bob analyze the transmittance (T ) and excess

noise (ξ ) to quantify Eve’s potential information

and ensure key security [14].

2.2. Information Reconciliation

IR is a critical stage in CV-QKD systems, where

the continuous-variable measurements from Alice

and Bob are discretized into binary sequences us-

ing quantization techniques such as slicing. This

process divides the continuous signal range into

defined regions (bins), each assigned a bit value.

However, due to channel noise and measurement

imperfections, Alice’s and Bob’s sequences ex-

hibit discrepancies [13].

Through classical communication technique,

both parties perform reconciliation using error-

correcting codes, most notably LDPC codes.

While LDPC coding achieves near-capacity

correction with minimal information leakage

to eavesdroppers, it introduces significant com-

putational burdens. High-performance LDPC

decoding requires large block sizes (> 106 bits),

parallel processing, and precision arithmetic

(floating-point or fixed-point), particularly un-
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Figure 1: Schematic diagram of the CV-QKD system [13].

der low signal-to-noise ratio (SNR) conditions.

Implementing such algorithms efficiently on

general-purpose CPUs is often impractical for

real-time operation. Accelerators like GPUs can

address throughput demands but face limitations

in energy efficiency and flexibility for embedded

or edge deployments [15].

2.3. Privacy Amplification

PA is the final post-processing step in CV-QKD

systems. Its role is to reduce any residual informa-

tion potentially acquired by an eavesdropper dur-

ing transmission and reconciliation to a negligible

level. This is achieved using cryptographic hash

functions from the universal class, such as Toeplitz

matrices, which compress a long, partially secure

key to a shorter, information-theoretically secure

key.

From a hardware perspective, PA presents signif-

icant computational challenges. Operations in-

volve large matrix multiplications (e.g., Toeplitz-

vector products) that can be optimized through

fast Fourier transforms (FFT), requiring both high

throughput (>10 Gbps) and bit-accurate precision

[16].

3. The RISC-V Philosophy

RISC-V is an open standard instruction set archi-

tecture (ISA) based on Reduced Instruction Set

Computing (RISC) principles. It prioritizes hard-

ware efficiency through a minimal base instruction

set of simple, frequently used operations [1]. This

deliberate minimalism enables inherently simple,

compact, and fast hardware for instruction decod-

ing and pipeline implementation [2].

The architecture minimizes complexity by main-

taining a small core instruction set, reducing sil-

icon area, power consumption, and design verifi-

cation overhead. While complex instructions in

other ISAs may be used infrequently, they intro-

duce pervasive control logic overhead that impacts

even basic operations [2].
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RISC-V’s extensible modular design embodies

this philosophy, organizing functionality into op-

tional standard extensions. Far from limiting

capability, this simplicity enables complex op-

erations through optimized instruction sequences

while avoiding unnecessary hardware complexity

penalties. This combination of efficiency and cus-

tomizability makes RISC-V particularly suitable

for domain-specific systems like CV-QKD proces-

sors.

4. Opportunities with RISC-V Architectures

The evolution of CV-QKD systems demands

adaptable and efficient hardware solutions capable

of handling challenging post-processing tasks and

stringent security requirements. In this context,

RISC-V architectures stand out as a strategic op-

portunity, offering an open and flexible platform.

Its core features align well with the implementa-

tion challenges of such systems [17].

4.1. Customization for QKD Post-Processing

One of RISC-V’s most significant advantages lies

in its modular and open-source architecture, which

enables a high degree of customization. In the con-

text of CV-QKD, this flexibility allows the devel-

opment of processor cores specifically optimized

for control and coordination tasks during the post-

processing phase, without incurring the overhead

typically associated with proprietary architectures.

As shown in Figure 2, such processor cores can be

designed with a lightweight and efficient microar-

chitectural structure, tailored precisely to the ap-

plication’s performance and resource constraints.

RISC-V also supports the integration of custom

instruction set extensions (ISA extensions), such

as those for 32-bit integer operations (RV32I)

and partial support for multiplication and division

(RV32M) [2]. This enables the RISC-V core to

efficiently execute the arithmetic and logical op-

erations required for post-processing, while main-

taining a lightweight hardware structure. Further-

more, native support for interrupt handling mech-

anisms is another strong point, ensuring fast re-

sponses to external events or system requests [13].

4.2. Heterogeneous Architectures

The true potential of RISC-V architecture for

CV-QKD lies in its ability to act as the central

controller in heterogeneous architectures, where

the most demanding computational tasks are of-

floaded to dedicated hardware accelerators [18].

This approach frees the RISC-V core to focus

on control and decision-making operations, while

specialized modules handle intensive processing.

Examples of how this is applied include:

1. Optimized Information Reconciliation:

Dedicated modules can be designed to

process the LDPC parity-check matrix, using

compact representations that drastically re-

duce storage requirements (as demonstrated

by Xuan Wen et al [13], where reconciliation
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Figure 2: RISCV CPU Interface [1].

protocols achieve near-optimal efficiencies,

this approach can reduce storage by up to

99% for long codes). Modularity enables the

implementation of LDPC decoders with par-

allel submodules and fixed-point arithmetic,

optimizing throughput and resource usage,

thus overcoming the typical complexity

bottleneck of this stage.

2. Accelerated Privacy Amplification:

Multiply-Accumulate (MAC) units special-

ized in Galois Fields GF(2) can be developed

to speed up privacy amplification operations,

efficiently transforming the reconciled key

into a highly secure final key [16].

3. Data Transfer Management (DTM): RISC-

V architecture greatly benefits from integra-

tion with data transfer management mod-

ules based on protocols such as AXI. These

modules can act as independent bus masters,

managing large volumes of data between pe-

ripherals without constant CPU intervention.

This frees the RISC-V core for critical control

tasks, improving responsiveness and overall

system efficiency [1].

4.3. High-Performance Bus and Modularity

The adaptability of RISC-V facilitates the imple-

mentation of split-bus architectures, separating in-

struction and data traffic. This is crucial for CV-

QKD systems, as it allows:

1. Bandwidth Optimization: Different band-

width requirements for instructions and data

can be handled independently, avoiding bot-

tlenecks and contention.

2. High-Speed Data Transmission: As pre-

sented and discussed by Wu et al. [1], the

use of high-performance data buses, such as

AXI4-full (running at 200 MHz with 128-

bit width), enables efficient bulk data trans-

fer, essential for the throughput required in
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QKD post-processing. This capability sup-

ports task-level pipelining for computational

modules, ensuring continuous and uninter-

rupted data flow.

Adhering to a modular design philosophy is fun-

damental to the RISC-V paradigm. This means

peripherals can be designed to be seamlessly inte-

grated, with memory-mapped data buffers at mod-

ule interfaces. Such standardization not only sim-

plifies the integration of new modules but also en-

sures system compatibility and upgradeability re-

gardless of future internal algorithmic optimiza-

tions. High-speed communication interfaces, such

as Gigabit Ethernet and GTH (Giga-Transceiver

High-speed), can be easily integrated, ensuring the

necessary connectivity for raw key flow and post-

processing data [19].

5. Conclusion

CV-QKD systems present significant computa-

tional challenges in post-processing, particularly

during information reconciliation and privacy am-

plification. These operations demand high com-

putational performance, numerical precision, and

energy efficiency, which limits the adoption of

generic architectures or commercial platforms in

real-time and embedded quantum communication

systems applications.

RISC-V’s open and extensible ISA enables hard-

ware specialization through custom instructions

and dedicated co-processors for CV-QKD specific

tasks, such as FFT-accelerated matrix operations

for PA), parallel LDPC decoding for IR, and cryp-

tographic hashing. This customization capabil-

ity facilitates domain-optimized processors that si-

multaneously achieve adaptability, scalability, and

energy efficiency for quantum-secure networks.

As next steps, we propose FPGA-based prototyp-

ing of RISC-V cores with CV-QKD instruction

extensions, focusing on quantitative evaluation

of throughput (Gbps), power efficiency (µW/bit),

and protocol adaptability across diverse quantum

channel conditions.
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