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Abstract 

This work presents significant contributions to the theoretical understanding of the Brunauer-Emmett-Teller (BET) 
isotherm applied to liquids. An analytical solution has been developed using multiple linear regression from the 
rearrangement of the BET equation into a quadratic form. A profound analysis of the BET equation revealed intriguing 
relationships, including equations to determine the concentration at which the adsorption capacity reaches its maximum, 
the concentration at the inflection point of the isotherm, and the concentration resulting in 50% coverage of the adsorbent 
surface. The analytical solution was tested against data from the literature, demonstrating its capability to provide results 
very close to those reported in the original studies, which were obtained using numerical methods. This validation 
underscores the accuracy and reliability of the proposed analytical approach. By offering a precise and computationally 
efficient alternative, comparable to numerical methods, this analytical solution advances the application of the BET 
isotherm in liquid systems, potentially enhancing the modeling and prediction of adsorption behaviors in various scientific 
and industrial contexts. The findings contribute to a deeper theoretical insight and practical utility, paving the way for 
more effective and simplified analysis of adsorption phenomena in liquid-phase systems. 
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1. Introduction 

The BET (Brunauer, Emmett, and Teller) 
isotherm, developed in 1938, represents a 
cornerstone in adsorption science, providing a 
robust framework for understanding the behavior of 
adsorbate molecules on solid surfaces [1]. The 
model assumes a homogenous surface and 
monolayer adsorption, making it particularly useful 
for studying gas-solid interactions. By analyzing the 
adsorption data, the BET isotherm allows for the 
determination of crucial parameters such as the 
monolayer capacity (related to surface area) and the 
heat of adsorption [2,3]. 

One of the key strengths of the BET isotherm is 
its versatility. It can be applied to a wide range of 
adsorbates and adsorbents, making it a valuable tool 
in various fields, including material science, 
environmental science, and catalysis [4]. The model 

has been instrumental in characterizing the surface 
properties of materials such as activated carbons, 
zeolites, and metal oxides [3]. 

While originally developed for gas-phase 
adsorption, researchers have adapted the BET 
equation for use in liquid-phase adsorption studies. 
Ebadi et al. [5] proposed a modified form of the BET 
isotherm equation specifically tailored for liquid-
phase adsorption. However, unlike the gas-phase 
BET equation, which contains two degrees of 
freedom, the liquid-phase BET equation has three 
degrees of freedom. This additional complexity 
arises from the interactions between the adsorbate 
molecules in the liquid phase, leading to a non-linear 
form of the equation [5]. 

Despite the challenges posed by its non-linear 
nature, the modified BET equation for liquid-phase 
adsorption remains a valuable tool for studying 
adsorption phenomena in liquid systems. Advances 
in computational techniques and data analysis have 



 
 

facilitated the application of numerical methods to 
solve the non-linear BET equation, enabling 
researchers to obtain accurate estimates of 
adsorption parameters and deepen their 
understanding of adsorption processes in liquid 
systems. 

Throughout this work, the derivations of the 
proposed equations will be presented, discussing 
their applicability in explaining the experimental 
data, and exploring the implications of their 
parameters for understanding adsorption processes 
in solid-liquid systems. This contribution aims not 
only to expand the repertoire of available theoretical 
tools but also to enrich the general understanding of 
adsorption phenomena at solid-liquid interfaces, 
promoting significant advances in the practical 
applications of these processes. 

The objective of this work is not to compete with 
numerical solutions in terms of applicability and 
precision in determining the coefficients of the 
isotherms, but rather to provide a deeper insight into 
the physical meaning and implications of the terms 
in the equation that describes the theory. 

2. Derivation of the analytical solution 

This derivation starts from the BET equation 
adapted for liquids by Ebadi and coworkers, 
presented in Equation 35 in the original article [5], 
written below: 
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Once the BET equation adapted for liquids has 
three degrees of freedom (qm, KS and KL) cannot be 
written in the linear form, however it does not mean 
that there is no analytical solution. 

Henceforth in the text, we will replace the 
symbology term KL, proposed by Ebadi, by KM. This 
will serve to avoid confusion with the Langmuir 
constant (KL) that will also appear during the 
development of this work. Becoming KS for denote 
single-layer constant and KM for multi-layer 
constant. 

Observing the numerator in the BET equation, 
we see that the expression is quadratic with respect 
to Ceq. 
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Performing the polynomial expansion, we obtain: 
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Rewriting the equation: 
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Now, we can plot a graph with Ceq/q vs Ceq that 
should result in a parabola like graph representing 
the quadratic function. 

The quadratic function: 

 
2y ax bx c= + +  (5) 

can be transformed to a linear domain, using 
2z x= : 

 y az bx c= + +  (6) 

The linear regression can be solved analytically 
using linear algebra: 
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Where θ is an n by 1 vector representing all the 
coefficients of interest, X is a m by n matrix, 
composed of m samples and n = 3 variables (Ceq

2, 
Ceq, 1), and the symbol y is a m by 1 vector 
representing the target values (Ceq/q). 

Once the coefficients a, b and c, of the equation 
5 are determined, the solution for parameters in 
equation 4 follows: 
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Normalizing equations over c: 
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Isolating KM from equation 12: 
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and substituting in equation 11, we obtain: 
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Performing the polynomial expansion: 
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Rewriting the equation 13, we obtain: 

 1

2

 
= − 

 
M S

b
K K

c
  (19) 

Rewriting the equation 10: 
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Equations 18, 19 and 20 demonstrate how to 
obtain the analytical solutions for the three BET 
degrees of freedom KS, KM, and qm, respectively, 
starting from a regression of the quadratic function 
that describes Ceq/q vs Ceq. 

It is important to note that the formation of the 
parabola is a mathematical implication of the Ceq/q 
vs Ceq plot for multilayer adsorption according to the 
BET model. This property presents an interesting 
characteristic: the possibility of visually evaluating 
the experimental adsorption points and/or how 
closely the data fit the BET model. In other words, 
if the data do not result in a concave parabolic graph, 
the adsorption process may not be suitable for BET 
modeling or may signal some deviation from the 
idealized BET model. 

Furthermore, it is possible to identify potential 
outlier candidates. Values that do not fit the graph 
can be easily identified. Ideally, these points should 
be experimentally repeated in order to verify their 
reproducibility, confirming whether there is any 
deviation from the expected BET model. 

Exploring the deeper aspects of the equations 
(Ceq when q = qm): 

We can derive an equation that determines the 
Ceq for a complete monolayer qm, based on the 
values of KM and KS. Based on equation 3, when q 
= qm the following equality must be truth: 
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Therefore, the solution for Ceq is given by the 

solution of the quadratic function: 
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Once the term (KM − KS) will always be < 0, and 

consequently the ratio KS/KM always > 1, the 

positive solution is given by: 
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The term (KM > KS) occurs in Type III isotherms, 
implying the non-formation of a monolayer over the 
entire surface. 

3. Testing Equations for Experimental Data 

Next, some isotherms from the literature that 
have already been modeled according to the BET 
isotherm for liquids were selected (Table 1). The 
analytical solutions proposed in this work was then 
tested to verify their accuracy against the data 
reported in the literature. 

The isotherm data from the literature were 
extracted from the graphs using the 
WebPlotDigitizer program, version 4.6 [6]. 

Table 1. Comparison between the data of 
isotherms modeled with the BET equation for the 
liquid phase (literature data) and the parameters 
calculated from the analytical solution developed in 
this work (bold values). 

qm KS KM Ref. 

0.52a 0.90b 0.0045b [7] 

(0.58) (0.36) (0.0039) This work 

103c 1.169b 0.031b [8] 

(102) (1.187) (0.031) This work 

110.1d 0.0736e 0.0220e [9] 

(110.0) (0.0739) (0.0220) This work 

89.66d 0.0911e 0.0218e [9] 

(88.87) (0.0940) (0.0219) This work 

71.3c 0.567b 0.0342b [10] 

(71.4) (0.581) (0.0343) This work 
a: mg m−2     b: L mg−1 c: mg g−1      d: g L−1 e: L g−1 

The data obtained in Table 1 demonstrate a high 
capacity of the analytical solution to reproduce the 
results given by the numerical methods used in the 
literature, validating the usefulness of this approach. 
Allowing for the exploring the additional data 



 
 

extracted from the equations, as the inflection point 
and q = qm pont, as shown in the Figure 1. 

 

Figure 1. Adsorption isotherm of ritonavir on SBA-
15 in a 50 mM phosphate buffer, pH 6.8, at 37 °C 
adjusted by the BET model for liquids. 
Experimental data published by Dening et al. [8] 

Analyzing the point where q = qm, it is evident 
that this point represents solely a mathematical 
relationship between the total adsorbed quantity and 
the amount adsorbed necessary for monolayer 
formation qm. The process of multilayer formation 
occurs from the beginning of the isotherm, albeit in 
smaller proportions. When the total adsorbed 
quantity equals qm, some of the adsorbate has 
already been in multilayer form, and the adsorbent 
surface has not yet been fully covered. 

4. Conclusions 

The analytical solution for solving the three-
parameter isotherm proved to be effective. A 
thorough analysis of the BET equation for the liquid 
phase led to the discovery of other interesting 
relationships. 

The proposed equation was compared to 
experimental data from adsorption isotherms for 
various solid-liquid systems, demonstrating 
excellent agreement. The ability of the equations to 
describe adsorption under different experimental 
conditions underscores its robustness and 
versatility. 
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