

Ácido húmico na cultura da batata (Solanum tuberosum L.)

Rosana Aline Ribeiro da Mota¹, Regina Maria Quintão Lana¹, Mara Lúcia Martins Magela¹, Luciana Nunes Gontijo¹, Danyela Cristina Marques Pires¹, Caio Mello Silveira Andrade²

¹ Universidade Federal de Uberlândia, Uberlândia, Minas Gerais (rosanamota@ufu.br);
²Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro, Uberlândia, Minas Gerais

RESUMO: As empresas vêm investindo em fertilizantes que apresentam em sua composição carbono orgânico e/ou substâncias húmicas, aminoácidos e hormônios vegetais capazes de melhorar as condições físicas, químicas e biológicas do solo e como consequência, aumentar o desenvolvimento e vigor das plantas. O objetivo deste trabalho foi avaliar a eficácia do biofertilizante Ácido Húmico Denka Prula, aplicado na cultura da batata (*Solanum tuberosum* L.), em relação à um controle e dois produtos 'padrão' registrados e comercializados no Brasil, em área de produção de batata na região de Cristalina-GO. O experimento foi conduzido em delineamento de blocos casualizados, com sete tratamentos e quatro repetições. A aplicação do Ácido Húmico Denka Prula resultou em incrementos significativos das variáveis de crescimento: peso fresco e seco de parte aérea, número de estolons, peso seco de raiz, número de tubérculos e peso fresco de tubérculos em relação à ausência de aplicação, Biofertilizante 1 e Biofertilizante 2. Os incrementos nas características de crescimento acarretam aumento de produtividade e qualidade da batata.

Palavras-chave: substâncias húmicas, nutrição de plantas, biofertilizante

1. INTRODUÇÃO

As empresas vêm investindo em fertilizantes que apresentam, em sua composição, carbono orgânico e/ou substâncias húmicas, como ácido húmico, fúlvico, aminoácidos e hormônios vegetais capazes de melhorar as condições físicas, químicas e biológicas do solo, e como consequência, aumentar o desenvolvimento e vigor das plantas que, por sua vez, irá refletir em aumento de produção e qualidade do produto.

O objetivo deste trabalho foi avaliar a eficácia do biofertilizante Ácido Húmico Denka Prula da empresa Denka Company Limited, aplicado na cultura da batata (*Solanum tuberosum* L.), em relação ao controle (ausência do ácido húmico) e dois produtos 'padrão' registrados e comercializados no Brasil (K-Humate - Biofertilizante 1

e Soil-Plex Fert - Biofertilizante 2), em área de produção de batata na região de Cristalina-GO.

2. MATERIAL E MÉTODOS

O experimento foi realizado na Agrícola Wehrmann, localizada na latitude de 16° 5'56" S, longitude de 47° 30'55" W e altitude de aproximadamente 1000 m. A cultivar utilizada foi a FL-1867, plantada no dia 17 de abril de 2019. O delineamento foi o de blocos casualizados, com sete tratamentos e quatro repetições. Cada parcela foi constituída de quatro linhas de sete metros de comprimento, espaçadas entre si de 0,8 metros, totalizando 22,4 m². A parcela útil destinada para as avaliações ao longo do ciclo foi a área referente às duas linhas centrais de cada parcela.

Os sete tratamentos foram aplicados em duas doses, sendo a primeira realizada no plantio e a segunda na amontoa. O tratamento controle consistiu da ausência de aplicação de biofertilizante no plantio e na amonta. Os tratamentos consistiram na aplicação de biofertilizantes com auxílio de um pulverizador costal, com as dosagens totais a seguir: Biofert. 1, na dose total de 10 L ha⁻¹, Biofert. 2, 5 L ha⁻¹, e do ácido húmico Denka Prula nas doses de 10, 15, 20, 25 L ha⁻¹.

Todos os tratos culturais, como controle fitossanitário, fertilização de plantio e amontoa foram realizados conforme recomendação da cultura e as condições de campo para todos os sete tratamentos.

Foram realizadas as seguintes avaliações aos 27, 58 e 86 dias após o plantio (DAP): peso fresco e peso seco de parte aérea, número de estolons, peso seco de raiz, número de tubérculos e peso fresco de tubérculos.

As características avaliadas foram submetidas ao teste F da análise de variância. Foi realizado o teste de Scott-Knott comparando todos os tratamentos; e análise de regressão para as doses do ácido húmico Denka Prula (10, 15, 20, 25 L ha⁻¹), com auxílio do programa SISVAR. Foi aplicado também o teste de Dunnett utilizando o programa estatístico SPSS. Todos os testes foram realizados considerando 0.05 de significância.

3. RESULTADOS E DISCUSSÃO

Para peso fresco e seco da parte aérea, aos 27 DAP, a aplicação do Biofert. 2 e as doses de 15, 20 e 25 L ha⁻¹ do Denka Prula, resultaram em maiores pesos em relação ao controle e ao Biofert. 1. Essas mesmas doses de Denka Prula proporcionaram pesos iguais ao obtido pelo Biofert. 2 (Tabela 1).

Aos 58 DAP a dose de 15 L ha⁻¹ de Denka Prula proporcionou maior peso fresco da parte aérea em relação a ausência de aplicação (controle), Biofert. 1 e 2 (Tabela 1).

Aos 86 DAP, a maior dose do Denka Prula (25 L ha⁻¹) proporcionou maior peso fresco e seco da parte aérea em relação ao controle, Biofert. 1 e ao Biofert 2 (Tabela 1).

Simpósio de Siências Agrárias Sie Ambientais Siencias Agrárias Siencias Sie

Tabela 1. Peso fresco e seco de parte aérea (g), submetida a diferentes tratamentos, aos 27, 58 e 86 DAP.

_	Peso fresco de parte aérea (g)			Peso seco de parte aérea (g)			
Tratamento	Di	ntio	Dias após o plantio				
	27*	58*	86*	27*	58*	86*	
Controle	283,34b [□]	555,05d	260,54e°□	18,48c [□]	39,95a	22,80b	
Biofert.1	290,95b [□]	525,69e	354,76b ⁺	18,06c [□]	45,53a	28,67b	
Biofert.2	417,98a ⁺⁰	562,12d	354,96b ⁺	26,56a ⁺⁰	49,77a	27,13b	
10 Denka Prula	331,53b [□]	666,66b ⁺ °□	305,09d°□	21,81b [□]	48,54a	24,55b	
15 Denka Prula	409,51a ⁺⁰	725,42a ⁺ o□	$327,37c^{+}$	26,32a ⁺⁰	54,00a	28,71b	
20 Denka Prula	381,37a ⁺⁰	619,89c ⁺ °□	363,02b ⁺	25,56a ⁺⁰	46,59a	28,96b	
25 Denka Prula	394,03a ⁺⁰	670,39b ⁺ ∘□	$460,07a^{+\circ\Box}$	27,60a ⁺⁰	50,29a	41,77a ⁺ o□	
CV (%)	7,13	2,68	4,56	7,43	14,62	12,97	

Médias seguidas por letras distintas, na coluna, diferem entre si pelo teste de Scott-Knott a 0,05 de significância. * Significativo e ns não significativo pelo teste F a 0,05 de significância. ⁺Valores que diferem do controle, do °Bifert.1 e do □Biofert.2, pelo teste de Dunnett a 0,05 de significância.

Aos 27 DAP, a maior dose do Denka Prula proporcionou maior número de estolons com relação ao controle, Biofert.1 e 2, e a aplicação de 10 e 15 L ha⁻¹ do Denka Prula proporcionaram maior peso seco de raiz, enquanto que aos 58 DAP todas as doses se mostraram mais eficientes que a ausência de aplicação, ao Biofert.1 e 2 (Tabela 2).

Tabela 2. Sistema radicular, submetidas a diferentes tratamentos, aos 27, 58 e 86 DAP.

	Número de estolons			Peso seco de raiz (g)			
Tratamento	Dias após o plantio			Dias após o plantio			
_	27*	58*	86*	27*	58*	86 ^{ns}	
Controle	13,50b°□	12,00e°□	15,67c°□	2,63b°	2,61c [□]	3,98a	
Biofert.1	$9,33c^+$	$20,00a^{+}$	$22,83a^{+}$	$1,53c^{+\square}$	2,86c	3,73a	
Biofert.2	$10,83c^+$	19,50a ⁺	$19,33b^{+}$	2,52b°	$3,40b^{+}$	3,94a	
10 Denka Prula	$10,33c^{+}$	15,33c ⁺ o□	$21,17a^{+}$	$3,09a^{+\circ\Box}$	4,21a ⁺ o□	3,98a	
15 Denka Prula	13,50b°□	17,00b ⁺ ○□	16,50c°	2,96a°□	3,93a ⁺⁰	3,61a	
20 Denka Prula	12,17b°	$14,00d^{+\circ\Box}$	19,00b°	2,55b°	3,75a ⁺⁰	4,30a	
25 Denka Prula	19,67a ⁺ o□	18,83a ⁺	19,33b ⁺	2,78b°	$4,17a^{+\circ\Box}$	4,68a	
CV (%)	7,70	3,63	8,08	6,85	8,36	22,84	

Médias seguidas por letras distintas, na coluna, diferem entre si pelo teste de Scott-Knott a 0,05 de significância. * Significativo e ns não significativo pelo teste F a 0,05 de significância. ⁺Valores que diferem do controle, do °Bifert.1 e do □Biofert.2, pelo teste de Dunnett a 0,05 de significância.

Aos 27 DAP o maior número de tubérculos foi obtido com a aplicação da maior dose do Ácido Húmico Denka Prula. Aos 86 DAP a dose de 25 L ha⁻¹ do Denka Prula proporcionou o maior peso fresco de tubérculos (Tabela 3).

Tabela 3. Tubérculos, submetidas a diferentes tratamentos, aos 27, 58 e 86 DAP.

	Número de Tubérculos			Peso fresco de tubérculos (g)			
Tratamento	Dias após o plantio			Dias após o plantio			
	27*	58*	86*	27	58*	86*	
Controle	9,00c°□	14,67a	10,17a°	-	684,96a°	839,01d°□	
Biofert.1	7,33d ⁺	13,83a	12,50a ⁺	-	503,81b ^{+□}	1020,32b ⁺	
Biofert.2	$7,17d^{+}$	15,00a	11,67 ^a	-	627,91a°	$940,78c^+$	
10 Denka Prula	$6,17d^{+}$	$8,33c^{+\circ\Box}$	12,00a	-	733,18a°□	$1072,68b^{+\Box}$	
15 Denka Prula	12,00b ⁺ ○□	$8,50c^{+\circ\Box}$	12,67a ⁺	-	632,41a°	$986,33c^{+}$	
20 Denka Prula	$9,17c^{\circ\Box}$	$7,00c^{+\circ\Box}$	13,50a ⁺	-	672,85a°	$988,10c^{+}$	
25 Denka Prula	14,33a ⁺ o□	10,00b ⁺ ○□	11,67 ^a	-	654,30a°	1139,99a ⁺ °□	
CV (%)	6,49	7,92	6,02	-	6,25	4,08	

Médias seguidas por letras distintas, na coluna, diferem entre si pelo teste de Scott-Knott a 0,05 de significância. * Significativo e ns não significativo pelo teste F a 0,05 de significância. *Valores que diferem do controle, do °Bifert.1 e do □Biofert.2, pelo teste de Dunnett a 0,05 de significância.

4. CONCLUSÕES

A aplicação do Ácido Húmico Denka Prula resulta em incrementos significativos das variáveis de crescimento: peso fresco e seco de parte aérea, número de estolons, peso seco de raiz, número de tubérculos e peso fresco de tubérculos em relação a ausência de aplicação, Biofertilizante 1 e Biofertilizante 2.

5. AGRADECIMENTOS

À Universidade Federal de Uberlândia, à empresa Denka e à Agrícola Wehrmann pelo apoio e disponibilização de recursos para a realização deste trabalho.

6. REFERÊNCIAS

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, Lavras, v. 35, n.6, p. 1039-1042, 2011.

MARTINS, M J. D. L. Nutrição mineral e produtividade da cultura da batata em função da aplicação de substância húmica e adubação fosfatada. 2017. 122 f. Tese (Doutorado) - Faculdade de Ciências Agronômicas da UNESP - Campus de Botucatu. Botucatu, 2017.