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Jumps and Jolts: A Continuous-Time
Model for Electricity Forward Contract
Pricing

,

,

This paper addresses the limitations of traditional power derivative pricing models, which
inadequately account for spikes on forward contracts dynamics. We propose a continuous-
time model that incorporates both jump processes and a time-varying drift to capture
shifts in hedging supply and demand. The model also includes correlated Brownian
motions to reflect common shocks affecting contracts with different delivery periods.
Using the generalized method of moments (GMM), we estimate model parameters
using daily settlement prices of Norwegian forward electricity contracts. Simulation
exercises validate the reliability of the parameter estimators. Furthermore, we demonstrate
the model’s improved forecasting accuracy compared to an ARMA-GARCH model,
highlighting its potential value for traders and risk managers in portfolio management.
Keywords: Power derivatives; Jumps; GMM.
JEL codes: C58, C22, G13.

1. Introduction

Since Merton’s seminal contribution, empirical research in asset pricing
has consistently documented the presence of jumps across a wide range of asset
classes, including commodities ((Chevallier and Ielpo, 2014)), exchange rates
((Erdemlioglu et al., 2015)), and equities ((Bollerslev et al., 2008)), among
others.

Moreover, (Alexeev et al., 2019) provide evidence that neglecting jumps in
portfolio management can lead to under-diversification and increased exposure
to extreme events. However, existing models for pricing power derivatives
often fail to adequately capture such rare events. This study addresses this
limitation by proposing and estimating a model that more effectively captures
jumps in forward electricity returns.

Forward electricity contracts are vital tools for energy companies to hedge
against market volatility (see (Frestad, 2012); (Sanda et al., 2013)). Unlike
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most other commodities, electricity is non-storable and offers limited oppor-
tunities for energy conversion ((Bessembinder and Lemmon, 2002)). Never-
theless, the two primary modeling approaches employed by practitioners and
researchers (see (Benth et al., 2008); (Deschatre et al., 2021)) often overlook
the fact that contracts with different maturities may exhibit distinct statistical
properties or ignore the occurrence of rare events.

The traditional approach to modeling power-based derivatives assumes
that spot electricity prices follow a stochastic differential equation (SDE), with
forward prices derived using no-arbitrage arguments (see (Deng, 2000); (Lucia
and Schwartz, 2002); (Benth et al., 2014); (Gudkov and Ignatieva, 2021)).
However, (Geman and Roncoroni, 2006) and (Nomikos and Soldatos, 2008)
emphasize that spot and forward electricity prices differ in their statistical
characteristics—such as jump frequency, volatility behavior, and the possibility
of negative prices ((Keles et al., 2012))—casting doubt on the effectiveness of
SDE-based spot models in capturing forward price dynamics.

In contrast, (Clewlow and Strickland, 1999) and (Rasmussen and Stensland,
2000) advocate for modeling forward prices directly. (Benth and Koekebakker,
2008) further formalizes the necessary conditions such models must satisfy to
ensure arbitrage-free pricing. Nonetheless, much of the empirical work based
on this framework focuses primarily on volatility and disregards the presence
of jumps (see (Rasmussen and Stensland, 2000); (Benth and Koekebakker,
2008); (Blanco et al., 2018); (Algieri et al., 2021)).

A notable exception is (Callegaro et al., 2022), who employ a Hawkes
process (see (Hawkes, 2018)) to model jump behavior in forward prices.
However, their model does not account for other important features of power
forward contracts, such as a time-to-maturity risk premia, as considered in
(Diko et al., 2006) and (Benth and Paraschiv, 2018).

To address these gaps, we propose a continuous-time model that incorpo-
rates both jumps and a time-varying drift term to reflect fluctuations in the
supply and demand for hedging, in line with (Benth and Paraschiv, 2018).
Furthermore, the model includes correlated Brownian motions to capture the
influence of common shocks across contracts with different delivery dates.

We estimate the model using the generalized method of moments (GMM)
introduced by (Hansen, 1982), chosen for its flexibility and computational
efficiency, as it avoids strong distributional assumptions and the complexity of
simulation-based estimation. Through simulation exercises, we demonstrate
the robustness of our parameter estimates. As a secondary contribution, we
provide a novel set of moment conditions that may be valuable for continuous-
time models incorporating rare events.

2 Revista Brasileira de Finanças (Online) XX(Y), 2025

http://bibliotecadigital.fgv.br/ojs/index.php/rbfin/index
https://creativecommons.org/licenses/by/4.0/


Man
usc

rip
t

Jumps and Jolts: A Continuous-Time Model for Electricity Forward Contract Pricing

Our empirical analysis uses daily settlement prices for Norwegian quarterly
and annual forward electricity contracts traded on NASDAQ OMX. This
dataset is chosen deliberately: (Sanda et al., 2013) identify these contracts as
primary hedging instruments for Norwegian energy firms, and (Paulsen and
Bergsholm, 2020) highlights the Nordic electricity derivatives market as one
of the most liquid globally.

We also compare the forecasting performance of our model against a
benchmark ARMA-GARCH model, showing that our approach can offer
improved predictive accuracy and practical value for traders and risk managers.

2. Literature review

The wave of privatization and deregulation between 1980 and 2000 funda-
mentally transformed electricity markets, exposing participants to significant
price volatility and prompting the emergence of power-based derivatives as
essential hedging instruments (Bacon, 1995; Knittel and Roberts, 2005). Tra-
ditional methods for valuing commodity derivatives—such as those developed
by (Gibson and Schwartz, 1990) and (Miltersen and Schwartz, 1998)—are not
directly applicable to electricity, primarily due to its non-storability (Bessem-
binder and Lemmon, 2002).

To overcome this limitation, several studies have modeled the dynam-
ics of spot electricity prices using stochastic differential equations (SDEs)
(Deng, 2000; Lucia and Schwartz, 2002; Cartea and Figueroa, 2005; Pirrong,
2011; Füss et al., 2015). While empirical evidence suggests that spot-based
models can generate reliable estimates of time-varying forward premia and
accurately reflect spot price evolution (Wei and Lunde, 2023; Laudagé et al.,
2024), critics argue that this approach has limitations. Notably, (Geman and
Roncoroni, 2006) and (Nomikos and Soldatos, 2008) point out that spot and
forward electricity prices often exhibit different statistical characteristics, mak-
ing it unlikely that solutions derived from SDEs under no-arbitrage conditions
accurately capture the true distribution of market-traded forward prices.

An alternative approach focuses on modeling forward prices directly under
a risk neutral measure rather than deriving them from spot prices. This method-
ology, grounded in the framework introduced by (Heath et al., 1992), has been
adopted by researchers such as (Clewlow and Strickland, 1999), (Rasmussen
and Stensland, 2000), and (Benth and Koekebakker, 2008) and according to
(Deschatre et al., 2021) it became the most popular approach among market
practicioners. Moreover, (Hinz et al., 2005) shows that this framework allows
for an equilibrium between forward and capacity markets.

Initial implementations of this framework typically relied on one-factor
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models to describe the forward curve. However, these models have been criti-
cized for their inability to capture the complex volatility structures observed
in power derivatives ((Fanelli et al., 2016)). In response, more recent work has
introduced multi-factor models that incorporate calendar effects, seasonality,
and the Samuelson effect (Kiesel et al., 2009; Fanelli et al., 2016). Although
such models offer improvements in option pricing—especially in addressing
volatility smiles—they remain empirically under-tested in contexts involving
forward electricity trading or practical risk management ((Kiesel et al., 2009;
Fanelli et al., 2016; Fanelli and Schmeck, 2019)).

To further enhance model realism, some studies have proposed more
sophisticated drift structures that reflect economic factors such as hedging
pressure1 . For instance, (Di Poto and Fanone, 2011) introduce a multifactor
model where drift exhibits seasonal dynamics and the risk factors follow Lévy
processes. Similarly, (Benth and Paraschiv, 2018) suggest modeling both drift
and volatility as functions of time-to-maturity. Another variation, presented by
(Blanco et al., 2018), defines the equilibrium price of specific market segments
as the central tendency in an SDE, with stochastic fluctuations driven by Lévy
processes.

Despite their theoretical soundness, these models face two main limitations.
First, their multi-step estimation procedures can introduce inefficiencies in pa-
rameter inference. Second, while many attempt to capture price spikes through
heavy-tailed distributions, multiple risk factors, or time-varying volatility, such
complexity increases the risk of misspecification. Moreover, the effect of these
features often depends on the forecast horizon.

A more recent contribution by (Callegaro et al., 2022) addresses some
of these challenges using Hawkes processes to capture jump behavior in a
multifactor model. Their approach shows promise in identifying price spikes,
supported by Kolmogorov-Smirnov tests. However, it lacks rigorous validation
of its jump identification method and relies on separate estimation procedures,
potentially leading to inefficiency. Additionally, it does not integrate the time-
to-maturity dependence of drift highlighted in (Benth and Paraschiv, 2018).

Augmenting these modeling efforts, (Algieri et al., 2021) study electricity
futures risk premia by extracting real-world and risk-neutral densities from
options traded on the EEX between 2010 and 2017. Assuming a Heston
model under the risk-neutral measure, they achieve closed-form expressions
for densities and replicate smile effects. While their statistical validation is

1See (Hirshleifer, 1991) for a description of this phenomenon and (Basu and Miffre, 2013) and
(Størdal et al., 2023) for empirical evidence of the presence of this phenomenon on power
derivatives.
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comprehensive, the practical implications for trading—such as applications
in value-at-risk or expected shortfall—are not explored. Furthermore, they do
not benchmark their model against alternative frameworks, including those
of (Kiesel et al., 2009), which also yield closed-form solutions for option
valuation.

3. Model

The models discussed in Section (2) suggest that, with the exception of
(Callegaro et al., 2022), the spikes observed in electricity forward returns
are typically addressed through one of three approaches: (i) assuming that
model residuals follow a heavy-tailed distribution, (ii) presuming that jumps
in the spot market are perfectly transmitted to forward markets, or (iii) em-
ploying stochastic volatility models. However, the first approach is prone to
specification errors, the second lacks empirical support (see Geman and Ron-
coroni, 2006; Nomikos and Soldatos, 2008), and the third, as noted by (Eraker
et al., 2003), often fails to adequately capture sudden and short-lived market
disruptions.

To address these limitations, we propose a model defined by equations
(1)–(4), where parameters are estimated using the generalized method of
moments (GMM) developed by (Hansen, 1982).

Let Pi,t denote the forward electricity price of contract i at time t. This
price is modeled as the sum of a deterministic component, Λi,t , and a stochastic
component, Xi,t :

lnPi,t = Λi,t +Xi,t , (1)

The deterministic component, Λi,t , reflects the long-term equilibrium price
relevant for hedging purposes—potentially corresponding to the equilibrium
forward price described by (Bessembinder and Lemmon, 2002). In contrast,
the stochastic component, Xi,t , captures all sources of uncertainty, including
those related to hedging demands and forward risk premia.

The stochastic component Xi,t evolves according to:

dXi,t = (αi

(
Vt

252

)
+βiXi,t)dt +σidWi,t +Gi,tdNi,t (2)

Vt is a deterministic, monotonically decreasing variable representing the
number of business days remaining until the rollover of the contract, bounded
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between 1 and 252; dWi,t denotes the Brownian motion associated with forward
contract i at time t, Gi,t is an independent Gaussian variable representing the
jump size of forward contract i at time t, while dNi,t captures the jump process
of forward contract i at time t:

P(dNi,t = 1) = λidt, (3)

P(dNi,t > 1) = o(dt) (4)

The jump dynamics follows a Poisson process with intensity λi. Moreover,

E(dWi,tdWj,t) = ρi, jdt, i ̸= j (5)

where ρi, j is the correlation between forward contracts i and j and αi, βi, σi
are constants in the model. Finally dWi,t and dNi,t are independent stochastic
process.

In our model, the drift term consists of two components: one that is in-
versely proportional to the time-to-maturity, and another that is proportional
to the stochastic component. The rationale behind this specification is twofold.
First, it allows the model to capture the relationship between time-to-maturity
and the risk premium, as documented by (Benth and Paraschiv, 2018). Second,
it reflects the idea that economic agents demand a return proportional to the
level of uncertainty—captured by the stochastic component—when taking
positions in forward electricity contracts, whether long or short.

Additionally, the jump component on our model allows us to capture
the presence of skewness and heavy tails on the data, which according to
(Arismendi Zambrano, 2019) are important features to describe the behavior
of asset returns. Moreover, our model could potentially be used to price other
derivatives such as options using methods described in (Glasserman, 2004).

One potential criticism of our model is that it does not explicitly incorpo-
rate the Samuelson effect. However, as we demonstrate empirically in Section
6, this phenomenon does not appear to be present in our data. A similar conclu-
sion is reached by (Blanco et al., 2018), who adopt a constant volatility model
to describe the dynamics of German forward electricity prices. Their findings
indicate that, despite the widespread presence of heteroskedasticity in many
commodity markets, assuming constant volatility can still yield a reasonable
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approximation in certain market environments—particularly when volatility
remains relatively stable over time or when other components of the model,
such as the drift, account for a substantial share of the observed variation.
This provides additional support for our modeling approach, indicating that
excluding the Samuelson effect is empirically justified given the characteristics
of the data under analysis.

4. Empirical strategy

The first step we take in this work to achieve its objective is to establish that
the forward curve is composed by the non-overlaping quarterly and one year
ahead forward electricity contracts. We decide working with those delivery
periods because according to Table 3 of (Sanda et al., 2013), quarterly and one
year ahead forward electricity contracts are the main contracts that Norweigian
energy companies use to hedge their positions.

In the second step of this work, we address the issue that our sample data
are incompatible with the model proposed in section 6 due to being sampled at
discrete time points. Additionally, we need to account for rolling over effects
that may arise when we replace a contract at the end of the year.

To address these issues, we follow (Aït-Sahalia et al., 2015) and (Chen
and Qi, 2024) and build a discrete version of it2. In addition, we use dummy
variables to represent the long-term equilibrium prices, which will reflect the
average price of hedging over a delivery period.

lnPi,t = Λi,t +Xi,t , (6)

Λi,t =Ci +
h+δ

∑
h

γi,hDh,t +πiRt (7)

∆Xi,t = αi

(
Vt

252

)
∆t +βiXi,t∆t +σiεi,t + Ji,t∆Ni,t , (8)

E(∆Xi,t∆X j,t) =
√

σ2
i σ2

j ρi, j∆t, i ̸= j (9)

2Check (Phillips and Yu, 2009) and (Sauer, 2011) for an analysis of different discretization schemes
on the estimations of continuous time series models.
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P(∆Ni,t = 0) = 1−λi∆t, (10)

P(∆Ni,t = 1) = λi∆t, (11)

P(∆Ni,t > 1) = o(∆t) (12)

Dh,t is a dummy variable that takes the value 1 when h is equal to the same
year as the time period t and 0 otherwise. Rt is another dummy variable that
takes the value 1 when we roll over the contracts3 and 0 otherwise. ∆t = 1

252 ,
and εi,t is a random Gaussian variable with mean 0 and standard deviation√

∆t for contract i at time t. Ji,t is an iid normal random variable with mean µi
and standard deviation σ J

i , representing the jump size of contract i at time t.
Ci, γi,h, and πi are constants in the model.

Equations (6)–(12) indicate that there are 23 parameters to be estimated.
Following the methodology of Benth and Paraschiv (2018) and Blanco et al.
(2018), we divide the estimation procedure into two phases. In the first phase,
we estimate the coefficients γi, j by performing time series regressions of lnPi,t
on D j,t .

In the second phase, we collect the residuals from the previous phase and
use them to estimate the parameters αi, βi, σi, µi, σ J

i , λi, and ρi, j using the
package gmm, which is implemented in R by (Chausse, 2010). According to
(Tankov, 2003) and (Hall, 2015), the main advantage of GMM over maximum
likelihood estimation (MLE) is that it relies solely on moment conditions to
generate consistent estimators. Thus, we do not need to specify the complete
probability distribution of the data.

(Hall, 2003), (Newey and Smith, 2004), and (Hall, 2015) show that the
bias and consistency of GMM parameters depend on the choice of moment
conditions and the weighting matrix. In the GMM literature, several econo-
metric procedures are developed to address these questions (see (Andrews and
Lu, 2001), (Liao, 2013), (Cheng and Liao, 2015), and (Hirukawa, 2023)), but
there is no consensus in the literature on which approach is the best. Thus, we
conduct several simulation exercises to provide evidence that our decisions
can produce reliable estimators and that are reported on Section 5.

3We roll over all contracts when the yearly contract stops trading, which according to (Nasdaq,
2024) is after the third day before the delivery period.
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4.1 Moment Conditions

In this work, we use the conditional moment conditions represented by
equations (13)-(24) and estimate two sets of parameters simultaneously. This
approach allows us to estimate the correlation between the prices, represented
by the parameter ρi, j. Therefore, we use 23 equations to estimate 14 parameters
of our model, satisfying the overidentifying condition of (Hansen, 1982).

E(∆Xi,t |Xi,t ,Vt)− (αi
Vt

252
∆t +βiXi,t∆t +λiµi∆t) = 0 (13)

E(∆X2
i,t |Xi,t ,Vt)−E2(∆Xi,t |Xi,t ,Vt)− (σ2

i ∆t +λi∆t(µ2
i +(σ J

i )
2) = 0 (14)

E((∆Xi,t −E(∆Xi,t |Xi,t ,Vt))
4|Xi,t ,Vt)−(λi∆t(µ4

i +6µ
2
i (σ

J
i )

2+3(σ J
i )

4)) = 0
(15)

E(ε̂i,t,1Xi,t |Xi,t ,Vt) = 0 (16)

E(ε̂i,t,1(1+X2
i,t)|Xi,t ,Vt) = 0 (17)

E(ε̂i,t,2Xi,t |Xi,t ,Vt) = 0 (18)

E(ε̂i,t,2(1+X2
i,t)|Xi,t ,Vt) = 0 (19)

E(ε̂i,t,3(1+X2
i,t)|Xi,t ,Vt) = 0 (20)

E(I|∆Xi,t |>τi |Xi,t ,Vt)− (λi∆t +θi) = 0 (21)
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E(∆Xi,t I|∆Xi,t |>τi |Xi,t ,Vt)− (µiλi∆t) = 0 (22)

E(ε̂2
i,t,4)− (λi∆t(µ2

i +(σ J
j )

2)) = 0, (23)

E(∆Xi,t∆X j,t I|∆Xi,t |⩽τi |Xi,t ,X j,t ,Vt)−
√

σ2
i σ2

j ρi, j∆t = 0, where (24)

ε̂i,t,1 = ∆Xi,t − (αi
Vt

252
∆t +βiXi,t∆t +λiµi∆t) (25)

ε̂i,t,2 = ∆X2
i,t − ∆̄X2

i,t − (σ2
i ∆t +λi∆t(µ2

i +(σ J
i )

2) (26)

ε̂i,t,3 = (∆Xi,t − ¯∆Xi,t)
4 − (λi∆t(µ4

i +6µ
2
i (σ

J
i )

2 +3(σ J
i )

4)) (27)

ε̂i,t,4 = ∆Xi,t I|∆Xi,t |>τi −λi∆tµi, where (28)

τi is the threshold for forward contract i, T is the length of our time series
and θi is a nuisance parameter whose role is going to be explained below. Next,
we will explain the motivating fundamental for each moment condition.

The equations (13), (14) and (15) represent, respectively, the first moment,
variance and fourth centered moment. It is worth mentioning that (Aït-Sahalia
et al., 2015) also uses similar condition to estimate parameters of a continuous
time model with stochastic volatility and jumps.

(Aït-Sahalia et al., 2015) also propose to include a moment condition based
on the covariance of Brownian motion to estimate correlation between their
variables but in this work we also include an indicator function as shown in
Equation (24). We implemented the indicator function to ensure ρi, j 1 and 1,
as our simulations showed more frequent violations without this safeguard.

The moment conditions represented by equations (17)-(20) are inspired
by the work of (Chan et al., 1992), where the author uses residuals from the
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moment conditions to estimate a continuous time model that describes the
behavior of the short-term interest rates in the USA. These conditions may
represent the fact that past information cannot be used for predicting changes
in the forward contract prices.

We build moment conditions described by equations (21)-(23) using non-
parametric estimators for jump intensity and jump size shown4 in (Mancini,
2004), (Mancini, 2009), and (Figueroa-López and Mancini, 2019). The key
insight behind the construction of those estimators is that when the time lag
between observations is small, the contribution of the continuous components
becomes asymptotically negligible, so it becomes possible to disentangle
jumps from diffusions5.

We rely on proposition 3 from (Figueroa-López and Mancini, 2019) and
the theorem 4.9 from (Çinlar, 2011) to establish moment condition given by
Equation (21) because the former shows that when the threshold respects the
inequality given by 29, then the convergence result represented by 30 is true
and the latter guarantee that the first moment of I|∆Xi,t |>τi will also converge to
the first moment of I∆Ni,t>0.

Proposition 1 ((Figueroa-López and Mancini, 2019, Prop. 3)).

Let dXt = atdt+σtdWt +dJt be a jump-diffusion process with Jt = ∑
Nt
i=1 γi

for a non-explosive counting process N and real-valued random variables
γ j,a,σ are càdlag and a.s. σ2 := in fs∈[0,T ]σ

2
s > 0.

Assuming that Mi(ω) ∈ [infs∈[ti−1,ti] σs(ω)2,σ2], where σ
2 := sups∈[0,T ]σ

2
s ,

if

τi >

√
2Mi∆t ln(

1
∆t

), (29)

holds, then

I|∆Xi,t |>τi

a.s.−−→ I∆Ni,t>0 (30)

The moment conditions described by Equations (22) and (23) represent,
respectively, the first and second moments of jump size. In order to establish

4It is worth mentioning that (Deschatre et al., 2020) also use results from (Mancini, 2004) to build
estimators for the intensity parameter and mean reversion of jump process of spot electricity
prices.

5(Aıt-Sahalia, 2004) uses a similar insight to explain why maximum likelihood estimation is
capable of disentangling jumps from diffusions.
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them we rely on results of (Mancini, 2004) and (Mancini, 2009), who show
that jump size estimator given by Equation (31) is consistent.

Ĵi,t = ∆Xi,t I|∆Xi,t |>τi (31)

It is straightforward noticing that a crucial point in establishing moment
conditions (21)-(23) is choosing the correct threshold and (Figueroa-López
and Nisen, 2013) show that a wrong choice may lead to biased and inefficient
estimators. In this work, we decide6 working with the threshold represented by
Equation (32) because it respects the necessary condition given by proposition
1.

τ(σi) =

√
2σ2

i (∆t)φ ln(
1
∆t

), φ ∈ (0,1) (32)

A point of concern in our estimation strategy is the problem of the speed of
convergence of the estimator of the threshold towards 0 discussed in (Figueroa-
López and Nisen, 2013), that is, the choice of φ may introduce some bias in
our parameter estimates, as it can result in our threshold being too large or too
small, leading to misclassification of jumps. Moreover, we do not know the
true value of the diffusion component (σi), so errors in its estimates may also
introduce some bias on τ̂ and consequently on the other parameters.

To address potential problems arising from measurement errors in the
threshold we use the same strategy as (Bollerslev and Zhou, 2002), that is, we
include a nuisance parameter (θi) on the moment condition given by Equation
(21). A possible interpretation of θi is that it is the average misclassification of
jumps of τ̂ .

4.2 Weighting matrix

(Hall, 2003) emphasizes that a crucial step in GMM estimation is the
selection of the weighting matrix. In this study, we adopt the inverse of the
covariance matrix, following (Hansen, 1982), who demonstrates that this
choice yields efficient estimators. To estimate the covariance matrix, we em-
ploy nonparametric kernel-based methods as described in (Den Haan and
Levin, 1997) and (Hirukawa, 2023), resulting in a heteroskedasticity- and
autocorrelation-consistent (HAC) estimator.

6We also report simulation results the threshold proposed by (Figueroa-López and Nisen, 2013)
in http://dx.doi.org/10.13140/RG.2.2.34687.11682 and show evidence that it
does not generate estimators reliable as the one generated using Equation (32).
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According to (Den Haan and Levin, 1997), the implementation of HAC
covariance estimation requires several methodological choices, including the
selection of the kernel function, the determination of bandwidth and truncation
parameters, and the decision on whether to prewhiten the residuals. However,
as noted in the survey articles by (Den Haan and Levin, 1997), (Wang and
Wu, 2012), and (Hirukawa, 2023), there is no universally optimal approach to
address these choices. Therefore, we rely on the outcomes of our simulation
exercises to guide these decisions in the context of our estimation.

4.3 Initial parameters

Finally, the last point of concern that we need to address is that GMM
estimation is sensitive to initial parameters because as (Hall, 2003) points out,
the J-statistic is usually nonlinear, so we need to use optimization methods
that are often highly sensitive to starting parameters, that is, if our initial
guess are too far way from the true values, then the estimates produced by
the optimization algorithm may be severly biased. Moreover, wrong starting
values may lead to estimates that make the criterion function diverge to infinity.

As a result of this, we develop different sets of starting values to estimate
parameters model. To build the first set of starting values that we use to
estimate interest parameters, we employ the same procedure as (Aït-Sahalia
et al., 2015), that is, we get initial values for the continuous part (αi, βi and σi)
and jump components separetely (λi,µi and σ J

i ).
First, we select one of the thresholds given by Equation (32) and estimate

it using the quadratic variation as an estimator7 of σi. Then, we remove from
our sample observations whose absolute value are greater than the threshold
estimated in the previous step and use the remaining data to estimate a two-
step GMM (see (Hall, 2003)) to obtain estimates for the continuous part using
moment conditions given by equations (13) - (19).

In the third stage, we estimate jump components using the estimators
represented by equations (33)-(36). Following this, we use iterated GMM
proposed by (Hansen et al., 1996) with moment conditions given by equations
(13)-(23) for each contract i individually.

σ̂
QV
i =

√√√√∑
T
t=1 ∆X2

i,t
T

252
(33)

7(Figueroa-López and Mancini, 2019) use the same estimator to initiate its estimation algorithm.
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∑
T
t=1 I|∆Xi,t |>τ̂(σ̂QV

i )

T
252

(34)

µ̂i =
∑

T
t=1 ∆Xi,t I|∆Xi,t |>τ̂(σ̂QV

i )

T
(35)

σ̂
J
i =

√
∑

T
t=1(∆Xi,t I|∆Xi,t |>τ̂1(σ̂QV

i )
− µ̂i)2

T −1
, where (36)

In the fourth stage, we use τ(σ̂QV ) to exclude from our sample all values
that jump, that is, we create a database where ∆̂X

C
i,t is different from 0, which

is given by Equation 37, and use it to create a starting value for the estimator
of ρ given by Equation 38. We then combine with parameters estimated in
previous step to create the first set of starting values and estimate parameters
of contracts i and j jointly using moment conditions represented by equations
(13)-(24).

∆̂X
C
i,t = ∆Xi,t I|∆Xi,t |⩽τ̂(σ̂QV

i )
(37)

ρ̂i, j =
ˆCov(∆̂X

C
i,t ,∆̂X

C
j,t)√

ˆVar(∆̂X
C
i,t) ˆVar(∆̂X

C
j,t)

, i ̸= j, (38)

If this set of parameter make the criterion function to diverge, then we try
estimating parameters by using 0 as starting values of jump components. And
even if it still generates convergence problems, we use 0 as starting value for
all components of the continuous time model8

5. Simulation

The Generalized Method of Moments (GMM) provides a semiparametric
estimation strategy that remains operative in settings where the full likelihood

8In order to save space we put the other simulation exercises results and estimated parameters of
Equation (6) in http://dx.doi.org/10.13140/RG.2.2.34687.11682.
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is either analytically intracTable or theoretically unspecified. Its robustness
to misspecification of the underlying stochastic process, combined with its
ability to accommodate endogeneity through moment orthogonality, renders it
particularly attractive for structural inference in dynamic models (see (Hall,
2003), (Genaro and Astorino, 2022)). However, the method’s practical im-
plementation hinges critically on the specification of the moment condition
set, for which no canonical selection procedure exists. To date, the litera-
ture has offered procedures that are primarily comparative or selection-on-
efficiency—such as those developed by (Andrews, 1999), (Doran and Schmidt,
2006), (Cheng and Liao, 2015), (Caner et al., 2016), and (Frazier and Renault,
2019)—none of which resolve the ex ante indeterminacy in choosing among
admissible moment restrictions. That is, they enable post-estimation evalu-
ation of estimator efficiency conditional on a candidate set of moments but
offer no principled method for identifying a subset that is both admissible and
information-maximizing.

To probe this deficiency, we undertake a simulation-based exploration of
moment selection under a continuous-time jump-diffusion framework. The
data-generating process corresponds to the system of stochastic differential
equations defined in (8)–(12), which incorporates mean-reverting diffusions
with correlated Brownian components and a pure-jump process. We simulate
5,000 trajectories and estimate the structural parameters in each repetition via
GMM using the moment conditions enumerated in (13)–(24), implemented
through the gmm package (see (Chausse, 2010)). To address concerns regard-
ing the influence of initial transients on finite-sample moments, we discard
the first 1,008 observations from each simulated path—each of which initially
consists of 4,789 points—in accordance with the burn-in procedure of (Duffie
and Singleton, 1993).

Our stochastic specification for jump magnitudes departs from the canon-
ical treatment in (Deng, 2000), who assumes two independent Poisson pro-
cesses governing positive and negative jumps with exponential size distribu-
tions. In contrast, we posit a single compound Poisson process with normally
distributed jumps centered at zero, thereby imposing symmetry in jump di-
rectionality. To maintain consistency with the overall jump intensity and
second-moment structure of Deng’s specification, we scale the jump intensity
and standard deviation parameters by a factor of two. This rescaling ensures
comparability in the contribution of jump risk to the process’s higher-order
dynamics.

Crucially, our identification strategy hinges on the moment structure’s abil-
ity to disentangle the latent components driving the observed process. Since
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the GMM framework does not leverage the full conditional density, parame-
ter identification relies entirely on the informativeness and non-redundancy
of the moment conditions. In this context, the presence of nuisance param-
eters—those not directly of inferential interest—complicates identification
by inflating the dimensionality of the system without necessarily augmenting
identification strength. Nonetheless, as evidenced in Table 1, our simulation
results demonstrate that the true structural parameters fall within the 95%
simulation-based confidence intervals (defined by the 2.5% and 97.5% quan-
tiles), despite observable bias. This suggests that the chosen moment structure,
though not globally optimal, retains sufficient rank and informational content
to yield estimators that are regular, root-n consistent, and practically viable in
finite samples.
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6. Data

Our empirical analysis relies on daily settlement prices for quarterly and
yearly electricity futures contracts traded on Nasdaq OMX, covering the
Nordic power market. The sample spans the period from January 3, 2005, to
December 29, 2023, yielding a total of 4,773 observations. The data were
retrieved from the Eikon database and correspond to the contracts specified on
pages 77–80 of (Nasdaq, 2024). Given that Nasdaq OMX is widely recognized
as a central venue for electricity derivatives trading in Europe (see (Bouveret
et al., 2023)), the dataset is well suited for the objectives of this study.

A salient feature of these futures contracts is that they are cash-settled
against the daily Elspot System Price published by Nord Pool for the Nordic
region. While both the quarterly and yearly contracts share this settlement
mechanism, they differ in terms of their trading calendars. Yearly futures
commence trading on the first banking day of the tenth calendar year preceding
the delivery period and expire on the third-last banking day prior to delivery.
Quarterly futures, in contrast, initiate trading on the first banking day of the
penultimate year before delivery and cease trading on the final banking day
preceding the contract period.

The dataset presents missing observations on five specific dates—January
6, 2005; February 15, 2005; May 18, 2005; June 24, 2005; and November
4, 2010. To mitigate potential biases introduced by these gaps, we employed
a combination of imputation techniques, including last-observation-carried-
forward and Kalman filter-based interpolation.

Figure 1 depicts the evolution of futures logarithmic prices over the sample
period. Between 2005 and 2010, both quarterly and yearly contracts exhibited
substantial price appreciation followed by sharp corrections. These dynamics
likely reflect shifts in market expectations concerning forward supply-demand
conditions, potentially influenced by climatic variability and hydrological
reservoir levels. In the subsequent period (2011–2016), a pronounced decline
in futures prices is observed, mirroring the broader downtrend in European spot
electricity prices (see (Pepermans, 2019)). This co-movement suggests that the
structural drivers depressing short-term prices—such as market liberalization
((Pepermans, 2019)), increased penetration of renewables ((Auer and Haas,
2016)), declining coal and natural gas prices ((Kougias and Szabó, 2017)),
and volatility in emissions allowance markets ((Salmela et al., 2020))—also
exerted downward pressure on longer-dated market expectations.
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Figure 1
Price Dynamics: The graph depicts the time series from 02/01/2005 to

29/12/2023 of forward electricity contract logarithmic prices. PQi is the price of
the forward electricity contract with energy delivery in ith quarter of the

following year and PY is the price of the forward electricity contract with delivery
in the following year

The dynamics of logarithmic prices illustrated in Figure 1 suggest that
contracts with different delivery periods typically move in the same direction.
This pattern is expected, as divergent movements would create arbitrage oppor-
tunities in the market. This observation is further corroborated by the values in
Table 2, which reveal high correlation coefficients between the prices of these
contracts.

Table 2
Full Sample - logarithmic prices correlation matrix

log(PQ1) log(PQ2) log(PQ3) log(PQ4) log(PY )

log(PQ1) 1.000

log(PQ2) 0.943 1.000

log(PQ3) 0.776 0.934 1.000

log(PQ4) 0.926 0.973 0.913 1.000

log(PY ) 0.968 0.993 0.905 0.983 1.000
This Table reports unconditional correlation of daily quarterly
and one year-ahead forward electricity logarithmic prices from
02/01/2005 until 29/12/2023. PQi is the price of the forward elec-
tricity contract with delivery in ith quarter of the following year
and PY is the price of the forward electricity contract with delivery
in the following year.
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Following 2016, electricity futures prices exhibited a renewed upward
trajectory, a trend plausibly linked to the sustained rise in European Union
Emissions Trading Scheme (EU ETS) allowance prices (see (Salmela et al.,
2020)). The escalation intensified markedly in 2022, coinciding with the
geopolitical and energy market disruptions triggered by Russia’s invasion of
Ukraine.These structural breaks and regime shifts suggest that the underlying
futures price processes may exhibit nonstationary behavior.

To formally assess this, we conducted unit root diagnostics using both the
Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt–Shin
(KPSS) tests on the full sample and on the pre-COVID subsample in order
to mitigate potential biases in the statistical characterization of futures price
behavior that may be attributable to pandemic-induced market dislocations.
Both unit root tests indicate that at a 5% level of significance our time series
are not stationary, as expected.

Tables 3 and 4 report summary statistics for the level of forward logarithm
prices across the full sample and the pre-2020 subsample, respectively. The
results reveal that both mean and median values are highest for contracts
expiring in the first and fourth quarters, indicating elevated price levels during
winter delivery periods. This seasonal pricing pattern is consistent with findings
in (Fleten and Lemming, 2003), who attribute such dynamics to increased
electricity demand for heating during colder months.
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The descriptive statistics reported in Tables 3 and 4 further underscore
the structural impact of the 2020–2023 period on the statistical properties
of the futures series. In particular, estimated volatilities are markedly lower
when observations from 2020 onward are excluded, suggesting that post-
2020 market dynamics introduced heightened variability. Moreover, prior to
mid-2019, the distributional characteristics of third-quarter and yearly futures
contracts exhibit neither significant skewness nor excess kurtosis. This absence
of heavy tails contrasts with the behavior of spot electricity prices, which have
historically displayed pronounced non-normality (see (Lucia and Schwartz,
2002)).

Figure 2 plots daily log returns for both yearly and quarterly contracts
and offers a complementary perspective. Unlike price levels, the return series
exhibit no discernible deterministic trend, consistent with weak-form market
efficiency. However, the presence of sharp discontinuities—manifested as
return spikes—points to potential jump behavior in forward electricity prices,
aligning with the stylized facts observed in high-frequency energy markets.

Figure 2
Daily returns: The graph depicts the time series from 02/01/2005 to 29/12/2023
of daily log returns of forward electricity contract. PQi is the price of the forward
electricity contract with energy delivery in ith quarter of the following year and
PY is the price of the forward electricity contract with delivery in the following

year

The descriptive statistics reported in tables 5 and 5 support this observation;
even when constrained to samples up until 2019, heavy tails persist. Notably,
volatility increased following the inclusion of periods affected by COVID-19
and the Ukrainian conflict into our sample. This suggests that both events
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contributed to heightened uncertainty surrounding power derivatives. Until
2019, daily returns for yearly and quarterly contracts exhibited moderate
negative skewness, indicating a consistent incentive for market participants to
engage in hedging activities.

However, despite these disruptive events results from unit root tests,
Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt–Shin
(KPSS), indicate that daily log returns of our sample are stationary at 5% level
significance. Therefore, we can potentially use the parameter estimates in the
subsample to conduct our forecast exercises on section 8.

24 Revista Brasileira de Finanças (Online) XX(Y), 2025

http://bibliotecadigital.fgv.br/ojs/index.php/rbfin/index
https://creativecommons.org/licenses/by/4.0/


Man
usc

rip
t

Jumps and Jolts: A Continuous-Time Model for Electricity Forward Contract Pricing

Ta
bl

e
5

Fu
ll

sa
m

pl
e

-R
et

ur
ns

:D
es

cr
ip

tiv
e

st
at

is
tic

s
St

at
∆

ln
(P

Q
1)

∆
ln
(P

Q
2)

∆
ln
(P

Q
3)

∆
ln
(P

Q
4)

∆
ln
(P

Y
)

A
ve

r.
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

M
ed

.
0.

00
0

0.
00

1
0.

00
1

0.
00

0
0.

00
0

St
d-

D
ev

.
0.

02
8

0.
03

0
0.

02
9

0.
02

0
0.

02
5

Sk
ew

.
-4

.0
04

-2
.8

09
-5

.1
95

-5
.3

31
-3

.4
74

K
ur

t.
11

2.
46

9
55

.6
10

13
0.

48
2

14
0.

10
9

71
.3

74

M
in

.
-0

.7
43

-0
.5

23
-0

.7
91

-0
.5

74
-0

.5
37

M
ax

.
0.

26
7

0.
29

9
0.

24
6

0.
13

1
0.

21
6

A
D

F.
St

at
-1

7.
24

9*
**

-1
7.

72
3*

**
-1

7.
99

0*
**

-1
6.

73
5*

**
-1

7.
11

4*
**

K
PS

S.
St

at
0.

04
9

0.
03

3
0.

03
4

0.
05

9
0.

04
6

T
hi

s
ta

bl
e

re
po

rt
s

de
sc

ri
pt

iv
e

st
at

is
tic

s
of

da
ily

lo
g

pr
ic

e
re

tu
rn

s
of

qu
ar

te
rl

y
an

d
on

e
ye

ar
-a

he
ad

fo
rw

ar
d

el
ec

tr
ic

ity
fr

om
03
/
01
/
20

05
un

til
29
/
12
/
20

23
.P

Q
i

is
th

e
pr

ic
e

of
th

e
fo

rw
ar

d
el

ec
tr

ic
ity

co
nt

ra
ct

w
ith

de
liv

er
y

in
ith

qu
ar

te
r

of
th

e
fo

llo
w

in
g

ye
ar

an
d

P Y
is

th
e

pr
ic

e
of

th
e

fo
rw

ar
d

el
ec

tr
ic

ity
co

nt
ra

ct
w

ith
de

liv
er

y
in

th
e

fo
llo

w
in

g
ye

ar
.∗

∗∗
,∗

∗,
an

d
∗

de
no

te
st

at
is

tic
al

si
gn

ifi
ca

nc
e

at
th

e
1%

,5
%

an
d

10
%

le
ve

ls
,r

es
pe

ct
iv

el
y.

Revista Brasileira de Finanças (Online) XX(Y), 2025 25

https://creativecommons.org/licenses/by/4.0/
http://bibliotecadigital.fgv.br/ojs/index.php/rbfin/index


Man
usc

rip
t

Table
6

Subsam
ple

-R
eturns:D

escriptive
statistics:

Stat
∆

ln(P
Q

1 )
∆

ln
(P

Q
2 )

∆
ln
(P

Q
3 )

∆
ln
(P

Q
4 )

∆
ln(P

Y
)

A
ver.

0.000
0.000

0.000
0.000

0.000

M
ed.

0.000
0.000

0.000
0.000

0.000

Std-D
ev.

0.020
0.019

0.019
0.014

0.017

Skew
.

-0.905
-1.113

-1.210
-0.736

-0.958

K
urt.

35.877
22.838

21.762
10.871

19.155

M
in.

-0.320
-0.274

-0.275
-0.140

-0.225

M
ax.

0.230
0.175

0.169
0.081

0.138

A
D

F.
Stat

-15.448***
-16.834***

-17.282***
-16.839***

-16.487***

K
PSS.

Stat
0.095

0.100
0.106

0.157
0.119

T
his

table
reports

descriptive
statistic

ofdaily
log

price
returns

ofquarterly
and

one
year-ahead

forw
ard

electrcity
from

03
/01

/2005
until30/12

/2019.P
Q

i is
the

price
ofthe

forw
ard

electricity
contract

w
ith

delivery
in

ith
quarter

of
the

follow
ing

year
and

P
Y

is
the

price
of

the
forw

ard
electricity

contractw
ith

delivery
in

the
follow

ing
year.∗∗∗,∗∗,and

∗
denote

statisticalsignificance
atthe

1%
,5%

and
10%

levels,respectively.

26 Revista Brasileira de Finanças (Online) XX(Y), 2025

http://bibliotecadigital.fgv.br/ojs/index.php/rbfin/index
https://creativecommons.org/licenses/by/4.0/


Man
usc

rip
t

Jumps and Jolts: A Continuous-Time Model for Electricity Forward Contract Pricing

Finally, we address the issue whether Samuelson effect is present on our
data or not. In order to this, we use a similar empirical setup9 as (Jaeck and
Lautier, 2016), where they estimate a regression between the absolute log
returns and the time-to-maturity of the forward contracts and if the slope
parameter time-to-maturity, then it would be an evidence that Samuelson
effect is present on the data.

On our empirical framework, on the other hand, we run a regression be-
tween the estimated absolute difference of the stochastic component from
equation 6 that did not overcome the threshold given by equation 32 with
φ = 0.999 and the time to maturity from 03/01/2005 to 30/12/2019 as rep-
resented in equation 39. The idea behind our procedure is that we do not want
our results being influenced by Ukraine war, by jumps or by specific year
specific shocks.

100|Zi,t |= ai +biT T Mi,t +ui,t , where (39)

Zi,t is the value of the data sample we create on the fourth stage of section
4 of forward contract i at time period t, T T Mi,t is the amount of day at time t
of forward contract i before rolling-over the contract, ui,t is an error term, ai
and bi are model parameters for forward contract i.

The results of tables 7 - 11 indicate that at level of significance of 5% there
is no Samuelson effect on our sample. A possible explanation for this fact is
that as in (Anderson and Danthine, 1983) the resolution of uncertainty may
happen in some other time but those are questions that we leave for future
research.

Table 7
Samuelson effect test results for PY

Parameter Estimate Std. Error Test. Stat p-value

âPY 1.168*** 0.034 34.365 < 0.01

b̂PY 0.000 0.000 -0.942 0.346
This table reports estimated coefficients from equation 39 for forward electricity contract with
delivery period for the next year (PY ) from 03/01/2005 until 30/12/2019. ∗∗∗, ∗∗, and ∗ denote
statistical significance at the 1%, 5% and 10% levels, respectively.

9Check subsection 3.1 and equation 2 from (Jaeck and Lautier, 2016) for further details.
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Table 8
Samuelson effect test results for PQ1

Parameter Estimate Std. Error Test. Stat p-value

âPQ1 1.155*** 0.036 31.939 < 0.01

b̂PQ1 0.000 0.000 -0.007 0.994

This table reports estimated coefficients from equation 39 for forward electricity contract with
delivery period for the next year (PQ1) from 03/01/2005 until 30/12/2019. ∗∗∗, ∗∗, and ∗ denote
statistical significance at the 1%, 5% and 10% levels, respectively.

Table 9
Samuelson effect test results for PQ2

Parameter Estimate Std. Errors Test. Stat p-value

âPQ2 1.162*** 0.034 34.397 < 0.01

b̂PQ2 0.000 0.000 -0.866 0.387

This table reports estimated coefficients from equation 39 for forward electricity contract with
delivery period for the next year (PQ2) from 03/01/2005 until 30/12/2019. ∗∗∗, ∗∗, and ∗ denote
statistical significance at the 1%, 5% and 10% levels, respectively.

Table 10
Samuelson effect test results for PQ3

Parameter Estimates Std. Error Test. Stat p-value

âPQ3 1.162*** 0.034 34.589 < 0.01

b̂PQ3 0.000 0.000 -1.066 0.286

This table reports estimated coefficients from equation 39 for forward electricity contract with
delivery period for the next year (PQ3) from 03/01/2005 until 30/12/2019. ∗∗∗, ∗∗, and ∗ denote
statistical significance at the 1%, 5% and 10% levels, respectively.

Table 11
Samuelson effect test results for PQ4

Parameter Estimates Std. Error Test. Stat p-value

âPQ4 1.164*** 0.036 32.730 < 0.01

b̂PQ4 0.000 0.000 -0.661 0.509

This table reports estimated coefficients from equation 39 for forward electricity contract with
delivery period for the next year (PQ4) from 03/01/2005 until 30/12/2019. ∗∗∗, ∗∗, and ∗ denote
statistical significance at the 1%, 5% and 10% levels, respectively.
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7. Results

In this section we report results of estimating parameters of the model rep-
resented by equations (1)-(4) using data from 03/01/2005 to 30/12/2019, so
our results are not contaminated by events such as the Ukranian war. Moreover,
by leaving out the daily forward prices from the years of 2020-2023 we gather
enough data to conduct our forecasting exercises that we report in section 8.

The results for the J-test reported on Table 12 show that at a level of
significance of 5% the moment constraints are satisfied, which indicate that
our model is well specified. The estimates of Tables 13-16 show that α̂i is
positive but it is only statistically different from 0 at a 5% level of significance
on third and fourth quarter contracts, which indicates that the relation between
the drift and time-to-maturity that is reported in (Benth and Paraschiv, 2018)
is not ubiquituos.

On the other hand, β̂i is negative and statistically different from 0 consid-
ering the same level of significance for all forward contracts. Consequently,
our results indicate that on average when prices deviate from their long term
equilibrium, economic agents must receive an incentive to correct unbalance
on the suppy and demand for hedging. Those results are alinged with the
empirical evidence from (Diko et al., 2006), (Benth and Paraschiv, 2018),
(Blanco et al., 2018) and (Algieri et al., 2021) that forward contracts present
time varying risk premiums.

Additionaly, our estimates indicate that the unitary cost by disequilibrium
(β̂i) is not equal on all contracts and that the more expensive contract are the
forward contracts for the thirds and fourth quarters. In other words, economic
agents require a greater compensation to provide hedge during the winter
season.

Our estimates also indicate that rare events are pervasive in all forward
contracts and that on on average their impact is not statistically significant at a
5% level. However,they present different levels of intensity (λ̂i) and standard
deviations (σ J

i ), which indicates that information processes
The results of Table 13 also show evidence that quarterly and yearly

forward prices jump but on average their impact (µ̂i) at a level of significance
of 5% is not statistically different from 0. Moreover, the difference between
jump intensity (λ̂i) and their standard deviation (σ̂ J

i ) indicate that there are
differences in the information flow for specific quarters and one year-ahead
contracts and how sensitive they are to new information.
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Table 12
Results of the J-test

Model Test. Stat p-value

PQ1-PY 3.790 0.705

PQ2-PY 4.325 0.633

PQ3-PY 6.620 0.357

PQ4-PY 4.124 0.660
This table reports results from J-test from (Hansen, 1982) using daily log returns of quarterly
and yearly forward electricity contracts from 03/01/2005 until 29/12/2023. The first column
indicates which contracts are used to estimate parameters of our model; for example, a model
PQi-PY indicates that the daily log returns from the forward contract with the delivery period of the
ith quarter of the following year and daily log returns from the yearly contract are the data used to
estimate parameters. ∗∗∗ indicates that test statistic is significant at 1% level, ∗∗ indicates that
test statistic is significant at 5% level and ∗ indicates that test statistic is significant at 10% level.

Table 13
Parameter estimates for PQ1 −PY

Parameter Estimate Std. Error Test-Stat p-value

λ̂PQ1 3.625*** 0.775 4.677 < 0.01

µ̂PQ1 -0.013 0.017 -0.817 0.414

σ̂ J
PQ1

0.128*** 0.019 6.888 < 0.01

σ̂PQ1 0.242*** 0.004 66.798 < 0.01

β̂PQ1 -3.498*** 1.093 -3.200 < 0.01

α̂PQ1 0.105 0.127 0.826 0.409

θ̂PQ1 0.006** 0.003 2.469 0.014

λ̂PY 3.620*** 0.750 4.825 < 0.01

µ̂PY -0.018 0.015 -1.177 0.239

σ̂ J
PY

0.111*** 0.014 7.865 < 0.01

σ̂PY 0.223*** 0.003 66.054 < 0.01

β̂PY -3.666*** 1.060 -3.457 < 0.01

α̂PY 0.142 0.118 1.209 0.227

θ̂PY 0.005** 0.002 1.981 0.048

ρ̂PQ1,PY 0.946*** 0.014 67.048 < 0.01

This table reports GMM estimates of our model parameters using daily log returns of quarterly
and one year-ahead forward electricity from 03/01/2005 until 30/12/2019. Prior to estimation,
forward electricity price data were interpolated using the previous available value. PQi is the price
of the forward electricity contract with delivery in ith quarter of the following year and PY is the
price of the forward electricity contract with delivery in the following year. ∗∗∗, ∗∗, and ∗ denote
statistical significance at the 1%, 5% and 10% levels, respectively.30 Revista Brasileira de Finanças (Online) XX(Y), 2025
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Table 14
Parameter estimates for PQ2-PY

Parameter Estimate Std. Error Test-Stat p-value

λ̂PQ2 4.124*** 0.804 5.132 < 0.01

µ̂PQ2 -0.021 0.015 -1.436 0.151

σ̂ J
PQ2

0.115*** 0.014 8.386 < 0.01

σ̂PQ2 0.243*** 0.004 65.097 < 0.01

β̂PQ2 -3.438*** 1.024 -3.357 < 0.01

α̂PQ2 0.182 0.130 1.397 0.162

θ̂PQ2 0.005** 0.003 1.972 0.049

λ̂PY 3.463*** 0.662 5.234 < 0.01

µ̂PY -0.020 0.016 -1.304 0.192

σ̂ J
PY

0.113*** 0.013 8.688 < 0.01

σ̂PY 0.222*** 0.003 66.144 < 0.01

β̂PY -3.534*** 1.029 -3.434 < 0.01

α̂PY 0.149 0.118 1.265 0.206

θ̂PY 0.005** 0.002 2.521 0.012

ρ̂PQ2,PY 0.966*** 0.009 110.910 < 0.01

This table reports GMM estimates of our model parameters using daily log returns of quarterly
and one year-ahead forward electricity from 03/01/2005 until 30/12/2019. Prior to estimation,
forward electricity price data were interpolated using the previous available value. PQi is the price
of the forward electricity contract with delivery in ith quarter of the following year and PY is the
price of the forward electricity contract with delivery in the following year. ∗∗∗, ∗∗, and ∗ denote
statistical significance at the 1%, 5% and 10% levels, respectively.
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Table 15
Parameter estimates for PQ3-PY

Parameter Estimate Std. Error Test-Stat p-value

λ̂PQ3 6.056*** 1.228 4.932 < 0.01

µ̂PQ3 -0.012 0.010 -1.210 0.226

σ̂ J
PQ3

0.092*** 0.012 7.345 < 0.01

σ̂PQ3 0.240*** 0.004 64.816 < 0.01

β̂PQ3 -3.307*** 0.963 -3.433 < 0.01

α̂PQ3 0.259** 0.125 2.067 0.039

θ̂PQ3 -0.001 0.004 -0.260 0.795

λ̂PY 4.261*** 0.976 4.367 < 0.01

µ̂PY -0.008 0.013 -0.590 0.555

σ̂ J
PY

0.104*** 0.017 6.113 < 0.01

σ̂PY 0.223*** 0.003 66.329 < 0.01

β̂PY -3.491*** 0.960 -3.638 < 0.01

α̂PY 0.184 0.118 1.565 0.118

θ̂PY 0.003 0.003 0.848 0.397

ρ̂PQ3,PY 0.959*** 0.011 83.916 < 0.01

This table reports GMM estimates of our model parameters using daily log returns of quarterly
and one year-ahead forward electricity from 03/01/2005 until 30/12/2019. Prior to estimation,
forward electricity price data were interpolated using the previous available value. PQi is the price
of the forward electricity contract with delivery in ith quarter of the following year and PY is the
price of the forward electricity contract with delivery in the following year. ∗∗∗, ∗∗, and ∗ denote
statistical significance at the 1%, 5% and 10% levels, respectively.
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Table 16
Parameter estimates for PQ4-PY

Parameter Estimate Std. Error Test-Stat p-value

λ̂PQ4 3.593*** 0.684 5.254 < 0.01

µ̂PQ4 -0.022 0.013 -1.619 0.105

σ̂ J
PQ4

0.095*** 0.011 8.544 < 0.01

σ̂PQ4 -0.187*** 0.003 -63.078 < 0.01

β̂PQ4 -3.950*** 1.005 -3.929 < 0.01

α̂PQ4 0.195** 0.099 1.982 0.047

θ̂PQ4 0.006** 0.002 2.641 0.008

λ̂PY 3.567*** 0.654 5.452 < 0.01

µ̂PY -0.014 0.014 -0.978 0.328

σ̂ J
PY

0.109*** 0.013 8.619 < 0.01

σ̂PY 0.224*** 0.003 64.425 < 0.01

β̂PY -3.573*** 0.995 -3.592 < 0.01

α̂PY 0.144 0.119 1.213 0.225

θ̂PY 0.004** 0.002 1.968 0.049

ρ̂PQ4,PY 0.921*** 0.012 76.933 < 0.01

This table reports GMM estimates of our model parameters using daily log returns of quarterly
and one year-ahead forward electricity from 03/01/2005 until 30/12/2019. Prior to estimation,
forward electricity price data were interpolated using the previous available value. PQi is the price
of the forward electricity contract with delivery in ith quarter of the following year and PY is the
price of the forward electricity contract with delivery in the following year. ∗∗∗, ∗∗, and ∗ denote
statistical significance at the 1%, 5% and 10% levels, respectively.
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Finally, the estimate of the correlation matrix shown on Table 17 align
with the results from (Blanco et al., 2018), which shows that that yearly and
quarterly future contracts returns are strongly positively correlated. Therefore,
shocks in different in specific quarters may spread to the whole forward curve.

Table 17
Correlation matrix estimate

PQ1 PQ2 PQ3 PQ4 PY

PQ1 1.000

PQ2 0.915 1.000

PQ3 0.874 0.932 1.000

PQ4 0.838 0.886 0.894 1.000

PY 0.946 0.966 0.959 0.921 1.000
This matrix reports parameter ρ̂PQi ,PY and ρ̂PQi ,PQ j , i ̸= j.

8. Forecast performance

On section 7 we provide evidence that our model is able to characterize
the dynamics of yearly and quarterly power-based derivatives, since at a
level of 5% of siginificance the results of J-test on table 12 indicate that the
overindentifying conditions are satisfied. Now in this section, we show that our
model may be useful for risk managers and traders to hedge their companies
risks and manage their portfolio by comparing its forecasting accuracy with
an alternative model10.

We choose as a competing model the ARMA-Garch(p,q,1,1) representa-
tion of the stochastic component of daily log returns of quarterly and yearly
electricity forward contracts because according to (Liu and Shi, 2013) it is
an useful model to describe electricty price dynamics. Moreover, we use
Akaike information criteria (AIC) and Bayesian information criteria (BIC)
(see (Cavanaugh and Neath, 2019)) to select the p and q orders of this model11.

10We report the comparison with ARMA-Garch models whose specification was chosen using AIC
criteria because it generate the lowest mean absolute error (MAE) in comparison with the models
that use the BIC. However, the results are reported on the appendix.

11The values of AIC and BIC for different ARMA-Garch specifications can be seen in a supplemen-
tary material that can be found in http://dx.doi.org/10.13140/RG.2.2.34687.1
1682 . Moreover, we use R package rugarch from (Galanos, 2024) to estimate ARMA-Garch
parameters.
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We compare models accuracy by calcluating the the absolute error for the
1, 5 and 10 days ahead forecasts for both models and then applying model
confidence set test proposed by (Hansen et al., 2011) and that was implemented
on R package MCS by (Bernardi and Catania, 2018). We estimate daily
absolute errors for quarterly and yearly contracts and we also estimate for each
forecasting day the mean average absolute error for both models in order to
have an estimate of the forecasting error of the forward curve as a whole.

On our analysis, we consider two forecasting periods, that is, from 02/01/2020
to 29/12/2023 and from 02/01/2020 to 30/12/2021, so we can have evi-
dence that test results is not being driven the effects of the Ukranian war.
In tables 18-23 we report the results of the confidence set for parameters
estimated until 2019. By comparing the mean absolute errors for the two
forecasting time horizons we can notice that both models present larger errors
when the forecasting periods include the year of 2022 and that at a 5% level
of significance across all forecasting periods and time horizons in our analysis,
the results of the confidence set test indicate that forecasts of the forward curve
using our model is more accurate than the ARMA-Garch12 forecasts for the
forward curve.

12The ARMA-Garch orders selected according to AIC criterion for PY , PQ1, PQ2, PQ3 and PQ4 were
respectively (7,7,1,1), (5,7,1,1), (9,5,1,1), (8,7,1,1) and (10,5,1,1).
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Table 18
Results of the confidence set test results for 1 day-ahead forecasts from

02/01/2020 to 29/12/2023

1D Cont. ARMA-Garch Test. Stat. p-value

PY 1.975 3.514 -3.878*** < 0.01

PQ1 3.570 5.520 -3.860*** < 0.01

PQ2 2.010 2.470 -3.472*** < 0.01

PQ3 1.179 1.183 -0.250 0.803

PQ4 1.554 1.652 -1.267 0.205

Curv 2.058 2.868 -4.081*** < 0.01
This table reports estimates of the mean absolute errors (MAE) of
1 day-ahead forecasts of forward electricity contracts prices and
test statistic values of confidence set test developed by (Hansen
et al., 2011). Model parameters are estimated using daily log
returns of quarterly and one year-ahead forward electricity from
03/01/2005 until 30/12/2019 and the forecasting period is from
02/01/2020 until 29/12/2023. PQi is the price of the forward
electricity contract with delivery in ith quarter of the following
year, PY is the price of the forward electricity contract with de-
livery in the following year and Curv is the average of absolute
errors in each day. ∗∗∗, ∗∗, and ∗ denote statistical significance
at the 1%, 5% and 10% levels, respectively.
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Table 19
Results of the confidence set test results for 5 days-ahead forecasts from

08/01/2020 to 29/12/2023

5D Cont. ARMA-Garch Test. Stat. p-value

PY 5.895 13.451 -6.707*** < 0.01

PQ1 11.014 22.563 -4.254*** < 0.01

PQ2 6.060 8.111 -4.485*** < 0.01

PQ3 3.193 3.425 -2.719*** < 0.01

PQ4 4.877 4.296 1.898* 0.052

Curv 6.208 10.369 -4.397*** < 0.01
This table reports estimates of the mean absolute errors (MAE) of
5 days-ahead forecasts of forward electricity contract prices and
test statistic values of confidence set test developed by (Hansen
et al., 2011). Model parameters are estimated using daily log
returns of quarterly and one year-ahead forward electricity from
03/01/2005 until 30/12/2019 and the forecasting period is from
08/01/2020 until 29/12/2023. PQi is the price of the forward
electricity contract with delivery in ith quarter of the following
year, PY is the price of the forward electricity contract with de-
livery in the following year and Curv is the average of absolute
errors in each day.∗∗∗, ∗∗, and ∗ denote statistical significance at
the 1%, 5% and 10% levels, respectively.
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Table 20
Results of the confidence set test results for 10 days-ahead forecasts from

15/01/2020 to 29/12/2023

10D Cont. ARMA-Garch Test. Stat. p-value

PY 9.462 21.332 -5.109*** < 0.01

PQ1 18.043 36.342 -6.053*** < 0.01

PQ2 9.565 12.997 -3.946*** < 0.01

PQ3 4.916 5.446 -2.226** 0.024

PQ4 7.730 6.387 -2.459** 0.014

Curv 9.943 16.501 -5.133*** < 0.01
This table reports estimates of the mean absolute errors (MAE) of
10 days-ahead forecasts of forward electricity contract prices and
test statistic values of confidence set test developed by (Hansen
et al., 2011). Model parameters are estimated using daily log
returns of quarterly and one year-ahead forward electricity from
03/01/2005 until 30/12/2019 and the forecasting period is from
15/01/2020 until 29/12/2023. PQi is the price of the forward
electricity contract with delivery in ith quarter of the following
year, PY is the price of the forward electricity contract with de-
livery in the following year and Curv is the average of absolute
errors in each day. ∗∗∗, ∗∗, and ∗ denote statistical significance
at the 1%, 5% and 10% levels, respectively.
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Table 21
Results of the confidence set test results for 1 day-ahead forecasts from

02/01/2020 to 30/12/2021

1D Cont. ARMA-GARCH Test. Stat. p-value

PY 0.858 0.963 -5.897*** < 0.01

PQ1 1.444 1.532 -2.658*** < 0.01

PQ2 0.874 0.954 -4.100*** < 0.01

PQ3 0.658 0.681 -2.510** 0.012

PQ4 0.542 0.540 0.232 0.819

Curv 0.875 0.934 -4.912*** < 0.01
This table reports estimates of the mean absolute errors (MAE)
of 1 day-ahead forecasts of forward electricity contract prices
and test statistic values of confidence set test developed by
hansen2011. Model parameters are estimated using daily log
returns of quarterly and one year-ahead forward electricity from
03/01/2005 until 30/12/2019 and the forecasting period is from
02/01/2020 until 30/12/2021. PQi is the price of the forward
electricity contract with delivery in ith quarter of the following
year and PY is the price of the forward electricity contract with
delivery in the following year. ∗∗∗ indicates that test statistic is
significant at the 1% level; ∗∗ indicates that test statistic is signifi-
cant at the 5% level; ∗ indicates that test statistic is significant at
the 10% level.
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Table 22
Results of the confidence set test results for 5 days-ahead forecasts from

08/01/2020 to 30/12/2021

5D Cont. ARMA-GARCH Test. Stat. p-value

PY 2.189 3.089 -7.477*** < 0.01

PQ1 3.799 4.613 -4.237*** < 0.01

PQ2 2.282 2.717 -3.677*** < 0.01

PQ3 1.737 2.132 -5.404*** < 0.01

PQ4 1.454 1.452 0.051 0.959

Curv 2.292 2.801 -6.815*** < 0.01
This table reports estimates of the mean absolute errors (MAE)
of 5 day-ahead forecasts of forward electricity contract prices
and test statistic values of confidence set test developed by
hansen2011. Model parameters are estimated using daily log
returns of quarterly and one year-ahead forward electricity from
03/01/2005 until 30/12/2019 and the forecasting period is from
08/01/2020 until 30/12/2021. PQi is the price of the forward
electricity contract with delivery in ith quarter of the following
year and PY is the price of the forward electricity contract with
delivery in the following year. ∗∗∗ indicates that test statistic is
significant at the 1% level; ∗∗ indicates that test statistic is signifi-
cant at the 5% level; and ∗ indicates that test statistic is significant
at the 10% level.
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Table 23
Results of the confidence set test results for 10 days-ahead forecasts from

15/01/2020 to 30/12/2021

10D Cont. ARMA-GARCH Test. Stat. p-value

PY 3.194 4.966 -8.503*** < 0.01

PQ1 5.511 6.992 -5.318*** < 0.01

PQ2 3.312 4.278 -5.946*** < 0.01

PQ3 2.623 3.602 -6.634*** < 0.01

PQ4 2.071 2.097 -0.280 0.779

Curv 3.342 4.387 -9.637*** < 0.01
This table reports estimates of the mean absolute errors (MAE)
of 10 day-ahead forecasts of forward electricity contract prices
and test statistic values of confidence set test developed by
hansen2011. Model parameters are estimated using daily log
returns of quarterly and one year-ahead forward electricity from
03/01/2005 until 30/12/2019 and the forecasting period is from
15/01/2020 until 30/12/2021. PQi is the price of the forward
electricity contract with delivery in ith quarter of the following
year and PY is the price of the forward electricity contract with
delivery in the following year. ∗∗∗ indicates that test statistic is
significant at the 1% level; ∗∗ indicates that test statistic is signifi-
cant at the 5% level; and ∗ indicates that test statistic is significant
at the 10% level.

9. Concluding remarks

On this work we propose a model to describe the dynamics of forward
electricity contracts that not only takes into account the time-to maturity
risk premium but also incorporate the presence of common shocks and rare
events without relying on analytical solutions to SDEs. Moreover, we provide
evidence that its parameters can be viably estimated without making any
assumptions about the probability distribution of the data.

On the empirical section of our paper we find evidence that the forward
risk premium depends on deviations from long term equilibrium prices but
the time-to maturity premium is not statistically significant at level of 5% in
every contract. Moreover, we find evidence that the cost per unit of providing
hedging for winter quarters are the most expensive, which goes in the same
direction of the results found by (Fleten and Lemming, 2003).

Additionally, our estimates also align with the results of (Blanco et al.,
2018) in the sense that they also find that yearly and quartelry contracts are
highly positivelly correlated, which indicate that shocks from specific delivery
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periods spread to the whole forward curve. Moreover, our empirical results
point out that jumps are pervasive in all forward contracts but happen at
different intensities, so specific information regarding delivery periods do not
arrive at the same frequency.

Finally, we show evidence that our model outperformed ARMA-Garch in
our forecast exercises, thus show it is potentially useful for market practicioners
and risk managers to describe the behavior of the forward electricity curve.
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10. Appendix

10.1 Forecast performance - BIC

On this subsection we report the forecast performance comparison us-
ing the mean absolute error of the ARMA-Garch13 model whose orders are
selected using the information criteria BIC.

13The ARMA-Garch orders selected according to BIC criterion for PY , PQ1, PQ2, PQ3 and PQ4 were
respectively (2,4,1,1), (5,7,1,1), (3,3,1,1), (4,3,1,1) and (10,5,1,1)
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Table 24
Results of the confidence set test results for 1 day-ahead forecasts from

02/01/2020 to 29/12/2023

1D Cont. ARMA-Garch Test. Stat p-value

PY 1.975 3.911 −3.908∗∗∗ < 0.01
PQ1 3.570 5.519 −3.857∗∗∗ < 0.01
PQ2 2.010 2.570 −3.870∗∗∗ < 0.01
PQ3 1.179 1.367 −3.528∗∗∗ < 0.01
PQ4 1.554 1.650 −1.245 0.213
Curv 2.058 3.003 −4.079∗∗∗ < 0.01

This table reports estimates of the mean absolute errors (MAE) of 1 day-
ahead forecasts of forward electricity contracts prices and test statistic
values of confidence set test developed by (Hansen et al., 2011). Model
parameters are estimated using daily log returns of quarterly and one
year-ahead forward electricity from 03/01/2005 until 30/12/2019 and
the forecasting period is from 02/01/2020 until 29/12/2023. PQi is the
price of the forward electricity contract with delivery in ith quarter of
the following year and PY is the price of the forward electricity contract
with delivery in the following year. ∗ ∗ ∗, ∗∗, and ∗ denote statistical
significance at the 1%, 5% and 10% levels, respectively. The model
orders for the ARMA-Garch are chosen using BIC information criteria.

Table 25
Results of the confidence set test results for 5 days-ahead forecasts from

08/01/2020 to 29/12/2023

5D Cont. ARMA-Garch Test. Stat p-value

PY 5.895 14.289 −6.860∗∗∗ < 0.01
PQ1 11.014 22.563 −4.254∗∗∗ < 0.01
PQ2 6.060 8.870 −5.584∗∗∗ < 0.01
PQ3 3.193 4.332 −3.967∗∗∗ < 0.01
PQ4 4.877 4.296 1.898∗ 0.052
Curv 6.208 10.870 −4.748∗∗∗ < 0.01

This table reports estimates of the mean absolute errors (MAE) of 5 days-
ahead forecasts of forward electricity contract prices and test statistic
values of confidence set test developed by (Hansen et al., 2011). Model
parameters are estimated using daily log returns of quarterly and one
year-ahead forward electricity from 03/01/2005 until 30/12/2019 and
the forecasting period is from 08/01/2020 until 29/12/2023. PQi is the
price of the forward electricity contract with delivery in ith quarter of
the following year and PY is the price of the forward electricity contract
with delivery in the following year.∗ ∗ ∗, ∗∗, and ∗ denote statistical
significance at the 1%, 5% and 10% levels, respectively. The ARMA-
Garch order is chosen using BIC information criteria

Revista Brasileira de Finanças (Online) XX(Y), 2025 51

https://creativecommons.org/licenses/by/4.0/
http://bibliotecadigital.fgv.br/ojs/index.php/rbfin/index


Man
usc

rip
t

Table 26
Results of the confidence set test results for 10 days-ahead forecasts from

15/01/2020 to 29/12/2023

10D Cont. ARMA-Garch Test. Stat p-value

PY 9.462 22.266 −5.228∗∗∗ < 0.01
PQ1 18.043 36.342 −6.053∗∗∗ < 0.01
PQ2 9.565 14.389 −5.030∗∗∗ < 0.01
PQ3 4.916 6.915 −4.580∗∗∗ < 0.01
PQ4 7.730 6.387 −2.459∗∗ 0.014
Curv 9.943 17.260 −5.177∗∗∗ < 0.01

This table reports estimates of the mean absolute errors (MAE) of 10
days-ahead forecasts of forward electricity contract prices and test statis-
tic values of confidence set test developed by (Hansen et al., 2011).
Model parameters are estimated using daily log returns of quarterly and
one year-ahead forward electricity from 03/01/2005 until 30/12/2019
and the forecasting period is from 15/01/2020 until 29/12/2023. PQi is
the price of the forward electricity contract with delivery in ith quarter of
the following year and PY is the price of the forward electricity contract
with delivery in the following year. ∗∗∗, ∗∗, and ∗ denote statistical sig-
nificance at the 1%, 5% and 10% levels, respectively. The ARMA-Garch
are chosen using BIC information criteria.

Table 27
Results of the confidence set test results for 1 day-ahead forecasts from

02/01/2020 to 30/12/2021

1D Cont. ARMA-Garch Test. Stat p-value

PY 0.858 0.993 −5.978∗∗∗ < 0.01
PQ1 1.444 1.529 −2.581∗∗ 0.010
PQ2 0.874 0.939 −5.430∗∗∗ < 0.01
PQ3 0.658 0.709 −6.657∗∗∗ < 0.01
PQ4 0.542 0.539 0.316 0.759
Curv 0.875 0.942 −6.668∗∗∗ < 0.01

This table reports estimates of the mean absolute errors (MAE) of 1 day-
ahead forecasts of forward electricity contract prices and test statistic
values of confidence set test developed by (Hansen et al., 2011). Model
parameters are estimated using daily log returns of quarterly and one
year-ahead forward electricity from 03/01/2005 until 30/12/2019 and
the forecasting period is from 02/01/2020 until 30/12/2021. PQi is the
price of the forward electricity contract with delivery in ith quarter of
the following year and PY is the price of the forward electricity contract
with delivery in the following year. ∗ ∗ ∗, ∗∗, and ∗ denote statistical
significance at the 1%, 5% and 10% levels, respectively. The ARMA-
Garch orders are chosen using BIC information criteria.
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Table 28
Results of the confidence set test results for 5 days-ahead forecasts from

08/01/2020 to 30/12/2021

5D Cont. ARMA-Garch Test. Stat p-value

PY 2.189 3.212 −7.796∗∗∗ < 0.01
PQ1 3.799 4.613 −4.236∗∗∗ < 0.01
PQ2 2.282 2.868 −5.520∗∗∗ < 0.01
PQ3 1.737 2.158 −6.335∗∗∗ < 0.01
PQ4 1.454 1.452 0.051 0.959
Curv 2.292 2.861 −7.940∗∗∗ < 0.01

This table reports estimates of the mean absolute errors (MAE) of 5 day-
ahead forecasts of forward electricity contract prices and test statistic
values of confidence set test developed by (Hansen et al., 2011). Model
parameters are estimated using daily log returns of quarterly and one
year-ahead forward electricity from 03/01/2005 until 30/12/2019 and
the forecasting period is from 08/01/2020 until 30/12/2021. PQi is the
price of the forward electricity contract with delivery in ith quarter of
the following year and PY is the price of the forward electricity contract
with delivery in the following year. ∗ ∗ ∗, ∗∗, and ∗ denote statistical
significance at the 1%, 5% and 10% levels, respectively. The ARMA-
Garch order is chosen using BIC information criteria.

Table 29
Results of the confidence set test results for 10 days-ahead forecasts from

15/01/2020 to 30/12/2021

10D Cont. ARMA-Garch Test. Stat p-value

PY 3.194 5.138 −8.761∗∗∗ < 0.01
PQ1 5.511 6.992 −5.318∗∗∗ < 0.01
PQ2 3.312 4.614 −4.972∗∗∗ < 0.01
PQ3 2.623 3.549 −10.196∗∗∗ < 0.01
PQ4 2.071 2.097 −0.280 0.778
Curv 3.342 4.478 −11.307∗∗∗ < 0.01

This table reports estimates of the mean absolute errors (MAE) of 10
day-ahead forecasts of forward electricity contract prices and test statistic
values of confidence set test developed by (Hansen et al., 2011). Model
parameters are estimated using daily log returns of quarterly and one
year-ahead forward electricity from 03/01/2005 until 30/12/2019 and
the forecasting period is from 15/01/2020 until 30/12/2021. PQi is the
price of the forward electricity contract with delivery in ith quarter of
the following year and PY is the price of the forward electricity contract
with delivery in the following year. ∗ ∗ ∗, ∗∗, and ∗ denote statistical
significance at the 1%, 5% and 10% levels, respectively. The ARMA-
Garch order is chosen using BIC information criteria.
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