Using High-Frequency Data to Price Financial Assets: A Systematic Review Abstract

This study conducts a bibliometric analysis and systematic review of the empirical literature on using high-frequency data to price financial assets, examining 93 articles. The bibliometric analysis was developed by counting frequency and co-citations, while the systematic review encompassed qualitative analysis to establish a correlation between relevant themes still little explored. These articles were retrieved from the Scopus and Web of Science databases, and the software Biblioshiny and Rank Words were adopted to conduct the analysis and the review. In addition, the study verified the main laws of bibliometric analysis, such as Zipf (1949), Bradford (1934), and Lotka (1926). The research contributed to delving into modeling and predictability models to price financial assets based on high-frequency data and identify the main gaps to increase knowledge in the area.

Keywords: volatility; high-frequency data; forecast

Introduction

The current capital market is developing sharply in Brazil, enabling a competitive environment where agents seek to optimize capital management. Agents willing to operate efficiently must have a theoretical background and practical tools to increase their understanding of the uncertainties influencing prices.

Recent econometric studies have shown great advances concerning practical tools, developing more assertive models to predict market variations. The proposed models — heterogeneous autoregression realized volatility (HAR-RV) and high-frequency-based volatility (HEAVY) — use several measures of realized volatility containing different frequencies and methods to transform frequencies. Agents willing to operate as market traders can use this type of tool to define strategies and obtain support from daily volatility forecasts.

Numerous factors can generate instability in the capital market, which requires constant evolution in support mechanisms. The majority of the existing theoretical and empirical studies on realized volatility show the possibility of obtaining accurate forecasts through models containing ultra-high frequency time series (Andersen & Bollerslev, 1998; Andersen, Bollerslev, Diebold, & Labys, 2001; Andersen, Bollerslev, & Meddahi, 2005; Ghysels & Sinko, 2006; Koopman, Jungbacker, & Hol, 2005).

This study carries out a bibliometric analysis and systematic review of the literature on using high-frequency data to price financial assets. The research examines the methods adopted in the literature and seeks to identify possible gaps to be addressed in future studies.

Literature Review

Although the financial market works continuously, practically all available data sets on its activity are based on discrete sampling. High-frequency datasets eliminated this disparity, allowing for virtually continuous observations of price, volume, trade size, and even depth.

Against this backdrop, a series of key questions arise to increase understanding of the foundations guiding the price behavior of financial assets.

The emergence of new possibilities due to high-frequency datasets accelerated the transactions, improving market efficiency. However, this acceleration favored adverse events, such as the 2010 Flash Crash, which led to the creation of new laws to increase market regulation.

The efficient market hypothesis implies that incorrect pricing and the associated arbitrage opportunities between related markets must be eliminated quickly. In addition, such a hypothesis states that the speed through which a transaction is completed influences the success of a financial asset's purchase or sale.

For agents who want to work in this segment, making significant investments becomes a mandatory condition for success. Both the physical location and the use of computers with fast

connections to the stock exchange are factors capable of reducing response time in negotiations. Since not everyone has the same ideal resources to operate their strategies, reflections on justice and equality emerge for debate.

In general, subjects are willing to give up rewards to punish those who treat them unfairly (Kahneman, Knetsch, & Thaler, 1986a, b). In a way, the human brain is programmed to prefer fair outcomes. Tabibnia, Satpute, and Lieberman (2008) report brain imaging studies demonstrating the existence of pleasure activations when a fair outcome is achieved, while other brain regions are activated for unfair results. This notion of fairness is enshrined in our securities law and regulatory apparatus, which seek to create a level playing field by forcing the disclosure of relevant information.

Various tools to improve transactions have been used in daily market activities, although academics are still debating their real effectiveness. Many technical trading systems are readily automated with computers. Today some practitioners of the reaction to news strategy use computers to examine news feeds for relevant information and to make and implement trading decisions. Most strategies are low-frequency, but some of them consider the use of high-frequency technology.

The definition of realized volatility is based on the theory of quadratic variation (Andersen et al. 2001b). It is considered a consistent estimator of the integrated volatility RV_t , defined as the sum of squared returns observed in very small time intervals. Its concept is widely applied to empirical finance (Andersen, Bollerslev, & Diebold, 2002). Among its advantages, it provides asymptotically unbiased measurements, making measurement errors (approximately) serially uncorrelated. The sampling frequency required for the realized volatility tests should be as high as the characteristics of the market microstructure without creating a biased estimator of realized volatility (Alexander, 2008). Also, the optimal sampling

frequency is chosen as the highest frequency for which the term autocovariance polarization minimizes.

Among the tests carried out, the autoregressive fractionally integrated moving average (ARFIMA) model was highly effective in capturing realized volatility (Andersen & Bollerslev, 1997, 1998; Andersen et al., 2003, 2005; Thomakos & Wang, 2003; Angelidis & Degiannakis, 2008; Giot & Laurent, 2004; Koopman et al. 2005). Later, Corsi (2009) suggested another efficient alternative: the heterogeneous autoregression (HAR) model, conceived as an autoregressive structure of realized volatilities in intervals of different sizes. Its economic interpretation derives from the heterogeneous market hypothesis presented by Müller et al. (1993). The basic idea is that market participants have a different perspective on their investment horizon, generating volatility. This type of modeling proved to be very effective in other countries. However, to the best of our knowledge, it is not yet representatively documented in the literature produced with data from emerging countries.

Methodology

This study implemented seven steps to answer the question – what are the main research topics related to using high-frequency data for modeling and predicting the price of financial assets? Steps 1 to 5 use bibliometric analysis and systematic review techniques, while steps 6 and 7 refer exclusively to systematic review.

Step 1 – Choosing the database. The articles forming the sample were collected from Scopus and Web of Science (WoS) databases, two of the main databases used as a source of citations. They offer articles published in scientific journals with a high impact factor classified through the Journal Citation Reports (JCR).

Step 2 – The researchers used initial research parameters to browse the articles in the two databases selected. The research considered the period from January 1, 2015, to August 1, 2022, and 369 articles were identified. The keywords adopted to filter the publications were

variations of the terms "high-frequency data," "forecast," and "volatility." Subsequently, other filters were applied to refine the search, reaching 78 articles from the Scopus database and 89 articles from the WoS database, gathering 167 articles as an intermediate sample, as shown in Table 1.

Table 1Evolution of the Sample Using the Filters From the Scopus and Web of Science Databases

	Description	Scopus	wos	Total
	Search: "Article title," "Abstract,"			
(+)	"Keywords," equal to: "high-frequency	196	173	369
	data," "forecast," and "volatility"			
(=)	Initial sample	196	173	369
(-)	Date: before 2015	72	63	135
(-)	Language: different from "English"	3	0	3
(-)	Topic: different from "economics,"	43	21	64
()	"econometrics," and "business finance"			
(=)	Intermediary sample	78	89	167

Step 3 – At this stage, the duplicate articles were deleted. After identifying the articles that met the criteria observed in steps 1 and 2, we used the R system to consolidate the results from the two databases, excluding duplicate articles. This process showed 49 articles repeated in the two databases. When consolidating this number, the sample was reduced to 118 articles.

In this step, the 118 articles were verified to observe if they were available in full so it would be possible to apply the bibliometric procedures. This verification led to the exclusion of 25 articles, reaching a final sample of 93 (Table 2).

Table 2Total of the Final Sample

	Description	Number of articles
(+)	Web of Science + Scopus	167
(-)	Articles listed in the two databases	49
(=)	Total of the sample	118
(-)	Articles not located	25
(=)	Final sample	93

Step 4 – Research database creation and collection of the selected articles. The 93 articles that formed the final sample were downloaded from Scopus and WoS databases and analyzed. The following information was collected: author, keywords, research topics, origin, citations, subject, abstract, corresponding author, type of publication, link of the article, co-authors, funding agency, journal of publication, language, publisher, the focus of the study, year of publication, university the first author is affiliated with, complete reference, simplified reference. In addition to these data, the impact factor h-index was added, indicating the article's relevance for academia.

Step 5 – This step refers to the bibliometric analysis. The articles' objective data – such as countries, authors, keywords, and institutions – were analyzed through the Biblioshiny software, offering subsidies to elaborate tables and relationship maps. The analyses carried out were complemented with the verification of the main laws of bibliometrics: a) Zipf's Law (1949) – categorization and estimation of the frequency of keywords, using the Rank Words software to calculate Goffman's transition point or the point of transition of words from low to high frequency (concentrating words with high semantic load); b) Bradford's Law (1934) – quantifying the productivity of journals in relation to the subject studied; and c) Lotka's Law (1926) – identifying researchers that have a higher frequency of production in a given area of knowledge.

Step 6 – The articles were read and coded in this step, identifying their objectives, sample, methods, and contributions. Also, they were classified and categorized in a structured way, according to Table 3. Subcategories were defined for each of the six categories, and their sum, when counting the frequency, totals 100%.

Table 3 *Matrix of Categories and Subcategories*

Categories	Subcategories	Definition				
	A – Use of traditional predictive models	Test effectiveness of existing traditional predictive models applied to high-frequency data				
	B – Use of a risk management model	Test effectiveness of existing traditional risk models applied to high-frequency data				
	C – Proposal of new predictive models	Improvement of traditional predictive models applied to high-frequency data				
1. Main	D – Macroeconomic					
theme/focus	variables influencing	Based on high-frequency data, investigate the effects of				
of the study	the volatility of the	relevant macroeconomic events on asset volatility				
	asset					
	E – High-frequency data vs. low- frequency data	Test the effectiveness of using high-frequency data to improve predictive models				
	F – Others	Other topics unrelated to subcategories 1A, 1B, 1C, 1D, and 1E				
	A – Study of volatility	Price variation presented by a financial asset				

	B – Risk management	Management of critical variables that can impact the
	b – Risk management	price of financial assets
2. Theories	C – Study of events	Relevant macroeconomic variables directly affect the
related to the	C – Study of events	price of financial assets
	D – Portfolio	Tools aimed at the management of financial assets
hypotheses	management	that make up the investor's portfolio
	E – Others	Other theories unrelated to subcategories 2A, 2B, 2C,
	E – Otners	and 2D
	A Autorograssiva	Model that presents the same dependent and explanatory
	A – Autoregressive model	variable, and the dependent variable will be at a later
	iniodei	time (t) than the independent variable (t-1)
2 M d 1	D D: 1	Model built to develop and test different scenarios of
3. Method	B – Risk model	strategies, supporting decision making
	C – Analysis of jump	Identify the presence of jump for volatility analysis
	D – Others	Other methods unrelated to subcategories 3A, 3B, and
	D – Others	3C
	A C1 1 1	Data from companies that cover two or more groups (B,
	A – Global	C, D, E, F)
	B – The United States	Data from companies operating in the United States and
4. Data	and Canada	Canada
sources	C – Europe	Data from companies operating in Europe
	D – Asia/Oceania	Data from companies operating in Asia and Oceania
	E – Latin America	Data from companies operating in Latin America
	F – Africa	Data from companies operating in Africa

	A – Confirmation of	
	the efficacy of	Validation of models and hypotheses recognized in
	existing models and	previous studies
	hypotheses	
	B – Confirmation of	
5. Results	the efficacy of new	Validation of models and hypotheses developed by the
	models and	research
	hypotheses	
	C – Inconclusive	Results that do not validate the existing and proposed
	results	hypotheses in the tested aspects
	D – Others	Other results unrelated to subcategories 5A, 5B, and 5C
	A – Alternative to	Include new variables identified as promising within the
	improve the model	proposed model
6. Avenues	B – Expanding the	
for future	use of the model for	Use the model from new possible angles, helping to
studies	new purposes	solve new research problems
	C – Using the models	Testing the proposed model in other markets and asset
	in new samples	classes

Step 7 – This step corresponds to the systematic review. After coding the matrix of categories and subcategories (Table 3) for the final sample, a frequency count of the subcategories was performed to identify knowledge gaps. These gaps were then compared with the subcategories of the sixth category, offering indications for future studies on using high-frequency data to price financial assets.

Analysis of Results

Bibliometric analysis

The final sample consisted of 93 articles from the Scopus and WoS databases, published from 2015 to 2022. When disregarding 2022, we obtained an average of 12 articles related to the topic per year, as shown in Figure 1. Among the main frequencies of keywords, the term "high-frequency data" appeared 36 times (24%), and "volatility" and "forecasting" 26 times (17%) (Figure 2). Figure 3 corresponds to the relationship between keywords and the country of the first author's university, and Figure 4 to the keyword's relevance represented by its size in the word cloud.

Figure 1

Annual Distribution of the Articles

Year	Number of articles
2015	12
2016	9
2017	9
2018	13
2019	13
2020	11
2021	17
Total	84
Mean	12

Figure2

Keywords and Their Frequency in Publications



Figure 3Relation Between Keywords and the Country of the First Author's University

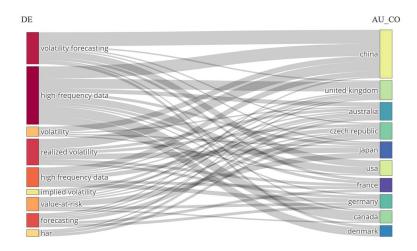


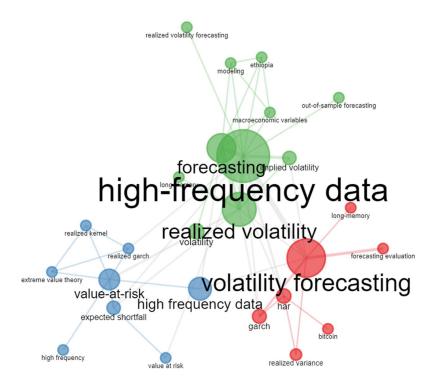
Figure 4

Relevance of Keywords (Represented by Font Size)

In turn, Figure 5 presents the map of co-occurrences of the most used keywords in the articles. For this observation, we highlight the words "HIGH-FREQUENCY DATA," "VOLATILITY FORECASTING," "FORECASTING," and "REALIZED VOLATILITY."

Figure 5

Keywords and the Interactions Among Them



Note: Colors represent clusters of relationships among keywords. The thickness of the lines indicates the strength of the connection between keywords.

Regarding the keywords, Zipf's (1949) law refers to optimization when using them, so they do not disperse. On the contrary, it is possible to observe a tendency for minimal use of keywords and a high frequency of occurrence. Zipf's first law states that the series (r) of a word multiplied by its frequency of occurrence (f) will be approximately constant (C), resulting in Equation 1:

$$\mathbf{r} \times \mathbf{f} = \mathbf{C} \tag{1}$$

For words with low frequency, Zipf (1949) proposed a second law, which was revised and modified by Booth (1967). As demonstrated in Equation 2, Booth (1967) suggests that in a given text, several words with low occurrence have the same frequency:

$$In = 2I1 / n (n+1)$$
 (2)

Where,

I1 = number of words that have frequency 1

In = number of words that have frequency n

n = Goffman's transition point from low to high frequency words

Zipf's laws (1949) define the ends of a word distribution list. Between these extreme points is a transition area from high to low-frequency words. According to Goffman (1971), this area has the words with the highest semantic content, the most suitable for thematic indexing of a given text. Pao (1978) presents the equation of Goffman's transition point (Equation 3).

$$T = (-1 + \sqrt{1 + 8I1}) / 2 \tag{3}$$

Where,

T = Goffman's transition point

 I_1 = number of words that have frequency 1

The Rank Words software identified Goffman's transition point by sorting the keywords in descending order. Subsequently, those repeated only once were identified to calculate Goffman's transition point, locating those positioned above the classification indicated by this point. Table 4 indicates that for the 93 articles in the final sample, this point varied between 31.75 (Zevallos, 2019) and 76.35 (Sun, Chen, & Yu, 2015), with an average of 45.53.

Next, the region where words were most adherent to the text's main theme was analyzed. Words irrelevant to the study were excluded – e.g., prepositions, articles, pronouns, adverbs, and numerals. Then, the words with the highest frequency were classified (Table 4). According to this table, the term volatility was more frequent in 34 articles, especially in Lyócsa & Todorova (2020), when it is repeated 347 times in a text with a total of 15,534 words.

 Table 4

 Goffman's Transition Point and Classification of Words (Zipf Law)

Author	Number of words	Number of different words	Number of words with frequency	Most recurrent word	Frequency of the most recurrent word	T = Goffman's transition point
BOLLERSLEV T (2020)	18,631	3,010	1,394	Semicovaria nce	72	51.80388243
BOLLERSLEV T (2018)	23,389	3,058	1,431	Risk	270	52.5
SUN EW (2015)	21,467	4,838	2,991	Financial	82	76.3450063
PATTON AJ (2015)	15,002	2,197	1,027	Volatility	131	44.32383479
SYMITSI E (2018)	20,632	3,149	1,664	Models	140	56.69098716
TIAN S (2015)	11,700	1,878	923	Volatility	117	41.96801136

NING C (2015)	13,620	2,195	1,102	Volatility	202	45.94944089
LI J (2018)	20,555	2,724	1,258	Forecast	116	49.16223679
ASAI M (2017)	10,516	2,044	1,103	Volatility	111	45.97073557
BAUM CF (2021)	11,817	2,418	1,421	Model	119	52.31275645
WANG J (2020)	15,439	2,648	1,427	Volatility	167	52.42518133
ZHANG YJ (2019)	11,660	2,332	1,478	Oil	233	53.37140793
AVDULAJ K (2015)	13,875	2,710	1,456	Oil	100	52.96526661
DIMITRIADIS T (2022)	16,376	2,617	1,292	Time	108	49.83551908
LUNDE A (2016)	12,251	2,348	1,176	Covariance	70	47.5
LYOCSA S (2021)	16,526	2,458	1,184	Volatility	301	47.66466891
HOGA Y (2021)	11,348	2,076	996	Risk	145	43.63462781
LYOCSA S (2020)	15,534	2,023	863	Volatility	347	40.54816482
LI X (2020)	12,638	1,811	753	Volatility	226	37.81043674
TAKAHASHI M (2016)	16,313	2,342	1,085	Model	155	45.58594209
HORTA E (2018)	9,814	1,995	960	Forecasting	47	42.82065723
FENG Y (2015)	10,001	1,557	649	Memory	65	35.03123645
DUARTE C (2017)	9,696	1,841	916	Midas	119	41.80478945
LIU M (2021)	20,981	2,411	959	HAR	420	42.797831
EL OUADGHIRI I (2016)	17,461	2,936	1,476	Jumps	126	53.33461144
RESCHENHOFER E (2020)	12,517	2,031	970	Loss	109	43.04826898

MA F (2019)	11,398	1,970	982	Model	264	43.31986011
LI X (2020)	13,344	1,943	860	Volatility	242	40.47589661
IZZELDIN M (2019)	8,417	2,052	1,197	Forecasting	90	47.93107397
SIRIGNANO J (2019)	7,745	1,467	749	Model	116	37.70723447
GATHERAL J (2018)	12,138	2,044	954	Volatility	211	42.68352092
LIU F (2018)	10,933	2,311	1,304	Model	126	50.07102897
BAYER C (2016)	9,204	1,400	634	Volatility	104	34.61249781
ZHU X (2017)	12,250	2,217	1,247	Volatility	248	48.9424669
ZEVALLOS M (2019)	3,193	962	536	Volatility	65	31.74522866
WANG J (2021)	13,279	1,876	913	Model	245	41.73464637
CAI G (2021)	16,258	3,866	2,646	Model	152	71.7478522
ZHANG Y (2019)	8,488	1,595	797	Model	103	38.92806031
BANULESCU D	16,738	2,395	1,113	VaR	174	46.18315377
(2016)						
TIAN F (2017)	7,791	1,702	900	Volatility	111	41.42935305
YANG K (2015)	20,963	2,502	1,230	Forecast	188	48.60090725
HUANG X (2022)	7,980	1,669	948	Volatility	144	42.54595274
LIU M (2021)	17,724	2,516	1,279	GARCH	225	49.5791459
MA F (2018)	12,488	2,283	1,110	Volatility	148	46.11952886
BEN OMRANE W	12,753	2,018	880	News	219	40.95533339
(2020)	, , , ,	, , , ,				
KONG A (2021)	13,435	2,214	1,008	Jumps	115	43.90267253
PAPADAMOU S	9,868	1,844	877	Monetary	68	40.88376774
(2018)	7,000	2,077		2.20		

BUGGE SA (2016)	7,602	1,574	801	Volatility	113	39.02811512
QU H (2019)	10,306	1,793	956	Futures	98	42.72928081
PHAM BT (2022)	9,926	2,015	1,015	Connectedn ess	100	44.05829557
MA F (2018)	11,444	2,247	1,190	Volatility	212	47.78780585
PROKOPCZUK M (2016)	37,783	2,504	831	HAR-RV	1,155	39.77070026
CARTEA (2016)	8,589	1,538	729	Volatility	136	37.18703969
PLÍHAL T (2021)	14,739	2,393	1,141	Volatility	346	46.77290027
CHEN W (2020)	9,797	1,837	952	RV	209	42.63771305
CHAN JSK (2019)	11,409	2,316	1,304	Model	110	50.07102897
WANG C (2015)	9,770	2,007	1,113	Volatility	77	46.18315377
CAPORIN M (2015)	14,181	2,311	1,090	Volatility	155	45.69314725
HAMMOUDEH (2015)	7,173	1,660	924	Risk	79	41.99127819
SONG S (2021)	16,195	2,235	1,082	VaR	148	45.52150041
BERGSLI L (2022)	15,178	2,292	1,182	HAR	270	47.62355396
SHEPPARD K (2019)	16,680	2,269	1,052	Factor	211	44.87210481
SMETANINA E (2017)	20,181	2,975	1,631	GARCH	421	56.11610981
HALBLEIB R (2016)	16,789	2,581	1,304	ARFIMA	177	50.07102897
BAILEY G (2019)	14,977	2,441	1,225	Volatility	242	48.5
LYÓCSA L (2020)	10,071	2,048	1,020	Volatility	173	44.16912662
HORPESTAD JB (2019)	13,587	2,374	1,095	Volatility	250	45.80010684

TAN SK (2019)	11,638	2,085	1,154	Volatility	82	47.04425044
MA F (2018)	13,903	2,177	1,030	Volatility	157	44.38997687
RODRÍGUEZ G (2017)	23,172	3,640	1,957	ARFIMA	258	61.56396727
BERNARDI M (2017)	24,227	2,683	1,298	VaR	85	49.95341009
BOTHA B (2021)	11,910	2,163	1,023	Model	133	44.23549491
AVDULAJ K (2017)	10,031	1,879	1,022	Quantile	103	44.21338297
GROSSMASS L (2015)	18,690	2,468	1,181	Intraday	141	47.60298345
GHYSELS E (2019)	12,969	1,610	766	Returns	221	38.14396505
ABEBE TH (2020)	8,869	1,680	849	Volatility	148	40.20982892
PAUL S (2018)	14,674	2,501	1,112	GARCH	131	46.16195501
CAMPANI CH (2018)	11,679	2,238	1,130	Volatility	172	46.54208662
ROKICKA A (2021)	14,739	2,393	1,141	Volatility	346	46.77290027
CHAROENWONG B (2017)	7,244	1,462	778	Model	94	38.4493346
ASLAM F (2021)	9,056	2,110	1,161	Markets	141	47.1897292
JHA KK (2020)	6,326	1,265	654	Volatility	242	35.16973873
CHUONG LUONG CL (2018)	7,990	1,680	859	Volatility	145	40.45177921
ADASCALITEI S (2015)	3,212	980	586	Volatility	45	33.23813663
SANTOS DG (2022)	24,150	2,662	1,070	Forecasts	212	45.26283606
WANG D (2022)	8,289	1,887	1,054	Volatility	147	44.9156836

MAO X (2021)	5,760	1,283	671	Sentiment	99	35.6367302
ANDERSEN TG (2021)	21,488	2,850	1,323	Cointegrati on	115	50.44171459
BOLLERSLEV T (2021)	9,552	1,866	964	Model	96	42.9118435
LAI YS (2022)	10,010	2,198	1,293	Models	91	49.85518656
CAPORIN M (2021) WANG M (2022)	8,537	1,703	760 814	Jumps Model	86	37.99038343 39.35157989
JIN X (2021)	13,988	2,574	1,450	Covariance	93	52.85396921
					Mean	45.53162926

Regarding the articles' authorship, five authors stand out with the highest number of published journals: Ma F, Molnr P, Zhang Y, Chen L, and Lycsa L (Figure 6). Regarding relevance based on the h-index, another five authors are pointed out, especially Ma F and Zhang Y (Figure 7). When observing the number of citations, the most cited authors were Bollerslev and Lunde, with 274 and 108 citations, respectively (Figure 8).

Figure 6

Authors With the Most Articles Published About the Theme

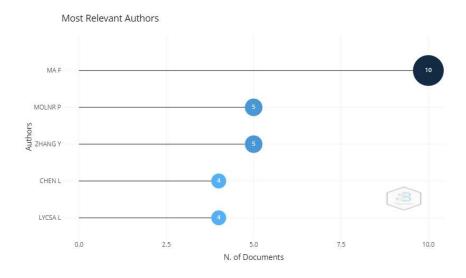


Figure 7

Authors With a Higher Impact on the Theme (Based on the H-Index)

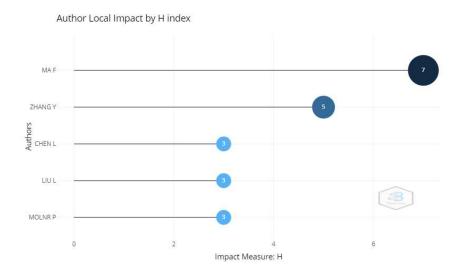
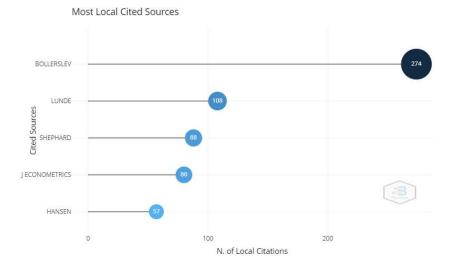


Figure 8

Most Cited Authors Working on the Theme



For Lotka (1926), a small number of authors produce many articles, and their production is equivalent to the production of all other authors together. This law is called the inverse square law (Equation 4).

$$an = a1 / n^2, n = 1, 2, 3 ...$$
 (4)

Where,

an = number of authors who published n articles

a1 = number of authors who published an article

n = number of articles published per author

The numbers provided by Equation 4 cannot be validated for the final sample of the 93 articles. However, a logical relationship indicated low frequency among authors with a more significant number of publications. The author Ma F had the highest number of publications on the subject (ten in total), representing a frequency of 0.40%. The same occurred for Molnr P, who published five articles.

Table 5

Lotka's Law

Written documents	Number of articles	%
1	197	81.70%
2	31	12.90%
3	7	2.90%
4	4	1.70%
5	1	0.40%
10	1	0.40%
Total	241	100.00%

Table 6 refers to the application of Bradford's Law (1934), indicating the journals with the highest publication incidence. The law states that few journals produce many articles, and many journals produce few articles on a given topic. For Brookes (1969), Bradford's law estimates the degree of relevance of certain academic journals that work in specific areas of knowledge. If the journals are sorted in descending order of productivity, they can be distributed into zones. For this study, these zones were divided into two parts: Zone A, identified as the most

essential to the subject, constituted by journals with more than one reference. Zone B presents journals with only one publication.

The most relevant journals based on the h-index were the International Journal of Forecasting and the Journal of Forecasting (with an impact of 6 and 5, respectively) (Figure 9).

Table 6

Bradford's law

Zone	Journal	Individual number	Accumulated number	Accumulation (%)
	JOURNAL OF FORECASTING	14	14	15%
	INTERNATIONAL JOURNAL OF FORECASTING	8	22	24%
	INTERNATIONAL REVIEW OF ECONOMICS AND FINANCE	6	28	30%
	QUANTITATIVE FINANCE	6	34	37%
	NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE	5	39	42%
A	ENERGY ECONOMICS	4	43	46%
	JOURNAL OF ECONOMETRICS	4	47	51%
	JOURNAL OF FINANCIAL ECONOMETRICS	4	51	55%
	JOURNAL OF BANKING AND FINANCE	3	54	58%
	EMPIRICAL ECONOMICS	2	56	60%
	JOURNAL OF EMPIRICAL FINANCE	2	58	62%

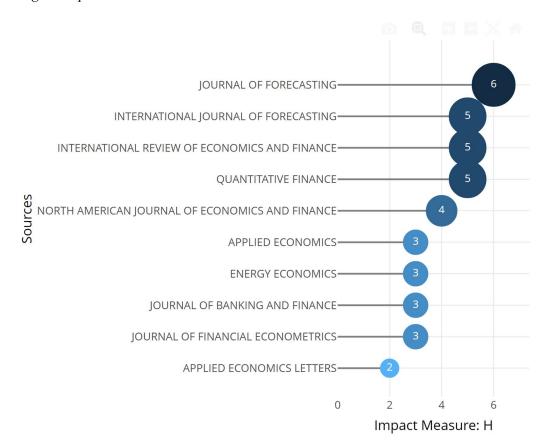
	JOURNAL OF RISK	2	60	65%
	JOURNAL OF RISK AND FINANCIAL MANAGEMENT	2	62	67%
	STUDIES IN NONLINEAR			
	DYNAMICS AND	2	64	69%
	ECONOMETRICS			
	ANNUAL REVIEW OF	1	65	70%
	FINANCIAL ECONOMICS	1	65	70 70
	APPLIED ECONOMICS	1	66	71%
	ECONOMETRIC REVIEWS	1	67	72%
	ECONOMETRICA	1	68	73%
	ECONOMETRICS	1	69	74%
	ECONOMIC MODELLING	1	70	75%
	ECONOMIC RESEARCH- EKONOMSKA ISTRAZIVANJA	1	71	76%
В	ESTUDOS ECONOMICOS	1	72	77%
	EUROPEAN JOURNAL OF FINANCE	1	73	78%
	FINANCE RESEARCH LETTERS	1	74	80%
	GLOBALIZATION AND HIGHER			
	EDUCATION IN ECONOMICS	1	75	81%
	AND BUSINESS			
	ADMINISTRATION - GEBA 2013			
	INTERNATIONAL JOURNAL OF FINANCE AND ECONOMICS	1	76	82%

INTERNATIONAL JOURNAL OF			
FINANCIAL STUDIES	1	77	83%
INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS	1	78	84%
INTERNATIONAL REVIEW OF	1	79	85%
FINANCIAL ANALYSIS	1	19	03 / 0
JOURNAL OF APPLIED ECONOMICS	1	80	86%
JOURNAL OF ASIAN ECONOMICS	1	81	87%
JOURNAL OF BUSINESS \&	1	92	000/
ECONOMIC STATISTICS	1	82	88%
JOURNAL OF BUSINESS AND ECONOMIC STATISTICS	1	83	89%
JOURNAL OF FUTURES MARKETS	1	84	90%
PACIFIC BASIN FINANCE JOURNAL	1	85	91%
PROCEEDINGS - 2021			
INTERNATIONAL CONFERENCE	1	86	92%
ON COMPUTER, BLOCKCHAIN AND FINANCIAL	1	00	9 470
DEVELOPMENT, CBFD 2021			
RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE	1	87	94%

RESOURCES POLICY	1	88	95%
REVIEW OF ECONOMICS AND STATISTICS	1	89	96%
REVIEW OF FINANCIAL STUDIES	1	90	97%
REVISTA ECONOMIA	1	91	98%
SOUTH AFRICAN JOURNAL OF ECONOMICS	1	92	99%
STUDIES IN ECONOMICS AND FINANCE	1	93	100%

Figure 9

Higher Impact Journals

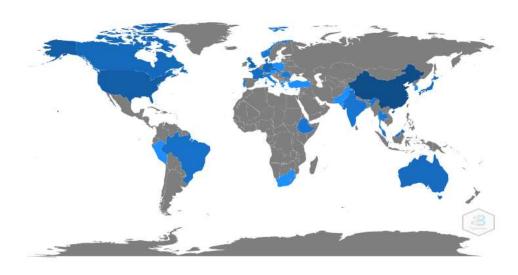


Finally, we analyzed the number of articles considering the country of the first author's university. The United States and China had the most published articles, while Latin American countries and African countries had only a few studies on the subject. This scenario is similar regarding the number of citations, with a prominence of the US, China, and the UK.

Figure 10

Articles per Country of the First Author's University

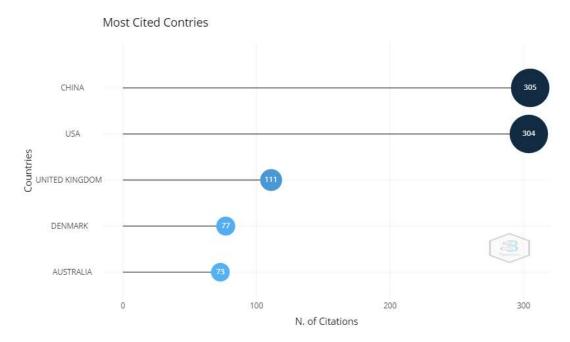
Country Scientific Production



Note: Darker colors represent more articles published.

Figure 11

Countries with more citations



Systematic review

The systematic review seeks to identify gaps in knowledge related to the topic addressed in this study. Therefore, in Step 6 of Item 3, a matrix of categories and subcategorization was presented (Table 3) with definitions. For each article of the sample, we identified up to five subcategories per category. The frequency was determined based on the total of subcategories and not the total of articles.

Figure 12 highlights the most and least frequent subcategories to be prioritized in future research. For category 1 – "main theme/focus of the study," what stood out the most in the final sample was the "use of traditional predictive models" (40%), with an opportunity for "Macroeconomic variables influencing the volatility of the asset" (12%). As for "theories related to the hypotheses," the "study of volatility" had the highest recurrence (53%), while the "study of events" was promising and little explored (4%).

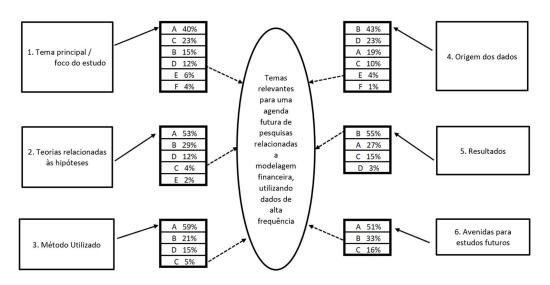
Regarding the category "method," the "autoregressive model" was the most approached by publications (59%), and for the subcategory "analysis of jump," there was a lower occurrence (5%). Given its theoretical basis, it is relevant to consider exploring further the topic "analysis of jump" within the theme addressed in this research. For the "data sources" category, "The United

States and Canada" was the subcategory that stood out (43%), with an opportunity to deepen research for "Latin America" (4%).

Within the "results" category, most of the new (55%) or existing (27%) models and hypotheses were confirmed. Finally, regarding the perspective for future studies, the results showed the relevance of the subcategories in the following order: "alternative to improve the model" (51%); "expanding the use of the model for new purposes" (33%); and "Using the models in new samples" (16%).

Figure 12

Analysis of Categories and Subcategories to Identify a Lack of Knowledge



Note:

Subcategory with the higher frequency in each category:

Subcategory to be prioritized in a future research agenda:

Conclusion

The development of the financial market favors the emergence of tools focused on managing new information, and models assimilating high-frequency data are important to improve economic agents' decision-making. This study conducted bibliometric analysis and systematic review to identify the journals that published articles addressing the topic, examining

studies that used high-frequency data. The research collected articles from Scopus and WoS databases, published between January 2015 and August 2022.

The research results validate Zipt's law regarding the use of keywords, Lotka's law referring to authorship, and Bradford's law about the leading journals publishing articles on the theme. Also, the software Biblioshiny was used to identify the main keywords and level of relationship among these terms within the journals, noting that in many cases, these terms are repeated in the different publications, highlighting their relevance within the subject. As for authorship, it was possible to observe the prominent scholars producing on the theme, considering the frequency they were cited in the articles of the sample.

The analysis of the journals pointed out the relevance of these publications in developing the theme. Most of the articles were produced by authors affiliated with universities in North America and Western Europe, which also have more data available, facilitating this type of analysis.

After the bibliometric analysis, a systematic review of the articles selected was carried out, defining their main themes, theories, methods, data origin, results, and avenues for further research. This type of analysis is important in determining the main gaps in the literature. The method applied suggests a reflection on the influence of the macroeconomic variables on the volatility of assets, as well as deepening the analysis of jump, supported by the availability of high-frequency data.

As for the countries of the first authors' universities, the study demonstrated that countries in Latin America could potentially increase the number of studies using high-frequency data to price financial assets, which are only a few currently. This research seeks to encourage and support new research related to the use of high-frequency data to improve the predictability of financial assets. The analysis offered in this research aims to clarify the main gaps and topics that must be addressed in a future research agenda.

References

- Alexander, C.O. (2008). Market Risk Analysis: Quantitative Methods in Finance, vol. 1. New York, John Wiley and Sons.
- Andersen, T., & Bollerslev, T. (1997). Intraday periodicity and volatility persistence in financial markets. Journal of Empirical Finance 4, 115–158.
- Andersen, T., & Bollerslev, T. (1998). DM-dollar volatility: intraday activity patterns, macroeconomic announcements and longer-run dependencies. *Journal of Finance*, 53, 219–265.
- Andersen, T., Bollerslev, T., & Lange, S. (1999). Forecasting financial market volatility: sample frequency vis-à-vis forecast horizon. *Journal of Empirical Finance*, 6, 457–477.
- Andersen, T., Bollerslev, T., Diebold, F. X., & Ebens, H. (2001). The distribution of realized stock return volatility. *Journal of Financial Economics*, 61, 43–76.
- Andersen, T., Bollerslev, T., Diebold, F. X., & Labys, P. (2001). The distribution of realized exchange rate volatility. *Journal of the American Statistical Association*, 96, 42–55.
- Andersen, T., Bollerslev, T., & Diebold, F. X. (2002). Parametric and nonparametric volatility measurement. In: Hansen, L.P., Aït-Sahalia, Y. (Eds.), Handbook of Financial Econometrics. Amsterdam, North Holland.
- Andersen, T., Bollerslev, T., Diebold, F. X., & Labys, P. (2003). Modeling and forecasting realized volatility. *Econometrica*, 71, 529–626.
- Andersen, T., Bollerslev, T., & Meddahi, N. (2005). Correcting the errors: volatility forecast evaluation using high-frequency data and realized volatilities. *Econometrica*, 73, 279–296.
- Andersen, T., Bollerslev, T., Christoffersen, P., & Diebold, F. X. (2006). Volatility and correlation forecasting. In: Elliott, G., Granger, C.W.J., & Timmermann, A. (Eds.), Handbook of Economic Forecasting. North Holland Press, Amsterdam.

- Angelidis, T., & Degiannakis, S. (2008). Volatility forecasting: intra-day vs. inter-day models. *Journal of International Financial Markets, Institutions and Money*, 18, 449–465.
- Black, F. (1975). Fact and fantasy in the use of options. Financial Analysts Journal, 31, 36-72.
- Boatright, J. R. (2010). In John R. Boatright (Ed.). Ethics in finance in finance ethics: critical issues in theory and practice (Robert W. Kolb Series) (Chapt. 1, pp. 3-20). Chichester: Wiley.
- Bollerslev, T., Engle, R. F., & Nelson, D. (1994). ARCH models. In: Engle, R.F., McFadden,
 D. (Eds.), Handbook of Econometrics, vol. 4. Elsevier Science, Amsterdam, pp. 2959–3038.
- Brookes, B. C. (1969). Bradford's law and the bibliography of science. *Nature*, 222, 953-956
- Corsi, F. (2009). A simple approximate long-memory model of realized volatility. *Journal of Financial Econometrics*, 7 (2), 174–196.
- Corsi, F., Mittnik, S., Pigorsch, C., & Pigorsch, U. (2008). The volatility of realised volatility. *Econometric Reviews*, 27 (1–3), 46–78.
- Fehr, E., & Schmidt, K. M. (1999). A theory of fairness, competition, and cooperation. *Quarterly Journal of Economics*, 1143(3), 817-868.
- Gatev, E., Goetzmann, W. N., & Rouwenhorst, K. G. (2006). Pairs trading: Performance of a relative value arbitrage rule. *Review of Financial Studies*, 19, 797-827.
- Ghysels, E., & Sinko, A. (2006). Comment. *Journal of Business and Economic Statistics*, 24, 192–194.
- Giot, P., & Laurent, S. (2004). Modelling daily value-at-risk using realized volatility and ARCH type models. *Journal of Empirical Finance*, 11, 379–398.
- Granger, C. W. J. (1980). Long memory relationships and the aggregation of dynamic models. *Journal of Econometrics*, 14, 227–238.

- Granger, C. W. J., & Joyeux, R. (1980). An introduction to long memory time series models and fractional differencing. *Journal of Time Series Analysis*, 1, 15–39.
- Hansen, P.R. (2005). A test for superior predictive ability. *Journal of Business and Economic Statistics*, 23, 365–380.
- Hansen, P. R., & Lunde, A. (2005). A realized variance for the whole day based on intermittent high-frequency data. *Journal of Financial Econometrics*, 3 (4), 525–554.
- Hansen, P. R., & Lunde, A. (2006). Consistent ranking of volatility models. *Journal of Econometrics*, 131, 97–121.
- Heath, E. (2010). Fairness in financial markets. In John R. Boatright (Eds.), Finance ethics: Critical issues in theory and practice (Robert W. Kolb Series) (Chapt. 9, pp. 163-178). Hoboken: Wiley.
- Kahneman, D., Knetsch, J. L., & Thaler, R. (1986a). Fairness as a constraint on profit seeking: Entitlements in the market. *American Economic Review*, 76, 728-741.
- Kahneman, D., Knetsch, J. L., & Thaler, R. (1986b). Fairness and assumptions of economics. *Journal of Business*, 59, S285-S300.
- Koopman, S., Jungbacker, B., & Hol, E. (2005). Forecasting daily variability of the S&P100 stock index using historical, realised and implied volatility measurements. *Journal of Empirical Finance*, 12, 445–475.
- Lotka, A. J. (1926). The frequency distribution of scientific productivity. *Journal of the Washington Academy of Sciences*, 317-323.
- Lyócsa, S., & Todorova, N. (2020). Trading and non-trading period realized market volatility:

 Does it matter for forecasting the volatility of US stocks? *International Journal of Forecasting*, 36 (2), 628-645.

- McAleer, M., & Medeiros, M. C. (2008a). A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries. *Journal of Econometrics*, 147, 104–109.
- McAleer, M., & Medeiros, M. C. (2008b). Realized volatility: a review. *Econometric Reviews*, 27 (1), 10–45.
- Müller, U. A., Dacorogna, M.M., Davé, R.D., Pictet, O.V., Olsen, R.B., & Ward, J.R. (1993).
 Fractals and intrinsic time a challenge to econometricians. In: International AEA
 Conference on Real Time Econometrics, 14–15 October 1993, Luxembourg.
- Saez, M. (1997). Option pricing under stochastic volatility and stochastic interest rate in the Spanish case. *Applied Financial Economics*, 7, 379–394.
- Sun, E. W., Chen, Y-T., & Yu, M-T. (2015). Generalized optimal wavelet decomposing algorithm for big financial data. *International Journal of Production Economics*, 165, 194-214.
- Tabibnia, G., Satpute, A. B., & Lieberman, M. D. (2008). The sunny side of fairness. *Psychological Science*, 19(4), 339-347.
- Thomakos, D. D., & Wang, T. (2003). Realized volatility in the futures markets. *Journal of Empirical Finance*, 10, 321–353.
- Walsh, D. M., & Tsou, G.Y-G. (1998). Forecasting index volatility: sampling interval and non-trading effects. *Applied Financial Economics*, 8, 477, 485.
- Zevallos, M. (2019). A Note on Forecasting Daily Peruvian Stock Market Volatility Risk Using Intraday Returns. *Economia*, 42(84), 94-101.