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Abstract

The Asymmetric Long Memory Stochastic Volatility (A-LMSV) model has

two attractive features for modeling financial returns: i) the autocorrelation func-

tion of the log-variance presents hyperbolic decay, and ii) the two driven random

noises that define the model have nonzero correlation. In this work we present a

maximum likelihood method for estimating both the parameters and the unob-

served components, together with a method for value-at-risk (VaR) forecasting.

Our method takes advantage of a state space representation of the model which is

written as a dynamic linear model with Markov switching. Then, the likelihood

is readily calculated by the Kalman filter. The proposed method is assessed by

Monte Carlo experiments and real-life illustrations.
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JEL classifications: C22, C58, G15.

1 Introduction

One of the best known model in financial econometrics is the stochastic volatility (SV)

model, first proposed by Taylor (1982, 1986). This class of models is driven by two

independent disturbances (random noises): the first impacts the return equation and
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the other is an innovation in the log-variance process. For modeling financial returns,

SV models are useful alternatives to GARCH models in which volatility only depends

on squared past returns and one innovation process, see Broto and Ruiz (2004) and

Shephard and Andersen (2009).

A distinctive stylized fact for volatility modeling is the presence of asymmetric

behavior of the volatility after a positive/negative return. This feature, called the

leverage effect, was first recognized by Black (1976) and was introduced in the GARCH

literature by Nelson (1991) through the EGARCH models. The leverage effect can

also be included in SV models if the two disturbances are correlated, resulting the

so called Asymmetric Stochastic Volatility (A-SV) model. Omori et al. (2007) is an

important reference for the estimation of A-SV models. The authors proposed a

Bayesian estimator on a model where the joint distribution of the random noises is

approximated. Abbara and Zevallos (2023b) combined the approximation method of

Omori et al. (2007) and the the SV estimation procedure of Shumway and Stoffer

(2006, chapter 6) to propose a maximum likelihood estimation method for A-SV

models. In addition, the latter work includes a procedure for value-at-risk forecasting.

Another important empirical feature is the presence of long memory in volatility.

This property is characterized by the hyperbolic decay in the autocorrelation function

of (log) squared returns and has been usually incorporated in SV models through

autoregressive fractionally integrated moving average (ARFIMA) processes for the log-

variances. In that case, one obtains the so called Long Memory Stochastic Volatility

(LMSV) model. In the literature, several methods have been proposed to estimate

LMSV models. For instance, in the frequency domain we can cite Deo and Hurvich

(2001) and in time domain Chan and Petris (2000). In addition, a fast maximum

likelihood estimation method was proposed by Abbara and Zevallos (2023b), along

with a procedure for VaR forecasting.

The class of SV models which presents both long memory and the leverage ef-

fect is called the Asymmetric Long Memory Stochastic Volatility (A-LMSV) model.

Compared to other SV specifications, there are only a few works related to the esti-

mation and forecasting of A-LMSV models, see for example Ruiz and Veiga (2008),

who compares the properties of A-LMSV and FIEGARCH models. Therefore, our

main objective is to fill this gap by proposing a fast procedure, based on the Kalman

filter, to estimate A-LMSV models by maximum likelihood. This proposal extends

the contributions of Abbara and Zevallos (2023a,b) and also provides a method for
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volatility forecasting.

There are some related works outside the framework discussed in the paper that

deal with both long memory and leverage effect. For instance, the FIEGARCH pro-

posed by Bollerslev and Mikkelsen (1996), and the works of Asai et al. (2012, 2017),

where a new method for simultaneously modeling daily returns and realized volatility

is presented/ see also Bilayi-Biakana et al. (2019) and Phillip et al. (2020).

The paper is organized in 5 sections, including this introduction. Section 2

presents the method while section 3 assess the estimation proposal through Monte

Carlo experiments. Section 4 presents an illustration with real-life time series and

Section 5 concludes. The derivation of the Kalman filter algorithm is summarized in

the Appendix.

2 Methods

Let {rt}Tt=1 be a time series of returns. The LMSV model is given by the equations:

rt = βeht/2εt, (1)

ϕ(B)(1−B)dht = θ(B)ωt (2)

where B is the backshift operator, ϕ(B) = 1−ϕ1B− . . .−ϕpB
p and θ(B) = 1+θ1B+

. . .+ θqB
q are the autoregressive and moving average polynomials, respectively, and

(1−B)d =
∑∞

j=0 bj(d)B
j with

bj(d) =
Γ(j − d)

Γ(j + 1)Γ(−d)
j = 0, 1, . . . . (3)

In addition, the disturbances εt and ωs are independent for all t and s. We do not

assume any specific distribution for εt provided that E(εt) = 0 and V ar(εt) = 1, and

we consider that ωt has a normal distribution with zero mean and variance σ2
ω.

When disturbances εt and ωt+1 are correlated then the model exhibits a leverage

effect and it is called an A-LMSV model. The correlation is included between εt and

ωt+1, instead of εt and ωt, to ensure that the returns process is a martingale difference,

see Yu (2005) and Ruiz and Veiga (2008). Specifically, we consider that the vector

(εt, ωt+1) has a covariance matrix given by:

Σ =

[
1 ρσω

ρσω σ2
ω

]
, (4)
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and we do not assume any specific joint distribution for the vector (εt, ωt+1), but we

maintain the assumption that ωt ∼ N(0, σ2
ω).

Taking the log of the squares of equation (1) yields:

yt = α+ ht + ηt, (5)

where yt = ln(r2t ), α = ln(β2) and η = ln ε2t . The goal is to write the model as a

dynamic linear switching model with mixtures. To do that, we need to tackle two

problems. First, we need to specify a joint distribution of (ηt, ωt+1). Here, we follow

an approach very similar to that Abbara and Zevallos (2023b) for A-SV models.

Second, we want to obtain a finite linear state space representation of the ARFIMA

process for ht. In this paper, we use a autoregressive approximation1as discussed for

LMSV models in Abbara and Zevallos (2023a).

All these issues are discussed briefly in the next subsections.

2.1 Approximation of the joint distribution of (ωt+1, ηt).

The density f(ωt+1, ηt) is decomposed as:

f(ωt+1, ηt) = f(ηt)f(ωt+1|ηt),

where f(ηt) is approximated by a mixture of m normals as in Shumway and Stoffer

(2006, chap.6). Thus:

ηt =
m∑
j=1

IjtVjt, (6)

where {Ijt} is an independent Bernoulli sequence with P (Ijt = 1) = πj , and Vjt ∼
N(µj , σ

2
j ) with µ1 = 0. We consider πj = 1/m, although it is possible to choose other

values.

On the other hand, from (6) and following the same strategy of Abbara and

Zevallos (2023b), an approximation of f(ωt+1|ηt) is given by:

f(ωt+1|ηt, Ijt = 1) = f(ωt+1|Vjt) ≈ N(dtρσω exp(µj/2)(aj + bj(Vjt − µj)), σ
2
ω(1− ρ2)). (7)

1There is an alternative for autoregressive approximation, originally proposed by Chan and Petris

(2000), where the LMSV model is constructed based on the MA representation of the first difference

of yt. We will study this representation in the next steps of our work.
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As a result, the joint distribution f(ωt+1, ηt) satisfies:[
ηt

ωt+1

]
|dt, Ijt = 1 ∼

[
µj + σjzt

dtρσω(aj + bjσjzt) exp(µj/2) + σω
√

1− ρ2z∗t

]
, (8)

with (zt, z
∗
t ) ∼ N(0, I2), and from equation (8) we obtain:

Ajt = E(ωt+1|dt, Ijt = 1) = dtρσωaj exp(µj/2), (9)

Bjt = Var(ωt+1|dt, Ijt = 1) = ρ2σ2
ωb

2
jσ

2
j exp(µj) + σ2

ω(1− ρ2), (10)

where dt is calculated as dt = I(rt ≥ 0)− I(rt < 0) for t = 1, . . . , n.

2.2 State-space model and the Kalman filter algorithm

As stated in equation (2), ht follows an ARFIMA(p, d, q) process, and it can be

expressed as an infinite AR expansion given by g(B) = ϕ(B)(1−B)d =
∑∞

j=0 gjB
jht,

see Palma (2007) for more details. Thus, as in Abbara and Zevallos (2023a), we

truncate the polynomial g(B) up to the power K:

K∑
j=0

gjB
jht ≈ θ(B)ωt (11)

and then we obtain an ARMA(K, q) model which has the following state-space rep-

resentation for the ARFIMA(1,d,1) case:

yt = ΘXt + ηt, (12)

Xt = ΦXt−1 +Hωt, (13)

where

Θ =
[
α 0 0 ... θ 1

]
, (14)

Xt =
[
1 Xt−K+1 Xt−K+2 ... Xt

]′
, (15)

Φ =



1 0 0 0 0 ... 0

0 0 1 0 0 ... 0

0 0 0 1 0 ... 0

0 0 0 0 1 ... 0
...

...
...

...
...

. . .
...

0 gK gK−1 gK−2 gK−3 ... g1


, (16)

H =
[
0 0 ... 1

]′
, (17)

gj = ϕbj−1(d)− bj(d), j = 1, . . . ,K. (18)
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Equations (12) and (13) with the innovations given by the joint distribution (8)

form a conditionally linear Gaussian state-space model. Therefore we can easily derive

the Kalman filter algorithm.

Let Xt|t−1 = E(Xt|y1:t−1), Xt|t = E(Xt|y1:t) the predicted and filtered values of

the state vector Xt, and consider Pt|t−1 = Var(Xt −Xt|t−1|y1:t−1), Pt|t = Var(Xt −
Xt|t|y1:t) and πjt = P (Ijt = 1|y1:t). Following similar steps as Abbara and Zevallos

(2023a), we have (see Appendix for details):

Xt|t−1 = ΦXt−1|t−1 +H
( m∑

j=1

πjt−1Ajt−1

)
, (19)

ϵjt = yt − µj −ΘXt|t−1, (20)

Σjt = ΘPt|t−1Θ
′ + σ2

j (21)

kjt =
Pt|t−1Θ

′

Σjt
(22)

Xt|t = Xt|t−1 +
m∑
j=1

πjtkjtϵjt, (23)

Pt|t−1 = ΦPt−1|t−1Φ
′ +
( m∑

j=1

πjt−1Bj

)
HH′, (24)

Pt|t =

m∑
j=1

πjt(IK+1 − kjtΘ)Pt|t−1, (25)

for t = 1, . . . , T . The probabilities πjt are calculated as follows:

πjt =
πjfj(t|t− 1)∑m
k=1 πkfk(t|t− 1)

, (26)

where fj(t|t− 1) is approximated by N(α+ht|t−1+µj ,Σjt). Then, the log-likelihood

is given by:

l(Λ) =

n∑
t=1

ln


m∑
j=1

πjfj(t|t− 1)

 , (27)

where Λ = (λ, τ), λ = (α, d, ϕ1, . . . , ϕp, θ1, . . . , θq, σω, ρ) and τ = (µ2, . . . , µm, σ1, . . . , σm)

are the set of parameters of the model.

Thus, let r1, . . . , rT be a sample of returns; we can summarize the steps to estimate

the parameters as follows:

1. Calculate yt = ln(r2t ) for t = 1, . . . , T .
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2. Choose appropriate values of K and m.

3. Set initial values for Xt|t−1,Xt|t,Pt|t−1, Pt|t−1 and πjt.

4. Compute the log-likelihood as in (27) through the recursive calculation of the

quantities given in equations (20) to (25) for t ∈ {1, ..., T} and j ∈ {1, ...,m}.
Then, maximize the log-likelihood by a numerical routine and obtain an estimate

of Λ.

2.3 VaR forecasting

From the state-space representation, a one-step-ahead forecast for the volatility is

given by:

σT+1|T = β exp(0.5ΘXT+1|T ). (28)

It can be used for value-at-risk (VaR) prediction through the evaluation of the empir-

ical distribution of εt. Thus, for t ∈ {1, ..., T} the procedure consists of the following

steps:

1. Calculate σ̂t|t−1 = β̂ exp(0.5Θ̂X̂t|t−1)

2. Calculate et = rt/σ̂t|t−1

3. Calculate the γ-quantile of et, called qγ ,

4. The one-step 100(1− γ)%-VaR forecast is equal to qγ σ̂T |T−1.

This proposal has a small difference compared to that of Abbara and Zevallos

(2023a). There, we used the filtered volatility (σt|t), instead of the predicted ones,

for the calculation of et. We tested both volatilities and found better results with the

predicted volatilities σt|t−1.

2.4 Implementation

All routines were implemented in R (R Core Team, 2020) using the packages Rcpp and

RcppArmadillo. The likelihood optimization routine was performed using the nlminb

function in R. We used unconstrained optimization with transformed parameters to

account for the restrictions: ϕ ∈ (−1, 1), θ ∈ (−1, 1), ρ ∈ (−1, 1) and d ∈ (0, 1), and

the variances of the model are in interval (0,∞). We emphasize that the parameter d
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can be outside the stationary interval, extending the stationary case studied by Ruiz

and Veiga (2008).

We consider πj = 1/m, m ∈ {2, 3} and K = 75. In addition, the initial values

of the Kalman filter quantities are: P1|0 = IK+1σ
2
ω, X1|0 = 0K+1 and πj1|0 = 1/m.

Moreover, the initial values of the parameters are d0 = 0.75, ϕ0 = θ0 = 0, σω,0 = 0.3,

while the initial values of α0, ρ0, µj,0 (for j > 1) and σj,0 are obtained estimating

the A-SV model. These choices permit fast estimation of the A-LMSV model but

we stress that other initial values do not affect the convergence of the optimization

procedure.

3 Monte Carlo Experiments

Here we evaluate the performance of our proposal in terms of point estimation by a

Monte Carlo experiment. The true values of the data generating process were chosen

based on the real-life results presented in Section 4, and we generated 1,000 samples

with length T = 5, 000 observations. The performance of the estimates was assessed

by the bias, the root mean square error (RMSE) and the standard deviation. Like our

previous works, we considered m ∈ {2, 3} to measure the sensitivity of the estimates

to the approximation of ηt.

As in Abbara and Zevallos (2023b) we considered two distributions for εt: i) the

standard Gaussian, and ii) the t-Student distribution with v = 5 degrees of freedom,

which is standardized to have unit variance. We also generated samples for ωt after

generating εt considering ωt+1|εt ∼ N(ρσωεt, (1− ρ2)σ2
ω).

The results are presented in Table 1. One can observe very good results for d̂, σ̂ω

and α̂, because of the small bias values. Moreover, the bias and RMSE are higher

for σ̂ω compared with the other two parameters, but they are at most 14% of the

true parameter value. However, compared to those estimates, we did not obtain good

results for ρ̂, mainly because the higher bias and RMSE values. According to its

standard deviation (which is small), the RMSE values of ρ̂ are large because of the

bias.

[Table 1 around here]

Next, we compared the results obtained from different values of m. First, for both

distributions, the performance of ρ̂ and σ̂ω improved when using m = 3, because of
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the decrease in the bias and RMSE values. Second, the results for d̂ were very good

and similar across the values of m, for both distributions. Third, we found mixed

results for α̂. Its performance improves for m = 3 when εt ∼ N(0, 1) but not when

εt ∼ t5.

4 Illustrations

In this section, the proposed method is illustrated through the analysis of three time

series returns of major country stock market indexes: the Brazilian (IBOV), the

Spanish (IBEX) and the Japanese (Nikkei) indexes. All time series start on January

2, 1996, and end on December 30, 2021 for the IBOV and Nikkei, andon May 15,

2021 for the IBEX. The sample sizes are: 6,409 for IBOV, 6,415 for IBEX and 6,371

for Nikkei. The data were collected from Bloomberg.

4.1 Real-life estimates of the A-LMSV model

First, we present the results of the first 5,000 returns of each series. Figure 1 presents

the time series plots and the empirical autocorrelation function (ACF) of the log-

squared returns. The hyperbolic decay of the ACF can be seen, so a model with

long memory is a proper choice. Since several works in the literature account for the

existence of a leverage effect in equity returns, see for example Omori et al. (2007),

an interesting candidate is the A-LMSV model. Estimates of the A-LMSV model are

presented in Table 2 for m ∈ {2, 3}.

[Figure 1 and Table 2 around here]

Table 2 shows that most d̂ values are between 0.5 and 0.7, outside the stationary

range. The only exceptions occurs for the Nikkei using the ARFIMA(1, d, 0) model,

for all values of m, and for the ARFIMA(1, d, 1) model with m = 3. Furthermore,

ρ̂ values are negative for all series, indicating the presence of a leverage effect. Also,

the values of ρ̂ are, in general, higher for IBEX compared with the other series.

Another important result from Table 2 is the instability of θ and ϕ estimates. The

significance of ϕ̂ and θ̂ for ARFIMA(1, d, 0), (0, d, 1) and (1, d, 1) differs substantially,

depending on the specification of the model. For instance, in the case of the IBEX,

these parameters are not significant for the (1, d, 0) and (0, d, 1) fits, while they are

significant for the (1, d, 1) fit, although it seems that the polynomials ϕ(B) and θ(B)
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have a common root, so the appropriate model is (0, d, 0). For the Nikkei time series,

ϕ̂ is significant for the (1, d, 0) fit but d̂ is not, while ϕ̂ are not significant for (1, d, 1).

Finally, for the IBOV case, all parameter estimates are significant for all models,

except ϕ̂ for the (1, d, 1) model, for all values of m.

In Figure 2 we present the evolution of the predicted volatility for all series using

the ARFIMA(0, d, 0) specification. It can be seen that the volatility reproduces the

variability of the returns. In particular we observe a increase in volatility around 1998

(period of the Russian crisis) for IBEX and IBOV and a sharp increase in volatility

for all series in 2008, the period of the global financial crisis.

[Figure 2 around here]

4.2 Backtesting results

Here we assess the one-step-ahead VaR forecast performance for the three series. The

exercise consists of a rolling window procedure with time length of 5,000 observations

where for each iteration, the parameters and VaR forecasts are calculated2.

We compare two models: the A-LMSV described earlier and the LMSV model

(both using K = 75). VaR forecasts for the LMSV model were obtained in the same

way as discussed in subsection 2.3 (that is, using the predicted volatility instead of

the filtered volatility, to calculate et). Our goal is to assess whether the inclusion of

leverage effect in the model improves the performance of the estimated VaRs.

For both models we consider that ht follows an ARFIMA(0, d, 0) process. We

choose this specification because, as discussed in the previous section, when esti-

mating ARFIMA(1, d, 0) and ARFIMA(0, d, 1) models, some parameter estimates are

unstable. Additionally, as in Abbara and Zevallos (2023a,b), we use m ∈ {2, 3} and

compute VaRs for long and short positions. The latter is valuable because the A-

LMSV posits a different behavior for volatility after a negative shock compared to a

positive one, so we expected a different behavior of buyers and sellers (of the asset).

The quality of the VaR forecasts was assessed according to Kupiec (1995), Christof-

fersen (1998) and Christoffersen and Pelletier (2004). These results are presented in

2At each iteration, we considered as initial parameter values the parameter estimates of the pre-

vious iteration, obviously except for the first iteration. This choice improved the time of convergence

for most of the estimates. However, there were no substantial differences when choosing the initial

values as described in subsection 2.4
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Table 3.

[Table 3 around here]

Overall, we obtained very good results using both methods, with the exception of

99%-VaR for a long position in the IBOV and in Nikkei. For most of the VaRs the

proportion of violations are close to the nominal level as assessed by the Kupiec test,

and most of the violations are independent.

There are some situations where the A-LMSV presents better results compared

with the LMSV. For instance, for a short position in the IBOV, we find higher p-

values of the Kupiec test for 97.5% and 99%-VaR, with both values of m. Besides

this, we also find higher p-values of the Kupiec test for both long and short positions

in the IBEX 95%-VaR with m = 3.

Figure 3 plots the 99%-VaR forecasts for the A-LMSV using m = 3 for all series.

Here, we observe an increase in the VaRs in the beginning of 2020, the start of the

Covid-19 pandemic. We do not observe any loss much larger than its respective VaR

forecast most of the time, and for IBOV we observe many days with returns below

the predicted VaRs during the pandemic crisis, in the months of February and March

2020.

[Figure 3 around here]

Finally, here we compare the VaR forecasts of the LMSV and A-LMSV models

using the Tmax statistic, which is part of the Model Confidence Set approach of

Hansen et al. (2011). The statistic of the test was calculated using the asymmetric

loss function, and the p-values were obtained by a block-bootstrap procedure. The

comparison was performed using the MCS package in R/ see Bernardi and Catania

(2016) for more details. In Table 4 we present the p-values of the test for each model,

and the model with the highest p-value presents better results. We can see from Table

4 that the A-LMSV has the highest p-value for most VaRs, for long or short positions.

The exceptions occur for 97.5%-VaR for the IBEX (both long and short positions),

99%-VaR for a short position in the IBEX and for 95%-VaR for short position in

the IBOV (with m = 3). Therefore, the inclusion of the leverage effect in the model

improves VaR forecasting in most situations, although both the LMSV and A-LMSV

models present a close proportion of violations.
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[Table 4 around here]

5 Conclusions

This paper presents a new maximum likelihood method for parameter estimation and

value-at-risk prediction of A-LMSV models. The likelihood is readily obtained from a

Kalman filter algorithm derived from a dynamic linear model with mixtures. To ob-

tain the model: i) an approximation of the joint distribution of (ηt, ωt+1) is proposed,

and ii) autoregressive truncation of the long memory process of ht is considered.

The derivation of the algorithm follows similar steps as those presented by Abbara

and Zevallos (2023a,b). In terms of parameter estimation, Monte Carlo experiments

indicated sound results for most parameters but we observed some problems when

estimating ρ. However, we obtained good results in the backtesting exercise for VaR

forecasts and we found that the inclusion of the leverage effect in the model improved

the VaR forecast performance in comparison with the LMSV and A-LMSV models.

Appendix

Here, we present the derivation of the Kalman filter expressions presented in Section

2.2.

The predicted vector Xt|t−1 is obtained as follows:

Xt|t−1 = E(Xt|y1:t−1)

= E(ΦXt−1 +Hωt|y1:t−1)

= ΦE(Xt−1|y1:t−1) +HE(ωt|y1:t−1)

= ΦXt−1|t−1 +HE
(
E(ωt|y1:t−1, Ijt−1 = 1)|y1:t−1

)
= ΦXt−1|t−1 +HE

( m∑
j=1

E(ωt|y1:t−1, Ijt−1 = 1)Ijt|y1:t−1

)
= ΦXt−1|t−1 +H

m∑
j=1

Ajt−1E(Ijt−1|y1:t−1)

= ΦXt−1|t−1 +H

m∑
j=1

Ajt−1πjt−1 (29)
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We define the innovation ϵjt as:

ϵjt = yt − E(yt|y1:t−1, Ijt = 1)

= yt − E[ΘXt|y1:t−1, Ijt = 1]− E(Vjt|y1:t−1)

= yt − E(Vjt)−ΘXt|t−1

= yt − µj −ΘXt|t−1 (30)

For now, our objective is to find the joint distribution between Xt|t−1 and ϵjt.

Thus, let Pt|t−1 = Var(Xt −Xt|t−1|y1:t−1), so the covariance between both quantities

is equal to:

cov(Xt, ϵjt|y1:t−1) = cov(Xt, yt − µj −ΘXt|t−1|y1:t−1)

= cov(Xt −Xt|t−1,ΘXt −ΘXt|t−1 + Vjt|y1:t−1)

= cov(Xt −Xt|t−1,Θ(Xt −Xt|t−1)|y1:t−1)

= Var(Xt −Xt|t−1|y1:t−1)Θ
′

= Pt|t−1Θ
′

since cov(ωt, Vjt) = 0. Finally, the joint distribution is equal to:[
Xt

ϵjt

]
|y1:t−1, Ijt = 1 ∼ N

([
Xt|t−1

0

]
,

[
Pt|t−1 Pt|t−1Θ

′

ΘPt|t−1 Σjt

])
, (31)

Based on the distribution in (31), we can obtain:

E(Xt|y1:t, Ijt = 1) = E(Xt|ϵjt, y1:t−1, Ijt = 1)

= Xt|t−1 + kjtϵjt (32)

where kjt is the Kalman gain given by:

kjt =
Pt|t−1Θ

′

Σjt
=

Pt|t−1Θ
′

ΘPt|t−1Θ′ + σ2
j

. (33)

13



Finally, Xt|t is obtained as follows:

Xt|t = E(Xt|y1:t)

= E
(
E(Xt|y1:t, Ijt = 1)|y1:t

)
= E

( m∑
j=1

E(Xt|y1:t, Ijt = 1)Ijt|y1:t
)

=
m∑
j=1

E(Xt|y1:t, Ijt = 1)E(Ijt|y1:t)

=
m∑
j=1

E(Xt|y1:t, Ijt = 1)πjt (34)

By replavcing Equation (32) in (34), we obtain:

Xt|t =
m∑
j=1

(Xt|t−1 + kjtϵjt)πjt

= Xt|t−1 +
m∑
j=1

πjtkjtϵjt.

Let Ωt =
∑m

j=1 πjtAjt. The expression for Pt|t−1 is obtained as follows:

Pt|t−1 = E
(
(Xt −Xt|t−1)(Xt −Xt|t−1)

′|y1:t−1

)
= E

(
(ΦXt−1 +Hωt − ΦXt−1|t−1 −HΩt)(ΦXt−1 +Hωt − ΦXt−1|t−1 −HΩt)

′|y1:t−1

)
= E

(
Φ(Xt−1 −Xt−1|t−1)(Xt−1 −Xt−1|t−1)

′Φ′|y1:t−1

)
+ E(HH′(ωt − Ωt)

2|y1:t−1)

= ΦPt−1|t−1Φ
′ +HH′E

(
(ωt − Ωt)

2|y1:t−1

)
= ΦPt−1|t−1Φ

′ +HH′E
( m∑

j=1

E((ωt − Ωt)
2|y1:t−1, Ijt−1 = 1)Ijt−1|y1:t−1

)
= ΦPt−1|t−1Φ

′ +HH′
m∑
j=1

E(BjIjt−1|y1:t−1)

= ΦPt−1|t−1Φ
′ +HH′

m∑
j=1

Bjπjt−1 (35)

Finally we obtain the expression for Pt|t. Thus,

Pt|t = E
[
(Xt −Xt|t)(Xt −Xt|t)

′|y1:t
]
= E

[
E
[
(Xt −Xt|t)(Xt −Xt|t)

′|y1:t, Ijt = 1
]
|y1:t

]
,

=

m∑
j=1

E
[
(Xt −Xt|t)(Xt −Xt|t)

′|y1:t, Ijt = 1
]
πjt. (36)

14



Note that:

E
[
(Xt −Xt|t)(Xt −Xt|t)

′|y1:t, Ijt = 1
]

= E
[
(Xt −Xt|t)(Xt −Xt|t)

′|ϵjt, y1:t−1, Ijt = 1
]

= Var(Xt|ϵjt, y1:t−1, Ijt = 1)

= Pt|t−1 −Pt|t−1kjtΘ, (37)

because of the joint distribution in (31). Substituting Equation (37) in (36) yields:

Pt|t =
m∑
j=1

[
IK+1 − kjtΘ

]
Pt|t−1πjt. (38)
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Table 1: Results of Monte Carlo experiments for the A-LMSV model (d = 0.65,

σω = 0.35, α = −8, ρ = −0.45). For each case, the bias, standard deviation (SD),

and root mean square error (RMSE) of the estimates are presented. Results are based

on 1,000 replications of time series of size T = 5, 000.

m = 2 m = 3

d̂ σ̂ω α̂ ρ̂ d̂ σ̂ω α̂ ρ̂

Case 1 εt ∼ N(0, 1) Bias 0.079 -0.045 -0.163 0.187 0.083 -0.008 0.349 0.169

SD 0.071 0.069 0.514 0.064 0.067 0.069 0.497 0.069

RMSE 0.106 0.082 0.539 0.198 0.107 0.069 0.607 0.183

Case 2 εt ∼ t5 Bias 0.077 -0.049 -0.491 0.216 0.081 -0.020 0.034 0.184

SD 0.080 0.082 0.532 0.066 0.076 0.082 0.583 0.076

RMSE 0.111 0.095 0.724 0.226 0.112 0.085 0.584 0.199
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Table 4: Comparison of VaR forecasts. This table shows the p-values of the Tmax

statistic proposed by Hansen et al. (2011) for the model confidence set (MCS). Higher

p-values indicate a better model, and for all tests we applied the asymmetric loss

function.

IBOV IBEX Nikkei

m = 2 m = 3 m = 2 m = 3 m = 2 m = 3

99%-VaR, long position

LMSV 0.039 0.502 0.933 0.939 0.039 0.053

A-LMSV 1.000 1.000 1.000 1.000 1.000 1.000

97.5%-VaR, long position

LMSV 0.232 0.588 1.000 1.000 0.087 0.763

A-LMSV 1.000 1.000 0.738 0.700 1.000 1.000

95%-VaR, long position

LMSV 0.007 0.012 0.571 0.742 0.216 0.583

A-LMSV 1.000 1.000 1.000 1.000 1.000 1.000

95%-VaR, short position

LMSV 0.536 1.000 0.677 0.624 0.007 0.116

A-LMSV 1.000 0.446 1.000 1.000 1.000 1.000

97.5%-VaR, short position

LMSV 0.231 0.731 1.000 1.000 0.037 0.217

A-LMSV 1.000 1.000 0.675 0.388 1.000 1.000

99%-VaR, short position

LMSV 0.219 0.974 1.000 1.000 0.185 0.381

A-LMSV 1.000 1.000 0.243 0.239 1.000 1.000

21



IB
E

X

1997 2002 2007 2012

−
0

.1
5

0
.0

0
0

.1
0

0 20 40 60 80 100

0
.0

0
.4

0
.8

A
C

F

IB
O

V

1997 2002 2007 2012

−
0

.3
−

0
.1

0
.1

0
.3

0 20 40 60 80 100

0
.0

0
.4

0
.8

A
C

F

N
IK

K
E

I

1997 2002 2007 2012

−
0

.1
5

0
.0

0
0

.1
0

0 20 40 60 80 100

0
.0

0
.4

0
.8

A
C

F

Figure 1: Plots of the first 5,000 returns (first column) and the empirical ACF function

of the log-squared returns.
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Figure 2: Plots of the first 5,000 returns and the predicted volatility (times 3) obtained

from the A-LMSV model. The volatilities were estimated by ARFIMA(0, d, 0) with

m = 3, with the parameter estimates were presented in Table 2
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Figure 3: Plots of backtesting results for 99%-VaR, when ht follows an

ARFIMA(0, d, 0) process and m = 3. The blue line represents the 99%-VaR for a

long position while the purple line denotes a short position (with change of signal).
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