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1 Introduction

Predicting the cross-section of stock returns and its implications for portfolio decisions is a

core challenge in empirical asset pricing. While firm characteristics play a crucial role in ex-

plaining return variation, the question of which to prioritize remains unresolved, particularly

in high-dimensional settings. Empirical approaches often focus on either selecting a subset of

characteristics with the strongest explanatory power or acknowledging that all characteristics

may contribute to some extent, even if their individual impacts are small.

The choice between a sparse model (emphasizing variable selection) and a dense model (em-

phasizing ridge-type shrinkage) extends beyond issues of interpretability, carrying significant

implications for asset pricing. For example, DeMiguel et al. (2020) show that incorporating

transaction costs can materially influence the number of characteristics investors should con-

sider when maximizing mean-variance portfolio utility. Differently, Bryzgalova et al. (2023)

highlight that pervasive model uncertainty can lead to an incomplete understanding of the

stochastic discount factor (SDF) in equity markets if not properly accounted for.

This paper investigates the economic trade-off between variable selection and shrinkage

– between sparse and dense models – when designing optimal portfolio policies in high di-

mensions. Specifically, we leverage the flexibility of a heavy-tailed Bayesian prior to capture

the sensitivity of portfolio weights to a large set of firm characteristics within the frame-

work of a parametric portfolio rule, as in Brandt et al. (2009). This approach connects to

broader economic theory, as the first-order condition for an investor’s optimal portfolio under

unconstrained mean-variance utility is equivalent to the SDF (e.g., Kozak et al., 2020).

We assume a priori that each characteristic influences investors’ utility with a certain prob-

ability q. If a firm characteristic is relevant, its effect θj on the portfolio policy is modeled

using a Student-t distribution with ν degrees of freedom and variance scaled by γ2. Smaller

2



values of γ2 impose greater shrinkage on θj, while the thickness of the prior tails, controlled by

ν, governs the balance between sparsity and ridge-type shrinkage in determining the sensitiv-

ity of portfolio weights to firm characteristics. We explore different tail assumptions, ranging

from very heavy tails (e.g., ν = 4) to those approaching a Normal distribution (e.g., ν = 100).

We also propose an economic rationale to calibrating ν based on aggregate transaction costs.

Our empirical analysis examines 131 firm characteristics from Chen and Zimmermann

(2021) across an unbalanced panel of 21,418 stocks spanning January 1980 to December

2023. A heavier-tailed prior reduces model uncertainty, concentrating portfolio exposures at

the intensive margin – relatively larger allocations to fewer characteristics. In contrast, a thin-

tailed prior induces greater shrinkage, distributing exposures at the extensive margin with

smaller allocations across a broader set of characteristics. These differences have important

implications for mean-variance utility, particularly when accounting for trading frictions.

To demonstrate this, we compare the performance of portfolios derived from various prior

specifications against an equal-weight benchmark (e.g., DeMiguel et al., 2009) and a standard

parametric portfolio policy based on size, value, and momentum, as in Brandt et al. (2009).

Our findings show that priors prioritizing ridge-type shrinkage over sparsity, when predicting

individual stock returns based on firm characteristics, deliver superior out-of-sample economic

performance, especially in the presence of transaction costs.

These results are robust to a series of additional empirical tests. Drawing on the intuition

of Avramov et al. (2023a), we evaluate portfolio policies derived from different priors under

various economic restrictions. First, we construct optimal portfolios using a restricted universe

of common stocks (CRSP share codes 10 and 11) listed exclusively on the NYSE, while also

imposing ex-post portfolio constraints such as limited leverage and no short sales. Second,

we assess whether the profitability of portfolios under different priors is more pronounced

during high limits-to-arbitrage market states, including periods of high volatility and tight
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financial conditions. The results indicate that, to the extent firm characteristics predict cross-

sectional stock returns, the outperformance of our Bayesian parametric portfolios persists

when investing in relatively cheap-to-trade stocks and during periods of lower volatility and

higher market liquidity. This suggests that portfolio profitability is not driven by difficult-to-

arbitrage stocks or high limits-to-arbitrage market conditions.

We further evaluate parametric portfolio policies based on alternative regularization priors,

such as the Bayesian lasso (Park and Casella, 2008) and the horseshoe (Carvalho et al.,

2009), as well as Bayesian variable selection methods like the mixture of normals proposed by

George and McCulloch (1993) and the Normal spike-and-slab of Giannone et al. (2021). This

analysis provides insights into the trade-off between shrinkage and variable selection beyond

our proposed prior structure.

Overall, the findings reinforce our main conclusion: addressing model uncertainty through

stricter variable selection results in extreme, under-diversified portfolio allocations with sub-

optimal out-of-sample performance. In contrast, a less restrictive approach that induces

greater ridge-type shrinkage produces more diversified, cost-effective portfolios better aligned

with mean-variance efficiency. These results underscore the risks of over-relying on variable

selection methods. Disregarding evidence highlighting the role of model uncertainty and

the importance of shrinkage as a regularization tool risks creating the “illusion” that more

interpretable, sparsity-inducing approaches can deliver superior economic outcomes.

It is important to acknowledge both the strengths and limitations of our approach. The

prior formulation we adopt encompasses popular dimension reduction methods. For instance,

setting q = 1 and a large ν is equivalent to a diffuse ridge prior, which can be interpreted as

a regression on the principal components of the characteristics, applying less shrinkage to the

more significant components (e.g., Marquardt, 1970; Smith and Campbell, 1980; Bańbura
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et al., 2015; De Mol et al., 2024).1 This highlights the generality of our approach, which

accommodates scenarios where the cross-section of stock returns is driven by a few common

components. Another important advantage is that our Bayesian inferential procedure fully

characterizes the uncertainty surrounding the share of non-zero weight sensitivities, allowing

this uncertainty to be estimated jointly with the identification of relevant characteristics.

However, a key limitation of our framework is its potential underperformance relative to

non-linear methods if the linear parametric model fails to capture the full relationship between

stock returns and firm characteristics. Our primary focus, however, is on understanding

the trade-off between ridge-type shrinkage and sparsity from a high-dimensional portfolio

perspective. In this context, adopting a complex non-linear modeling framework would likely

hinder the economic interpretability of the results without delivering substantial benefits for

the scope of this paper. That said, our framework can be extended to incorporate non-linear

transformations of the characteristics, introducing additional flexibility, as suggested in Kelly

et al. (2024).

On a separate note, it is important to emphasize that the definition of sparsity is not

invariant to transformations of the characteristics. For instance, a model may be sparse

in the rotated space of the characteristics if only a few principal components are relevant

for prediction. By contrast, it may appear dense in the “natural” space of the original

characteristics, since a small number of common components can combine all of them (e.g.,

Chernozhukov et al., 2017). In this paper, we focus on the economic trade-off between variable

selection and ridge-type shrinkage in the original space of untransformed characteristics. The

primary motivation for this choice is to facilitate comparison with the literature on lasso-

type variable selection, which typically assumes sparsity in the original characteristics (e.g.,

Chinco et al., 2019; Freyberger et al., 2020). More importantly, analyzing sparsity patterns

1Conversely, setting q = 1 and a small ν yields a conventional diffuse Student-t shrinkage prior, which
lacks variable selection properties (e.g., Carvalho et al., 2009; Armagan and Zaretzki, 2010).
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in the original space of characteristic-managed portfolios is more coherent with the optimal

parametric portfolio choice framework proposed in Brandt et al. (2009).

Our work contributes to a large literature exploring the cross-sectional variation of stock

returns based on firm characteristics, including Hou et al. (2015); Harvey et al. (2016); Green

et al. (2017b); Kelly et al. (2019); Freyberger et al. (2020); Haddad et al. (2020); Kozak et al.

(2020); Chen and Zimmermann (2021); Bryzgalova et al. (2023), among others. Our analysis

is closely related to DeMiguel et al. (2020) and Bryzgalova et al. (2023).

Unlike DeMiguel et al. (2020), we leverage the flexibility of a heavy-tailed Bayesian prior,

allowing for an explicit investigation of the trade-off between variable selection and shrinkage

in shaping optimal portfolio compositions. In contrast to Bryzgalova et al. (2023), we focus

on testing a high-dimensional parametric portfolio policy in an out-of-sample setting while

explicitly accounting for transaction costs.

A second strand of literature to which we contribute involves the use of Bayesian methods

in empirical asset pricing. Bayesian tools have been extensively applied in various domains,

including asset allocation (e.g., Pettenuzzo et al., 2014), model selection (e.g., Pástor and

Stambaugh, 2000; Chib et al., 2020; Avramov et al., 2023b), performance evaluation (e.g.,

Busse and Irvine, 2006; Harvey and Liu, 2019), return predictability (e.g., Avramov, 2002),

and asset pricing tests (e.g., Jensen et al., 2022), among others.

Our empirical framework leverages the flexibility of a heavy-tailed spike-and-slab specifi-

cation, as in Fava and Lopes (2021), which extends the normal spike-and-slab approach of

Giannone et al. (2021). Unlike these studies, we focus on examining the out-of-sample eco-

nomic trade-off between sparsity and shrinkage in constructing parametric portfolios based

on a multitude of firm characteristics.
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2 Parametric portfolio policy

Consider Nt stocks available at a given time t. Each stock i has an excess return ri,t+1 over

the period [t, t + 1] and a k-dimensional vector of stock characteristics x̂i,t =
(
x̂1
i,t, . . . , x̂

k
i,t

)
observed at time t. The investor’s objective is to choose the optimal portfolio weights wt =

(w1,t, . . . , wNt,t)
⊤ to maximize the utility of the portfolio return rp,t+1 = w⊤

t rt+1.

Following the approach in Brandt et al. (2009), we define the optimal portfolio choice as

a linear function of firm characteristics:

wt = wb
t +

1

Nt

X̂tθ, (1)

where wb
t represents the benchmark portfolio allocation, X̂t is the Nt × k matrix of stan-

dardized characteristics, and θ⊤ = (θ1, . . . , θk)
⊤ is the vector of “sensitivities” that tilts the

portfolio toward characteristics that enhance investor utility. The matrix X̂t is standardized

cross-sectionally to have zero mean and unit variance across all stocks, ensuring that devia-

tions from the benchmark portfolio sum to zero (e.g., DeMiguel et al., 2020). This implies

that the portfolio weights sum to one as long as the benchmark weights do. The normalization

by 1/Nt ensures the portfolio rule can accommodate an arbitrary number of stocks.2

The coefficients θ1, . . . , θk are constant across assets, meaning that the optimal portfolio

depends solely on the characteristics rather than on the stocks themselves. The return on the

parametric portfolio at time t+ 1 can therefore be expressed as:

rp,t+1 = w⊤
t rt+1 = rbt+1 + θ⊤ft+1, (2)

2Doubling the number of stocks without changing the cross-sectional distribution of the characteristics
would result in twice as aggressive allocations, even though the underlying investment opportunities remain
unchanged.
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where ft+1 =
1
Nt
X̂⊤

t rt+1 represents the returns on the characteristic-managed portfolios, and

rbt+1 = wb,⊤
t rt+1 is the return on the benchmark portfolio.

Equation (2) effectively rotates the investment universe from individual stocks to the space

of characteristics. Thus, the complex problem of investing in a large number of stocks reduces

to estimating the contribution of each characteristic-managed portfolio to investor utility

beyond the benchmark allocation (e.g., Kelly and Xiu, 2023). We use an equally weighted

portfolio as the benchmark (wb
i,t = 1/Nt ∀i, t), motivated by empirical evidence suggesting its

long-term outperformance over other benchmarks, such as the value-weighted portfolio (see,

e.g., DeMiguel et al., 2009).

We assume that the investor optimizes mean-variance utility, which allows for determining

the vector θ1, . . . , θk through a linear projection of characteristic-managed portfolios onto the

benchmark allocation return.3 Specifically, the investor maximizes the expected utility:

max
θ

1

T

T−1∑
t=0

u (rp,t+1) =
1

T

T−1∑
t=0

[
rbt+1 + θ⊤ft+1 −

ζ

2

(
rbt+1 + θ⊤ft+1

)2]
, (3)

where ζ denotes risk aversion. The first-order condition for maximizing utility leads to:

θ̂ =
1

ζ

(
1

T

T−1∑
t=0

f⊤
t+1ft+1

)−1

1

T

T−1∑
t=0

ft+1

(
1− ζrbt+1

)
=
(
F⊤F

)−1
F⊤Y, (4)

where F is the T×k matrix of characteristic-managed portfolio returns scaled by risk aversion,

and Y = 1− ζRb, with 1 and Rb representing T × 1 vectors of ones and benchmark returns,

respectively. As a result, θ̂ is equivalent to a least-squares projection of Y onto F , allowing

the optimal portfolio to implicitly account for expected returns, variances, and covariances

on characteristic-managed portfolios as they affect investor utility (e.g., Britten-Jones, 1999).

3Kandel and Stambaugh (1996) show that if only the first two conditional moments matter for portfolio
choice, the optimal investment rule under a power utility is proportional to a mean-variance utility rule.
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2.1 A spike-and-slab prior with heavy tails

The existing literature suggests that the number of characteristics containing potentially use-

ful information on stock returns is large (see Chen and Zimmermann, 2021, and references

therein). Several regularization and dimension reduction techniques have been proposed,

including ridge regression (e.g., Kozak et al., 2020), principal components analysis (e.g., Had-

dad et al., 2020), and the lasso (e.g., Freyberger et al., 2020), to address the challenges of

overfitting in such high-dimensional settings.

We adopt the mixture prior proposed by Fava and Lopes (2021) (henceforth GLP-t), which

extends the framework of Giannone et al. (2021) by relaxing the assumption of normality for

the non-negligible entries in θj, j = 1, . . . , k (the slab) while retaining a Dirac mass at zero

for negligible entries (the spike). Specifically, the prior on θj, j = 1, . . . , k is defined as:

θj | σ2, γ2, q ∼

{
Tν (0, σ

2γ2) with probability q,

0 with probability 1− q.
(5)

Here, ν represents the degrees of freedom of the Student-t distribution, q is the probability of

including a given characteristic, and γ2 controls the degree of shrinkage applied to the weight

tilts θj. This setup ensures that each θj is either zero with probability 1− q or drawn from a

Student-t distribution with variance V (θj) =
ν

ν−2
σ2γ2 with probability q.

The remaining priors for q, γ2, and σ2 follow Giannone et al. (2021). Specifically, we

assume p(σ2) ∝ 1/σ2 and specify the marginal prior for q ∼ Beta(a, b), representing the

proportion of characteristics an investor considers. The prior distribution for the shrinkage

parameter γ2 is implied by the function:

γ2 =
1

kvxq
· R2

1−R2
(6)
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where k is the number of characteristics, vx = E
[
σ̂2
j

]
, and σ̂2

j represents the sample variance

of the j-th managed portfolio return. The prior for R2 ∼ Beta(A,B) represents the expected

sample variance of the benchmark returns explained by the managed portfolios and weight

sensitivities relative to the error.

We note that setting a direct prior on R2 allows us to apply this framework to models of

varying sizes while remaining agnostic to the exact nature of the dimensionality issue. Figure

1 illustrates the implications of different parameter choices. Notably, varying q has only a

modest effect on prior shrinkage (γ2), whereas assuming a high R2 can significantly reduce

shrinkage, especially when sparsity is high (i.e., q is small). This highlights that if only a few

firm characteristics explain much of the stock variation, then less regularization is necessary

(i.e., γ2 is large). We use an uninformative prior setup with a = b = 1 and A = B = 1,

corresponding to a uniform distribution with E[R2] = E[q] = 0.5.

(a) γ2 based on R2 and q (b) Joint prior density of q and γ2 (c) V (θj) based on ν and γ2

Figure 1: Prior comparative statics. The left panel shows the contours of log(γ2) as a function
of R2 and q (see Eq.(6)). The middle panel shows the joint prior density of q and γ2. The right
panel shows the contours of the log of prior variance log (V (θj)) based on ν and γ2.

Equation (6) implies a negative correlation between q and γ2, reflecting the common belief

that sparsity and shrinkage act as substitutes when addressing the curse of dimensionality
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(e.g., Abadie and Kasy, 2019). The middle panel of Figure 1 illustrates this relationship. To

facilitate interpretation, we represent the joint density of q and log(γ2) instead of q and γ2.

A flat prior on R2 and q results in a pronounced negative correlation between q and γ2: the

lower (higher) the probability of including a predictor and the overall model size, the higher

(lower) the prior variance V (θj).

The right panel, however, shows that the prior variance is also influenced by ν. Specifically,

the figure demonstrates that a heavier-tailed Student-t prior results in a larger log (V (θj)) for

a given level of shrinkage log(γ2).4 This implies an even stronger negative correlation between

sparsity and shrinkage for smaller values of ν.

Overall, Figure 1 suggests that ignoring shrinkage may lead to overly sparse weight sensitiv-

ities, potentially biasing inferences about the optimal portfolio policy. The interplay between

q and γ2 becomes more pronounced as the prior tails, governed by ν, become thicker. We

will revisit this point in greater detail when we discuss the parameter posterior estimates.

2.2 An economic rationale to calibrate ν

Figure 1 illustrates how different values of ν imply different priors on θj. Specifically, larger

values of ν correspond to smaller prior variances, all else being equal. This has important

implications for optimal the mean-variance portfolio allocation. To understand this, recall

from Eq.(1) that the optimal portfolio weight for the i-th stock is given by

wi,t = wb
i,t +

(
x̂1
i,tθ1, . . . , x̂

k
i,tθk

)
.

Thus, greater shrinkage of θj towards zero reduces the sensitivity of the i-th portfolio weight

to characteristic j, which in turn affects the allocation strategy.

4We report the contours of log (V (θj)) instead of V (θj) to make the interpretation more straightforward.
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In the main empirical analysis we explore different values of ν ranging from 4 to 100,

covering both heavy-tailed (Student-t) and thin-tailed (Normal) distributions. Additionally,

we propose an economic rationale for calibrating ν based on a proxy for aggregate transaction

costs. This approach is motivated by the idea that a smaller ν potentially imply larger

liquidity needs and rebalancing costs, contingent on the elasticity estimate θ̂j.

To capture this intuition, we define a measure of aggregate transaction costs:

TCt =
1

Nt

∣∣∣∣∣
Nt∑
i=1

k∑
j=1

x̂j
i,t

ηi,t
2

∣∣∣∣∣ , t = 1, . . . , T (7)

where ηi,t represents the bid-ask spread for asset i at time t, serving as a proxy for individual

trading costs (e.g., Bessembinder and Venkataraman, 2010). The latter is computed using

the Corwin and Schultz (2012) approximation, scaled by the stock price. The absolute value

ensures that aggregate transaction costs are positive. In addition, Eq.(7) accounts for the

possibility that rebalancing different characteristics can reduce overall transaction costs. For

instance, characteristics with positive and negative values can offset one another, thereby

reducing the magnitude of the term
∑k

j=1 x̂
j
i,t

ηi,t
2

(e.g., DeMiguel et al., 2020).

Figure C.2 in Appendix C reports the cross-sectional distribution of the half bid-ask spread

for the entire out-of-sample period (left panel) and averages it across groups of stocks sorted

by market capitalization (right panel). The figures confirm that using the effective bid-ask

spread as a proxy for transaction costs aligns with the assumptions in Brandt et al. (2009),

who model transaction costs as decreasing with firm size and over time.

We note that the value of TCt ≪ 1, ∀t. Thus, a straightforward plug-in calibration is

unfeasible, as none of the moments of the Student-t distribution are defined for ν = TCt < 1.

To address this issue, we rescaled TCt to fall within the interval [4, 100] (TC1) or multiplied
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TCt by 1,000 (TC2).5

2.3 Posterior inference

The Student-t component in the spike-and-slab prior from Eq.(5) can be described as a scale

mixture of normals of the form:

θj | σ2, γ2, q, λ2
j ∼ N

(
0, σ2γ2λ2

j

)
(8)

where λ2
j ∼ IG (ν/2, ν/2) follows an inverse-Gamma distribution with both scale and shape

parameters equal to ν/2.

This formulation is particularly useful because it allows us to express the posterior distri-

bution of θj in closed form while preserving the heavy-tail structure of the prior. Specifically,

when integrated over λ2
j , the marginal distribution of θj is a Student-t distribution with ν de-

grees of freedom (see Andrews and Mallows, 1974, and Appendix A for a formal proof). As a

result, the joint posterior distribution of θ = (θ1, . . . , θk) is a multivariate normal distribution

of the form:

θ1, . . . , θk | rest ∼ N

Σ−1
θ F⊤Y︸ ︷︷ ︸

µθ

, σ2
(
F⊤F +D−1

)−1︸ ︷︷ ︸
Σ−1

θ

 (9)

where D = γ2diag (z1λ
2
1, . . . , zkλ

2
k), and zj ∼ Bernoulli(q) acts as an indicator that selects

the j = 1, . . . , k characteristics with probability q. Appendix B.1 provides the complete

derivation. Note that the posterior in Eq.(9) can be further simplified by integrating out λ2
j .

5We ensure that ν lies between 4 and 100 by applying the following linear transformation to TCt:

TCscaled
t = 4 + (100− 4)

TCt −min(TCt)

max(TCt)−min(TCt)
.
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The posterior distribution of λ2
j , j = 1, . . . , k is given by:

λ2
j | rest ∼ IG

(
ν + 1

2
,

θ2j
2σ2γ2

+
ν

2

)
(10)

where ν+1
2

and
θ2j

2σ2γ2 + ν
2
are the shape and scale parameters, respectively (see Appendix

B.2 for a detailed derivation). For the remaining posteriors of σ2, R2, and q, please refer to

Appendices B.3 and B.5. Following Giannone et al. (2021), we sample posterior draws by

discretizing the support of R2, q ∈ [0, 1], using an interlacing approach with two grids defined

over the unit interval, and then evaluating the joint posterior distribution.

We note that it is also possible to estimate ν directly from the data. Appendix B.6

outlines a strategy for estimating ν using a Gamma prior distribution, ν ∼ G (α, β). Since the

posterior distribution is not available in closed form, a Metropolis-Hastings (MH) algorithm

would be required for estimation.6 While estimating ν allows for greater flexibility, it also

introduces additional complexity that is beyond the scope of this paper. In this respect,

calibrating ν like we do may introduce some rigidity, but it better aligns with our objective

of transparently investigating the trade-off between sparsity and shrinkage to leverage the

information contained in firm characteristics.

3 Data and full-sample estimates

We collect firm characteristics from the www.openassetpricing.com website (see Chen and

Zimmermann, 2021, for more details).7 The initial dataset includes 212 U.S. firm charac-

teristics, each signed such that a larger value implies a higher expected return.8 To ensure

6For an overview of the random walk MH algorithm, see, for example, Gelman et al. (2013).
7We use version 1.4.1, released in October 2024.
8Price, Size, and STreversal are downloaded from the Center for Research in Security Prices (CRSP) and

matched to the initial set of firm characteristics.
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consistency, we retained the original sign of all characteristics based on the documentation

provided by the authors.

We restrict our sample to continuous characteristics available from January 1980 to De-

cember 2023, resulting in a total of 154 characteristics. These characteristics are merged

with monthly stock return data from the Center for Research in Security Prices (CRSP). Our

sample includes all common stocks (share codes 10 and 11) listed on the NYSE, AMEX, or

NASDAQ exchanges. Following Green et al. (2017a) and Chen and Zimmermann (2021), we

incorporate delisting returns as per Shumway and Warther (1999).9 We remove observations

with missing returns and exclude extreme returns exceeding 250% or falling below -100%. Ad-

ditionally, we filter out stocks with market capitalizations below the 20th percentile, thereby

excluding very small and illiquid stocks.

We further refine the sample by excluding characteristics with missing data for more than

60% of stocks across the sample or for more than 90% of stocks during any single period

if this occurs multiple times. Remaining missing values are imputed monthly using the

cross-sectional median for each characteristic (e.g., Gu et al., 2020). Each characteristic is

winsorized cross-sectionally at the 1st and 99th percentiles, following Green et al. (2017a),

and subsequently normalized to have a cross-sectional mean of zero and a standard deviation

of one, as recommended by Brandt et al. (2009) and DeMiguel et al. (2020).

The final dataset comprises 131 characteristics, spanning an unbalanced panel of 21,418

stocks, with a minimum of 2,837, a maximum of 5,921, and an average of 4,061 stocks per

month from January 1980 to December 2023. Figure C.1 in Appendix C presents the sample

mean, volatility, and kurtosis of the managed portfolios used in the main empirical study.

The descriptive statistics reveal a strong alignment between return volatility and kurtosis,

indicating that extreme returns significantly contribute to the dispersion of returns. This

9Returns adjusted for delisting account for 1,537 out of 2,144,343 observations in our final dataset.
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provides prima facie evidence that a prior with heavy tails may be justified by the data.

Furthermore, the lack of correlation between kurtosis and mean returns suggests that high

kurtosis reflects heightened risk rather than superior performance.

3.1 Understanding the trade-off between sparsity and shrinkage

We analyze the relationship between sparsity and shrinkage using posterior estimates based

on the full sample of returns. Specifically, we examine how the prior thickness (ν) affects q

and γ2 and thus the portfolio policy wi,t = wb
i,t+

∑k
j=1 θjx̂

j
i,t via portfolio tilts θj, j = 1, . . . , k.

Figure 2: Posterior estimates of q and γ2. The figure shows the in-sample posterior estimates of q (left
panel) and γ2 (right panel) for the prior with ν = [4, 10, 30, 100]. The sample period is from January 1980 to
December 2023.

Figure 2 presents the posterior estimates for different degrees of freedom (ν = [4, 10, 30, 100])

of the Student-t prior. Thick-tailed priors (ν low) favor simpler models by selecting fewer

characteristics (smaller q) and applying less stringent shrinkage (larger γ2) to portfolio tilts

(θj). This approach reduces uncertainty about which characteristics maximise investor’s util-

ity while allowing their influence on portfolio weights to remain relatively unconstrained.
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Conversely, thin-tailed priors (ν high) include a broader set of characteristics (larger q) but

enforce stronger shrinkage (smaller γ2), thus imposing greater regularization of portfolio tilts.

As shown in Figure D.3 in Appendix D.1, a larger ν (e.g., ν = 100) results in pervasive

model uncertainty, meaning no distinct sparsity pattern emerges among firm characteristics.

In contrast, lower ν values reduce uncertainty by enabling the confident exclusion of charac-

teristics with weaker signals. Notably, a prior robust to outlying signals (e.g., ν = 4) does not

alter the selection of strong characteristics but significantly decreases the inclusion probability

of those weakly associated with future stock returns.10

Figure 3: Posterior estimates of θj . The figure shows the posterior estimates for some firm characteristics
selected by all prior specifications. The sample period is from January 1980 to December 2023.

10This aligns with the intuition that heavier-tailed priors are better suited to identifying relevant charac-
teristics in the presence of extreme signals (e.g., Carvalho et al., 2009). Table D.1 lists the variables selected
for different values of ν based on a conventional 50% posterior inclusion probability cutoff.

17



Figure 3 illustrates the effect of prior tails on the posterior distribution of portfolio tilts.

The figure presents the posterior estimates of θj for a few selected characteristics, including

cash holdings, short interest, operating profitability, and size, across all prior specifications.

Heavier-tailed priors produce wider posterior distributions; as ν decreases, the dispersion of

θj increases, indicating greater uncertainty in the estimated sensitivities.

In contrast, larger values of ν result in stronger shrinkage on θj, effectively dampening the

influence of firm characteristics on the portfolio policy. Consequently, the portfolio weights

remain closer to the benchmark wb
i,t, leading to a more diversified portfolio with limited tilts.

This point will be explored in more details in Section 4.2, where we examine the out-of-sample

portfolio composition and performance under different prior assumptions.

Figure 4: Posterior estimates when ν is calibrated based on transaction costs. The figure shows the
in-sample posterior estimates of q (left panel) and γ2 (right panel) for the prior with ν = [4, TC1, TC2, 100].
The sample period is from January 1980 to December 2023.

Figure 4 presents the posterior estimates of q and γ2 when ν is calibrated based on transac-

tion costs. For the full-sample implementation, ν is computed as ν = 1
T

∑T
t=1 TCt, where TCt

is scaled as discussed in Section 2.2. The results indicate that incorporating transaction cost
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information into the prior calibration tends to favor a thin-tailed prior specification, leading

to less sparsity and greater shrinkage in the set of portfolio tilts. This finding aligns with the

intuition of DeMiguel et al. (2020), suggesting that transaction costs can lead to less sparsity

in the set of characteristics used to maximize a mean-variance portfolio policy.

4 Out-of-sample analysis

In-sample estimates of θj, q, and γ2 provide valuable insights into the properties of the

prior and its implications for optimal portfolio choice in a static setting. We now discuss

the recursive, 240-month training-window estimates of the sparsity q and the shrinkage γ2

parameters as a function of ν. These recursive estimates form the foundation for the real-time

implementation of the parametric portfolio policy we will discuss next.

4.1 Recursive estimates and real-time portfolios

Figure 5 presents the recursive estimates of
√

γ2 (left panel) and q (right panel) for various

degrees of freedom ν.11 The out-of-sample period is from January 2000 to December 2023.

The posterior mean estimates exhibit considerable variation over time. For instance, the

estimate of q for ν = 100 peaks at 0.6 following the dot-com bubble and gradually declines to

0.4 leading up to the COVID-19 outbreak. This results in portfolio choices based on a larger

set of characteristics while enforcing stronger shrinkage on portfolio tilts.

In contrast, the prior with ν = 4 maintains a more persistent focus on selecting a smaller,

more predictive subset of firm characteristics, with the posterior mean of q ranging from

0.22 to below 0.1 over the out-of-sample period. This results in portfolios that tilt strongly

toward a narrower set of firm characteristics with higher predictive power. Furthermore,

11We report the
√
γ2 to increase readability due to the scale of γ2.
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smaller values of ν correspond to higher γ2, assigning greater impact to the most predictive

characteristics in the optimal portfolio.

(a) Posterior mean of q (b) Posterior mean of
√
γ2

Figure 5: Recursive estimates of q and γ2. The figure shows the posterior mean of q (left panel) and√
γ2 (right panel) for different levels of ν = [4, 10, 30, 100]. The estimates are based on a rolling window of

240 months. The out-of-sample period is from January 2000 to December 2023.

Figure D.4 in Appendix D.2 illustrates the temporal patterns of
√
γ2 and q posterior

estimates when ν is calibrated at each period based on the most recent trading cost estimate

as in Eq.(7). The trajectories of the posterior estimates resemble those of thin-tailed priors,

albeit with slightly more erratic fluctuations, reflecting the volatile nature of TCt over the

out-of-sample period.

Overall, consistent with the full-sample estimates, there is a negative relationship between

sparsity and shrinkage. This inverse relationship is less pronounced when transaction costs are

used to calibrate ν, resulting in persistently smaller (larger) values of γ2 (q) over time. These

findings underscore the importance of tailoring prior tails based on the investor’s objectives.
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4.2 Portfolio composition and characteristics exposures

The recursive posterior estimates reveal that the extent to which prior tails account for

extreme returns significantly influences both the number of firm characteristics included in the

portfolio policy and the degree of shrinkage applied to each weight sensitivity, θj, j = 1, . . . , k.

To investigate the practical investment implications, we calculate the portfolio’s Herfindahl-

Hirschman Index (HHI) as HHIt =
∑Nt

i=1w
2
it, where wit represents the portfolio weight of asset

i, and Nt denotes the total number of assets at time t. Examining the HHI over time allows

us to analyze how different prior specifications (e.g., heavy-tailed versus thin-tailed priors)

influence portfolio composition and diversification.

(a) Herfindahl-Hirschman Index (HHI) (b) Portfolio leverage

Figure 6: Portfolio diversification and leverage. The figure shows the Herfindahl-Hirschman Index
(HHI) (left panel) and the weights range (right panel) obtained for the recursive parametric portfolio allocation
for different prior specifications. The optimal allocation is based on a rolling window of 240 months. The
sample period is from January 2000 to December 2023.

Figure 6 displays the HHI index over the out-of-sample period. To enhance readability,

the HHI is rescaled from 0 (a perfectly equal-weighted portfolio) to 1 (a fully concentrated
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portfolio where a single asset holds all the weight). Panel (a) demonstrates that heavy-tailed

priors lead to higher concentration, with fewer stocks capturing larger capital allocations

(higher HHI). For instance, the portfolio HHI for a prior with ν = 4 consistently exceeds

that for ν = 100 by more than a factor of two throughout the out-of-sample period. Notably,

diversification levels for ν = 4 and ν = 10 are relatively similar.

Periods of market stress, such as the Great Financial Crisis and the COVID-19 pandemic,

exacerbate portfolio concentration across all priors, as indicated by an increase in the HHI

index. This finding highlights the sensitivity of portfolio diversification to external shocks,

regardless of the prior tails assumption.

We also examine the leverage implied by each prior by calculating the spread between

the maximum and minimum portfolio weights, |max(wi,t) − min(wi,t)|, at each time t. A

larger spread between long and short positions indicates higher liquidity requirements to

implement the portfolio allocation (e.g., Patton and Weller, 2020). Panel (b) of Figure 6

shows that heavier-tailed priors result in more extreme portfolio weights, with the spread

between max(wi,t) and min(wi,t) reaching as high as 10% during the COVID-19 pandemic.

This spread is more than 50% higher than that observed with thin-tailed priors.

Figure D.5 in Appendix D.2 demonstrates that, consistent with the recursive estimates

of q and γ2 (see Figure D.4), calibrating ν based on transaction costs encourages portfolio

diversification and leverage patterns that, while more erratic, remain broadly comparable to

those observed with a thin-tailed prior specification. This effect is particularly pronounced

for the TC2 calibration. Overall, calibrating ν using aggregate transaction costs results in

lower portfolio concentration (lower HHI) and reduced liquidity requirements (less leverage).

4.2.1 Portfolios exposure to characteristics. To examine the fundamental investment

properties of the optimal portfolios derived from different prior tail assumptions, we recon-
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struct the portfolio exposures to different characteristics. These exposures represent the

weighted average of characteristics at the portfolio level, where the weights are determined

by maximizing the investor’s utility under the prior (see Section 2). Specifically, the portfolio

exposure to a given characteristic j is calculated as:

x̂j
p,t =

1

Nt

Nt∑
i=1

wi,tx̂
j
i,t, (11)

where Nt denotes the total number of stocks in the portfolio at time t, wi,t is the weight

assigned to stock i, and x̂j
i,t is the value of characteristic j for stock i at time t.

Since the cross-sectional mean of each standardized characteristic is always zero, Eq.(11)

directly maps the weight sensitivities θj to the actual portfolio exposure for the correspond-

ing characteristic. This provides an intuitive interpretation of how the investor’s utility-

maximizing weights translate into tangible portfolio characteristics under different prior spec-

ifications.

Figure 7 presents a heatmap of the absolute value of portfolio characteristics | x̂j
p,t | over

the out-of-sample period from January 2000 to December 2023. To enhance interpretability,

we display the values obtained for the ν = 4, ν = 100, and TC2 specifications.12 The

characteristics with the highest exposure remain consistent across prior specifications.

For example, portfolios consistently exhibit exposure to illiquidity (Amihud, 2002), oper-

ating profitability (Fama and French, 2006), short interest (Dechow et al., 2001), analysts’

forecast dispersion (Diether et al., 2002), co-skewness (Ang et al., 2006), and size (Banz,

1981), among others. The scale of the exposures is inversely related to the value of ν; smaller

ν implies more sparsity, which in turn results in a larger exposure to fewer characteristics

(intensive margin). In contrast, a thin-tailed prior (ν = 100) produces a smaller but broader

12Results for the ν = 10, 30,TC1 specifications are available upon request from the authors.
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(a) ν = 100 (b) ν = TC2 (c) ν = 4

Figure 7: Portfolio exposure to characteristics. The figure shows the portfolio exposure to individual
characteristics based on different assumptions on the prior tails. The portfolio exposure to a given charac-
teristic is calculated as in Eq.(11). The optimal allocation is based on a rolling window of 240 months. The
out-of-sample period is from January 2000 to December 2023.

exposure to firm characteristics (extensive margin). This inverse relationship also persists

when calibrating the prior tail thickness using aggregate transaction costs (see Figure 7).
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5 Out-of-sample portfolio allocation

The analysis of portfolio characteristics highlights the trade-off between sparsity and compo-

sition driven by the prior tails. Heavier-tailed priors (ν = 4) concentrate portfolio exposure

on a narrower set of firm characteristics, potentially exploiting stronger predictive signals at

the expense of increased portfolio concentration. Conversely, thinner-tailed priors (ν = 100)

encourage broader diversification, trading firm characteristics at the extensive margin while

reducing deviations from the benchmark.

We now evaluate the practical implications of these findings for out-of-sample portfolio

performance and investor’s realised utility. Each month, we construct the optimal portfolio

wi,t = wb
i,t +

∑k
j=1 θ̂jx̂

j
i,t, where weights are based on the recursive estimates of θ̂j at time

t. For the allocation, we select the j-th characteristic whose posterior inclusion probability

exceeds 50%.13 Then, the out-of-sample portfolio return at t+ 1 is rp,t+1 =
∑Nt

i=1wi,tri,t+1.

It is important to emphasize that our findings are robust to alternative cutoff of the

posterior inclusion probability. For instance, in Section 6.1, we explore a more data-driven

approach, whereby a characteristic is excluded from the portfolio policy if its posterior in-

clusion probability falls below 1−mean(q). This threshold dynamically adjusts the number

of characteristics entering the portfolio rule based on the overall sparsity level. All key con-

clusions remain unchanged, highlighting the robustness of our findings to variations in the

inclusion criteria.

To evaluate the economic value of these portfolio strategies, we analyze both the Sharpe

ratio (SR) and metrics such as the implied performance fee and the certainty equivalent return

(∆CER) relative to the equal-weight (EW) portfolio (see DeMiguel et al., 2009). Following

13Barbieri and Berger (2004) provide theoretical support for the median probability model, which selects
variables with inclusion probabilities greater than 0.5. This approach is optimal for prediction under mild
regularity conditions.
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Della Corte et al. (2008), we compute the implied performance fee f , which represents the

maximum fee an investor would pay to switch from the EW portfolio to another competing

strategy.14 The realized certainty equivalent return is computed as CERp = r̄p − ζ
2
σ̂2
p, where

r̄p and σ̂2
p are the mean and variance of portfolio returns over the out-of-sample period.

Similarly, the certainty equivalent return of the EW portfolio is denoted as CEREW . The

spread ∆CER = CERp−CEREW quantifies the economic utility a risk-averse, mean-variance

investor would gain by investing in a given strategy vis-a-vis the equal-weight benchmark.

Table 1 summarizes the out-of-sample portfolio performance and descriptive statistics for

portfolio weights. Panel A examines performance without transaction costs, showing that

heavier-tailed priors (ν = 4) achieve the highest mean return (0.125) but also the highest

volatility (0.168), resulting in an annualized Sharpe ratio (SR) of 2.54. In contrast, thinner-

tailed priors (ν = 100) produce lower mean returns (0.100) but achieve the highest SR (3.122)

due to lower volatility (0.110). The latter is lower than the volatility produced by the original

Brandt et al. (2009) (BSV) approach (0.122), which relies solely on size, value, and momentum

as stock characteristics. The null hypothesis that the Sharpe ratios are comparable to the

EW portfolio is strongly rejected based on the block-bootstrap method of Ledoit and Wolf

(2008). Additionally, both the performance fee and ∆CER are lowest for ν = 4, highlighting

the economic cost of under-diversified strategies associated with thicker-tailed priors.

Panel B provides descriptive statistics of the portfolio weights, further illustrating the

trade-off between sparsity and diversification across prior specifications. Heavier-tailed priors

(ν = 4) result in more extreme allocations, with maximum weights reaching 3.965% and

14For mean-variance utility, the implied fee f is calculated as:

T∑
t=1

(rp,t − fee)− ζ

2
(rp,t − fee)2 =

T∑
t=1

rBench,t −
ζ

2
r2Bench,t, (12)

where ζ = 5 is the risk aversion parameter in our application, and rBench,t denotes the benchmark portfolio
returns, set to EW in this case.
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Panel A: Portfolio performance w/o transaction costs

EW BSV GLP-t(ν)
4 10 30 100 TC1 TC2

Mean 0.014 0.061 0.125 0.110 0.102 0.100 0.107 0.100
Std 0.061 0.122 0.168 0.141 0.119 0.110 0.126 0.111
ES(5%) -0.118 -0.159 -0.159 -0.147 -0.100 -0.097 -0.117 -0.091
SR (annual) 0.725 1.697 2.549 2.678 2.956 3.122 2.920 3.099
pval(∆SR)boot 0.003 0.000 0.000 0.000 0.000 0.000 0.000
∆CER 0.011 0.012 0.029 0.042 0.047 0.040 0.047
Performance fee 0.014 0.025 0.046 0.058 0.062 0.057 0.062

Panel B: Portfolio weight statistics

Max w (%) 0.030 0.673 3.965 3.163 2.665 2.497 3.016 2.520
Min w (%) 0.030 -0.843 -3.557 -3.019 -2.732 -2.629 -2.959 -2.653
Mean |w| (%) 0.030 0.175 0.441 0.371 0.338 0.334 0.362 0.333
Mean (w < 0) (%) 0.000 -0.178 -0.420 -0.364 -0.336 -0.336 -0.356 -0.334
Turnover 0.109 1.106 6.901 5.864 5.703 6.023 6.059 5.967
Average HHI 0.000 0.017 0.157 0.108 0.085 0.080 0.102 0.080

Panel C: Portfolio performance net of transaction costs

Mean 0.013 0.053 0.070 0.066 0.061 0.057 0.063 0.058
Std 0.061 0.119 0.152 0.129 0.106 0.098 0.114 0.099
ES(5%) -0.120 -0.169 -0.205 -0.188 -0.137 -0.139 -0.156 -0.131
SR (annual) 0.680 1.494 1.569 1.743 1.933 1.972 1.882 1.976
pval(∆SR)boot 0.006 0.007 0.004 0.002 0.000 0.002 0.001
∆CER 0.007 0.007 0.011 0.021 0.023 0.019 0.023
Performance fee 0.009 0.009 0.014 0.026 0.027 0.023 0.027

Table 1: Out-of-sample portfolios. This table reports the out-of-sample portfolio performance without
(Panel A) and with (Panel B) transaction costs. Transaction costs are proxied by the stock-specific half
bid-ask spread and are imputed each month based on the portfolio rebalancing (turnover) as in DeMiguel
et al. (2009). Panel B reports a series of descriptive statistics based on average values over the out-of-sample
period. The out-of-sample period is from January 2000 to December 2023.

minimum weights dropping to −3.557%. Larger leverage is coupled by reduced diversification

as shown by the HHI, which is highest for ν = 4 (0.157). In contrast, thinner-tailed priors

(ν = 100) exhibit broader diversification, characterized by smaller mean absolute weights

(0.334%), less concentration (0.080), and reduced turnover (6.023). The latter is calculated

as
∑

|wi,t−w+
i,t−1|, where wi,t represents the portfolio weight of asset i at time t, and w+

i,t−1 ≡

wi,t−1(1 + ri,t) denotes the adjusted weight from the previous period.
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Panel C incorporates transaction costs into the performance analysis. Following DeMiguel

et al. (2009), the impact of trading costs on portfolio performance is modeled as rNet
p,t =

(1 + rp,t)
(
1−

∑Nt

i=1
ηi,t
2

∣∣wi,t − w+
i,t−1

∣∣) − 1, where ηi,t denotes the bid-ask spread for asset i

at time t as proxied by Corwin and Schultz (2012). The half bid-ask spread represents a

proxy for individual trading costs linked to liquidity (e.g., Bessembinder and Venkataraman,

2010). Accounting for transaction costs reduces mean returns across all specifications, with

heavier-tailed priors (ν = 4) experiencing the largest decline (from 0.125 to 0.070).

Nevertheless, thinner-tailed priors (ν = 100) maintain the highest Sharpe ratio (1.972)

across strategies, demonstrating resilience to transaction costs through broader diversification

and reduced turnover. Additionally, the implied performance fee remains higher for thinner-

tailed priors, underscoring their economic value even when transaction costs are considered.

Transaction-cost-calibrated priors strike a balance, achieving performance and diversification

metrics comparable to thinner-tailed priors while explicitly addressing the practical implica-

tions of trading costs.

5.1 Performance under economic restrictions

Karolyi and Van Nieuwerburgh (2020) argue that it is crucial to examine the economic under-

pinnings of complex statistical methods that seek to extract additional profits by leveraging

information embedded in firm characteristics. To address this, we follow the logic in Avramov

et al. (2023a) and extend the main out-of-sample portfolio implementation to comprehensively

assess the impact of economic restrictions on performance across different prior specifications.

In the cross-section, we restrict the universe of stocks to those that are relatively inex-

pensive to trade by focusing exclusively on NYSE-listed stocks (e.g., Simon et al., 2023). In

the time series, we investigate whether portfolio profitability diminishes when ex-post con-

straints are applied to portfolio weights. These constraints, imposed at each time t, either
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limit the leverage permitted for trading a given stock or prohibit short positions (e.g., Jones

and Lamont, 2002).

5.1.1 Stocks listed on NYSE. We consider a sample of common stocks (share codes 10

and 11) traded exclusively on the NYSE. This results in a substantially smaller unbalanced

panel of 5,186 stocks, with a minimum of 1,149, a maximum of 1,848, and an average of

1,405 stocks per month. These stocks typically have larger market capitalizations and higher

liquidity, which arguably could represent a more realistic investment universe for liquidity-

constrained investors.

To account for the sample differences, we recalculated the characteristic-managed portfo-

lios using the new cross-section and re-estimated all model parameters. Consistent with the

main empirical framework, we constructed the optimal portfolio based on the recursive esti-

mates of θj, q, γ
2 up to time t. For the allocation at time t, we selected the j-th characteristic

with a posterior inclusion probability exceeding 50%. Section 6.1 also explore the portfolio

performance based on a 1−mean(q) cutoff.

Panel A of Table 2 presents the portfolio weight statistics. Portfolios constructed in this

sample exhibit greater concentration compared to the full sample. For example, under the

ν = 4 prior, the HHI is significantly higher (0.342) compared to the full sample (0.157). This

indicates that portfolios invested in NYSE-only stocks tend to deviate more strongly from

the equal-weight benchmark wb
i,t.

Weight magnitudes also differ significantly between the samples. Portfolios invested in

NYSE-only stocks allocate larger capital on average. For instance, the mean |w| under ν = 4

is 1.022% in the NYSE sample, compared to 0.441% in the full sample. These differences

are likely driven by the smaller, more liquid universe of NYSE stocks, where larger and more

frequent portfolio adjustments are more feasible compared to the full cross-section of stocks
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Panel A: Portfolio weight statistics

EW BSV GLP-t(ν)
4 10 30 100 TC1 TC2

Max w (%) 0.075 1.372 8.620 7.045 6.135 5.806 6.730 5.943
Min w (%) 0.075 -1.424 -6.909 -5.748 -6.132 -6.098 -5.985 -6.124
Mean |w| (%) 0.075 0.290 1.022 0.901 0.960 0.946 0.943 0.955
Mean (w < 0) (%) 0.000 -0.310 -0.987 -0.871 -0.948 -0.938 -0.928 -0.946
Turnover 0.094 1.011 10.182 8.982 8.785 8.442 9.348 8.592
Average HHI 0.001 0.023 0.342 0.238 0.240 0.228 0.247 0.233

Panel B: Portfolio performance net of transaction costs

Mean 0.011 0.013 0.038 0.033 0.035 0.036 0.034 0.035
Std 0.060 0.081 0.196 0.133 0.114 0.108 0.113 0.108
ES(5%) -0.129 -0.179 -0.448 -0.279 -0.261 -0.243 -0.247 -0.245
SR (annual) 0.574 0.482 0.639 0.828 1.019 1.094 1.000 1.090
pval(∆SR)boot 0.604 0.873 0.478 0.063 0.041 0.082 0.043
∆CER - - 0.006 0.013 0.016 0.014 0.016
Performance Fee - - 0.007 0.016 0.018 0.016 0.019

Table 2: Out-of-sample portfolios for NYSE-listed common stocks. This table reports the out-of-
sample portfolio weights (Panel A) and performance net of transaction costs (Panel B) for a sub-sample of
stocks traded only on the NYSE. Transaction costs are proxied by the stock-specific half bid-ask spread and
are imputed each month based on the portfolio rebalancing (turnover) as in DeMiguel et al. (2009). The
out-of-sample period is from January 2000 to December 2023.

listed on NYSE/AMEX/NASDAQ exchanges.

Despite differences across samples, consistent with the main results, a heavier-tailed prior

(ν = 4) consistently generates more concentrated portfolios, characterized by larger weight

magnitudes and higher turnover, compared to thinner-tailed priors (ν = 100,TC1,TC2).

These findings confirm that the trade-off between sparsity and shrinkage remains robust even

within the NYSE subsample.

Panel B of Table 2 reports portfolio performance net of transaction costs (see Panel C

of Table 1 for full-sample results). Risk-adjusted returns are consistently lower across all

priors in the NYSE sample. The smaller, more liquid stock universe leads to moderately

lower mean returns, while portfolio volatility remains relatively comparable to that of the
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full sample. Certainty equivalent returns (CER) follow a similar pattern, with higher values

observed in the full sample.

Nevertheless, thin-tailed prior specifications deliver substantially higher economic utility

compared to smaller values of ν, the equal-weight benchmark, and the original BSV approach.

For instance, the Sharpe ratio (SR) for ν = 100 is 1.094 on an annualized basis, significantly

outperforming the SRs of 0.574, 0.482, and 0.639 achieved by EW, BSV, and ν = 4, respec-

tively. Transaction-cost-calibrated priors, such as TC2, closely follow, with an SR of 1.090.

A heavier-tailed prior also yields significantly lower SRs, ∆CER, and performance fees once

transaction costs are accounted for, underscoring the persistent limitations of sparsity even

in a more efficient and liquid stock universe.

5.1.2 Imposing portfolio constraints. Panel A of Table 3 presents the out-of-sample

portfolio performance net of transaction costs for leverage-constrained portfolios (wi,t ∈

(−3%, 3%) ∀i, t). Mean returns and Sharpe ratios remain largely consistent with those of the

unconstrained portfolio allocation (see Panel C in Table 1). Performance fees and certainty

equivalent returns (∆CER) also exhibit minimal differences between leverage-constrained and

unconstrained portfolios. These results indicate that portfolio constraints primarily temper

extreme portfolio positions without significantly impacting the overall risk-return profile.

In contrast, Panel B shows that the imposition of no-short-sales constraints (wi,t ≥ 0 ∀i, t)

has a pronounced effect on portfolio performance. Mean returns decline significantly across all

prior specifications, reflecting the restrictive nature of long-only portfolios, which limits their

ability to leverage negative predictive signals (e.g., Brennan and Lo, 2010). Sharpe ratios

are also markedly lower under no-short-sales constraints, although they remain significantly

higher than those of the benchmark EW portfolio. For example, with ν = 100, the SR

decreases from 1.968 in the unconstrained allocation to 1.040. This compares to 0.680 of the
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Panel A: Leverage constraints wi,t ∈ (−3%, 3%)

EW BSV GLP-t(ν)
4 10 30 100 TC1 TC2

Mean 0.013 0.053 0.068 0.066 0.061 0.057 0.063 0.058
Std 0.061 0.119 0.149 0.129 0.106 0.098 0.113 0.099
ES(5%) -0.120 -0.169 -0.203 -0.187 -0.137 -0.139 -0.155 -0.131
SR (annual) 0.680 1.494 1.556 1.738 1.930 1.968 1.875 1.972
pval(∆SR)boot 0.006 0.008 0.004 0.002 0.000 0.002 0.001
∆CER 0.007 0.007 0.011 0.021 0.023 0.018 0.023
Performance fee 0.009 0.009 0.014 0.026 0.027 0.023 0.027

Panel B: No-short sales constraints wi,t ≥ 0

Mean 0.013 0.021 0.021 0.021 0.020 0.020 0.020 0.020
Std 0.061 0.061 0.063 0.060 0.060 0.061 0.060 0.061
ES(5%) -0.120 -0.110 -0.115 -0.110 -0.110 -0.111 -0.111 -0.111
SR (annual) 0.680 1.108 1.058 1.103 1.076 1.040 1.088 1.046
pval(∆SR)boot 0.000 0.000 0.000 0.000 0.000 0.000 0.000
∆CER 0.007 0.006 0.007 0.007 0.006 0.007 0.006
Performance fee 0.008 0.007 0.008 0.007 0.006 0.007 0.006

Table 3: Out-of-sample portfolios with allocation constraints. This table reports the out-of-sample
portfolio performance with transaction costs with leverage (Panel A) and no-short sales (Panel B) constraints.
Transaction costs are proxied by the stock-specific half bid-ask spread and are imputed each month based on
the portfolio rebalancing (turnover) as in DeMiguel et al. (2009). The out-of-sample period is from January
2000 to December 2023.

EW benchmark (p-value = 0.000). Similarly, the performance fee and ∆CER are substantially

lower, underscoring the diminished economic performance in the absence of short positions.

5.1.3 Limits to arbitrage. Economic theory suggests that lower trading frictions and

greater arbitrage activity enhance price efficiency. In contrast, when limits-to-arbitrage are

binding, characteristic-based trading strategies can become more profitable due to temporary

mispricings. For example, theoretical work predicts that higher volatility reduces market

makers’ ability to provide liquidity because of tighter funding constraints and reduced risk

appetite (e.g., Brunnermeier and Pedersen, 2009; Adrian and Shin, 2010). This liquidity short-

fall, particularly during financial turmoil, can exacerbate mispricings and amplify anomaly

32



payoffs. Supporting this mechanism, Chordia et al. (2014) show that increased stock market

liquidity weakens equity return anomalies, likely due to improved arbitrage activity and the

correction of mispricings.

To explore this point, we test whether the profitability of investment strategies under

different prior specifications is more pronounced during high limits-to-arbitrage market states,

such as periods of elevated volatility and tight financial conditions. We classify financial

conditions using the National Financial Conditions Index (NFCI), published by the Federal

Reserve Bank of Chicago.15 The NFCI aggregates 105 indicators spanning money markets,

debt and equity markets, banking systems, and shadow banking sectors. Standardized values

above zero indicate tighter-than-average financial conditions (reduced liquidity), while values

below zero reflect looser-than-average conditions, typically associated with greater market

liquidity. Similarly, we define high versus low volatility states based on the median monthly

value of the implied volatility index (VIX) of S&P 500 options.

Table 4 reports portfolio performance net of transaction costs during periods of tight versus

loose financial conditions. Across all prior specifications, Sharpe Ratios are consistently higher

in loose financial conditions (Panel B) compared to tight conditions (Panel A). Within each

panel, increasing the degree of shrinkage (higher ν) leads to better performance, with SRs

peaking at ν = 100: 1.624 under tight conditions and 2.485 under loose conditions.

Notably, the performance differential between ν = 100 and ν = 4 is more pronounced when

financial conditions are tight. Under tight conditions, the SR improves from 1.194 (ν = 4)

to 1.624 (ν = 100), a substantial increase of 36%. In contrast, the improvement under loose

financial conditions is smaller but still notable, with the SR rising from 2.144 (ν = 4) to 2.485

(ν = 100), a gain of approximately 16%.

15Current NFCI data can be accessed at https://www.chicagofed.org/research/data/nfci/

current-data.
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Panel A: Tight financial conditions

EW BSV GLP-t(ν)
4 10 30 100 TC1 TC2

Mean 0.009 0.056 0.062 0.063 0.058 0.054 0.058 0.055
Std 0.075 0.137 0.175 0.151 0.122 0.112 0.124 0.112
ES(5%) -0.142 -0.203 -0.244 -0.234 -0.173 -0.173 -0.183 -0.156
SR (annual) 0.355 1.372 1.194 1.407 1.619 1.624 1.600 1.652
pval(∆SR)boot 0.004 0.039 0.014 0.005 0.004 0.006 0.004
∆CER 0.006 -0.018 0.001 0.018 0.021 0.017 0.022
Performance Fee 0.008 - 0.002 0.023 0.026 0.022 0.026

Panel B: Loose financial conditions

Mean 0.018 0.050 0.079 0.070 0.063 0.060 0.067 0.061
Std 0.044 0.099 0.125 0.103 0.089 0.082 0.103 0.084
ES(5%) -0.070 -0.107 -0.134 -0.097 -0.070 -0.078 -0.095 -0.078
SR (annual) 1.298 1.703 2.144 2.302 2.411 2.485 2.234 2.447
pval(∆SR)boot 0.162 0.039 0.029 0.018 0.012 0.031 0.015
∆CER 0.008 0.013 0.022 0.024 0.026 0.020 0.025
Performance Fee 0.009 0.019 0.027 0.028 0.029 0.025 0.028

Table 4: Out-of-sample portfolios based on financial conditions. This table reports the out-of-sample
performance net of transaction costs during periods of tight financial conditions (top panel) vs. loose financial
conditions (bottom panel). Financial conditions are identified based on the National Financial Conditions
Index (NFCI), published by the Federal Reserve Bank of Chicago. Transaction costs are proxied by the
stock-specific half bid-ask spread and are imputed each month based on the portfolio rebalancing (turnover)
as in DeMiguel et al. (2009). The out-of-sample period is from January 2000 to December 2023.

Table D.2 in Appendix D.3 reports out-of-sample performance net of transaction costs

during periods of high volatility (Panel A) and low volatility (Panel B). Under high volatility,

the SR improves notably as the degree of shrinkage (ν) increases: at ν = 4, the Sharpe

Ratio is 1.437, rising to 1.887 at ν = 100—an improvement of approximately 31%. In low-

volatility periods, higher shrinkage (ν = 100) also enhances performance, but the relative

gain is smaller, suggesting that shrinkage plays a less critical role when market conditions are

calmer and liquidity is greater.

Overall, the spread in Sharpe Ratios between high and low volatility states, as well as

between tight and loose financial conditions, narrows as ν increases. This indicates that
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greater shrinkage stabilizes performance across varying market environments. These findings

underscore the importance of ridge-type shrinkage over sparsity-inducing priors, particularly

during periods of heightened risk, financial stress, and elevated limits to arbitrage.

6 Additional portfolio results

We evaluate the robustness of the main empirical findings to variations in the cutoff used for

selecting characteristics based on posterior inclusion probabilities and the type of Bayesian

prior employed to estimate portfolio tilts. Additionally, we conduct time-series factor-spanning

regressions, where the realized portfolio returns for a given prior specification are regressed

on the returns of the equal-weight benchmark and a range of control factors. These include

the size and value factors from Fama and French (1993) and the momentum factor from

Jegadeesh and Titman (1993).16

6.1 Data-driven selection threshold

Table 5 presents portfolio performance under an “adaptive” selection criterion, where a char-

acteristic is excluded if its posterior inclusion probability falls below 1−mean(q). For example,

if mean(q) = 0.4 in a given period, all θj with posterior inclusion probabilities exceeding 0.6

are selected. This approach reflects the underlying logic that stronger evidence in favor of

sparsity (smaller q) should lead to stricter selection criteria.

Panel A shows that the portfolio weight statistics exhibit similar ranges for maximum and

minimum weights, average absolute weights (|w|), and turnover. For example, the maximum

weight for the ν = 100 specification is 2.452%, compared to 2.497% in Table 1. Similarly,

the turnover for the same specification is 5.895, compared to 6.023 based on the 50% cutoff.

16Data on the size, value, and momentum factors are sourced from Kenneth French’s website. We thank
the authors for making the data publicly available.
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Panel A: Portfolio weight statistics

EW BSV GLP-t(ν)
4 10 30 100 TC1 TC2

Max w (%) 0.030 0.673 3.845 3.077 2.611 2.452 2.936 2.468
Min w (%) 0.030 -0.843 -3.249 -2.741 -2.586 -2.568 -2.799 -2.565
Mean |w| (%) 0.030 0.175 0.405 0.343 0.320 0.323 0.339 0.320
Mean (w < 0) (%) 0.000 -0.178 -0.382 -0.332 -0.318 -0.325 -0.331 -0.321
Turnover 0.109 1.106 5.914 5.149 5.391 5.895 5.678 5.840
Average HHI 0.000 0.017 0.145 0.098 0.079 0.076 0.095 0.076

Panel B: Portfolio performance net of transaction costs

Mean 0.013 0.053 0.054 0.055 0.058 0.056 0.059 0.057
Std 0.061 0.119 0.187 0.143 0.115 0.101 0.125 0.101
ES(5%) -0.120 -0.169 -0.318 -0.233 -0.137 -0.134 -0.156 -0.134
SR (annual) 0.680 1.494 0.981 1.301 1.693 1.879 1.620 1.899
pval(∆SR)boot 0.006 0.412 0.063 0.004 0.000 0.007 0.000
∆CER 0.007 0.001 0.007 0.013 0.021 0.009 0.021
Performance Fee 0.009 0.001 0.006 0.017 0.025 0.012 0.025

Table 5: Out-of-sample portfolios based on 1 − mean(q) selection cutoff. This table reports the
out-of-sample portfolio weights (Panel A) and performance net of transaction costs (Panel B) based on a
1 −mode(q) cutoff to select a given characteristics. Transaction costs are proxied by the stock-specific half
bid-ask spread and are imputed each month based on the portfolio rebalancing (turnover) as in DeMiguel
et al. (2009). The out-of-sample period is from January 2000 to December 2023.

The HHI, which measures portfolio concentration, is also largely consistent across selection

criteria. For instance, the TC2 specification has an HHI of 0.076 in Table 5, compared to

0.080 in Table 1.

These results indicate that both selection cutoffs produce relatively diversified portfolios

for thin-tailed priors, with lower concentration compared to thick-tailed priors. That is, the

overall allocation patterns remain largely unchanged. Panel B also demonstrates that portfolio

performance metrics net of transaction costs, including mean returns, standard deviations,

and Sharpe ratios, exhibit only minor variations across selection criteria.

Overall, the findings suggest that the choice of selection cutoff has a relatively modest

effect on portfolio allocations and performances net of transaction costs. The data-driven
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1−mean(q) cutoff results in slightly lower turnover and reduced concentration (lower HHI),

while the 50% cutoff delivers marginally higher economic performance. These results indicate

that both selection criteria yield consistent portfolio outcomes, underscoring the robustness

of the portfolio policy.

6.2 Alternative priors

In addition to the Student-æprior, we evaluate the out-of-sample performance of two widely

used shrinkage priors, such as the Bayesian lasso (Park and Casella, 2008) and the horseshoe

(Carvalho et al., 2009), as well as popular Bayesian variable selection priors such as the

mixture of normals of George and McCulloch (1993) and the normal dirac spike-and-slab of

Giannone et al. (2021).

Park and Casella (2008) extended the work of Tibshirani (1996) by proposing a prior of

the form:

θj ∼ N
(
0, σ2λ2

j

)
, λ2

j ∼ E
(
γ2

2

)
, γ2 ∼ IG(a, b),

where E
(

γ2

2

)
denotes an exponential distribution with rate parameter γ2

2
.17 This formulation

is analogous to the penalty term in conventional lasso regression; a larger γ2 concentrates the

prior more tightly around zero. The horseshoe prior (HS) takes the form:

θj ∼ N
(
0, σ2γ2λ2

j

)
, λ2

j ∼ C+(0, 1), γ2 ∼ C+(0, 1),

where C+(0, 1) represents the half-Cauchy distribution on the positive reals with a scale

parameter of one.

Finally, we also examine the original stochastic search variable selection (SSVS) of George

17Tibshirani (1996) first observed that the frequentist lasso estimate could be interpreted as a Bayes pos-
terior mode under a Laplace prior.
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and McCulloch (1993) and the normal spike-and-slab proposed by Giannone et al. (2021)

(GLP). SSVS represents a computationally convenient approach to Bayesian variable selection

which is based on a mixture of two normal distributions (e.g., Narisetty et al., 2019). The

GLP prior shares the same structure as the specification outlined in Section 2.1, except that

the Student-t distribution in the mixture is replaced with a conventional normal distribution

with mean zero and variance γ2σ2, where γ2 governs the degree of shrinkage applied to

θj, j = 1, . . . , k. Appendix E provides additional details on the posterior distributions for

both the Bayesian lasso, the horseshoe, and the SSVS prior. For a comprehensive explanation

of the normal spike-and-slab prior, we refer the reader to Giannone et al. (2021).

We note that the posterior estimates of θj, j = 1, . . . , k under the Bayesian lasso and

the horseshoe prior are non-sparse, making direct comparisons with variable selection tools

such as our heavy-tailed spike-and-slab prior challenging. To address this limitation, we

implement the Signal Adaptive Variable Selector (SAVS) algorithm proposed by Ray and

Bhattacharya (2018) to ex-post induce sparsity in the posterior estimates θ̂j, j = 1, . . . , k,

conditional on a given prior. Appendix E.1 provides a detailed discussion of this method and

its key advantages.18

Table 6 presents results for the full and the NYSE-only samples. Regarding portfolio

weights (Panel A), the Bayesian lasso (Blasso) and SSVS produce significantly more con-

centrated portfolios (HHI equal to 0.346 and 0.149 respectively) and substantially higher

turnover (12.319 and 8.210) compared to a thin-tailed specification such as GLP (HHI =

0.080, turnover = 6.235). This pattern persists even when the investable universe is restricted

to stocks listed on NYSE. In contrast, the horseshoe prior generates portfolio compositions

comparable to those of the GLP specification, exhibiting similar levels of concentration and

18The SAVS algorithm is an automatic procedure in which the degree of sparsity directly depends on the
effectiveness of the shrinkage applied to θ̂j . This property makes it a natural tool for comparing different
estimation methods.
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Panel A: Portfolio weight statistics

EW BSV Blasso HS SSVS GLP EW BSV Blasso HS SSVS GLP

Full sample NYSE only

Max w (%) 0.030 0.673 5.890 2.507 4.007 2.455 0.075 1.372 12.718 5.634 7.479 5.623
Min w (%) 0.030 -0.843 -5.761 -2.347 -3.438 -2.624 0.075 -1.424 -12.848 -4.233 -7.274 -5.973
Mean |w| (%) 0.030 0.175 0.721 0.282 0.460 0.338 0.075 0.290 2.043 0.665 1.037 0.928
Mean (w < 0) (%) 0.000 -0.178 -0.720 -0.274 -0.457 -0.344 0.000 -0.310 -2.048 -0.630 -1.047 -0.920
Turnover 0.109 1.106 12.319 4.526 8.120 6.235 0.094 1.011 15.522 7.030 9.721 8.212
Average HHI 0.000 0.017 0.346 0.065 0.149 0.080 0.001 0.023 1.036 0.139 0.296 0.218

Panel B: Portfolio performance net of transaction costs

Full sample NYSE only

Mean 0.013 0.053 0.028 0.048 0.053 0.056 0.011 0.013 0.027 0.030 0.024 0.035
Std 0.061 0.119 0.139 0.095 0.123 0.093 0.060 0.081 0.191 0.118 0.141 0.105
ES(5%) -0.120 -0.169 -0.299 -0.134 -0.217 -0.123 -0.129 -0.179 -0.373 -0.252 -0.318 -0.232
SR (annual) 0.680 1.494 0.659 1.716 1.454 2.041 0.574 0.482 0.456 0.834 0.553 1.131
pval(∆SR)boot 0.006 0.947 0.003 0.017 0.000 0.604 0.716 0.399 0.956 0.072
∆CER 0.007 -0.025 0.018 0.008 0.025 -0.006 -0.060 -0.009 -0.025 0.003
Performance fee 0.009 - 0.020 0.006 0.029 - - 0.001 - 0.004

Table 6: Out-of-sample portfolios based on alternative priors. This table reports the out-of-sample
portfolio weights (Panel A) and performance net of transaction costs (Panel B) for alternative prior specifica-
tions, such as the Bayesian lasso (Park and Casella, 2008), the horseshoe (Carvalho et al., 2009), the mixture
of normals prior of George and McCulloch (1993), and the dirac spike-and-slab of Giannone et al. (2021). We
report the results for the full sample of stocks and the NYSE-only subsample. Transaction costs are proxied
by the stock-specific half bid-ask spread and are imputed each month based on the portfolio rebalancing
(turnover) as in DeMiguel et al. (2009). The out-of-sample period is from January 2000 to December 2023.

turnover.

Panel B reports the out-of-sample portfolio performance net of transaction costs. The

GLP prior achieves a SR for the full sample that is two times higher than that of the Blasso

and around 50% higher than the SSVS. The gap expands for stocks listed on the NYSE, with

the SR of Blasso and SSVS less than half of GLP. Realized utility, as measured by ∆CER

and performance fees, also strongly favors the thin-tailed spike-and-slab specification.

These findings reinforce the intuition from the main empirical results: a more conservative

approach that emphasizes shrinkage over sparsity delivers superior out-of-sample economic

utility and risk-adjusted returns when transaction costs are taken into account.
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6.3 Spanning regressions

We follow Barillas and Shanken (2017) and perform factor-spanning regressions to test the

incremental mean-variance efficiency of each prior portfolio compared to the equal-weight

benchmark. Specifically, we estimate the following time-series regression:

rp,t = α + βrEW,t + ϕ′controls + εt,

where rp,t represents the return net of transaction costs for the portfolio under a given prior,

and rEW,t denotes the return net of transaction costs for the benchmark equal-weight portfolio.

The set of controls include the size and value factors from Fama and French (1993) and the

momentum factor from Jegadeesh and Titman (1993).

BSV GLP-t(ν)

4 10 30 100 TC1 TC2

Full sample

α 0.031 0.075 0.069 0.064 0.058 0.067 0.059
p-value α 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Appraisal Ratio 0.427 0.508 0.555 0.615 0.604 0.610 0.612

NYSE sample

α -0.005 0.034 0.030 0.030 0.031 0.030 0.031
p-value α 0.066 0.004 0.000 0.000 0.000 0.000 0.000
Appraisal Ratio -0.109 0.177 0.228 0.282 0.299 0.275 0.296

Table 7: Spanning regressions. This table reports the results of spanning regressions of the form rp,t =
α+βrEW,t+γ′controls+εt, where the portfolio return rp,t and the EW benchmark return rEW,t are constructed
based on the full cross section of stocks (top panel) and the NYSE-only sample (bottom panel). Returns are
net of transaction costs. Transaction costs are proxied by the stock-specific half bid-ask spread and are
imputed each month based on the portfolio rebalancing (turnover) as in DeMiguel et al. (2009). The out-of-
sample period is from January 2000 to December 2023.

Table 7 reports the regression results for both the full sample of stocks and the subsample

consisting of NYSE-only stocks. For each specification, we present the regression for the
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original BSV approach and all Student-t prior configurations (ν = [4, 10, 30, 100,TC1,TC2]).

Additionally, we calculate and report the excess Sharpe ratio, or “appraisal ratio”, defined

as α/σε, where σε is the root mean squared error. This metric evaluates the extent to which

the portfolio allocation under a given prior enhances the slope of the mean-variance efficient

frontier relative to the EW benchmark (e.g., Fama and French, 2018).

The findings reveal that the EW portfolio return fails to account for the net returns gen-

erated by BSV or any of the prior specifications. A thin-tailed prior (ν = 100) or a prior

calibrated to transaction costs (ν = TC2) yields substantially higher appraisal ratios com-

pared to both heavy-tailed specifications and the original BSV. This advantage is particularly

pronounced in the NYSE-only sample, where BSV generates a negative appraisal ratio, while

ν = 100 achieves an appraisal ratio nearly twice that of ν = 4.

These results reinforce the main empirical findings in Section 5: (1) portfolio returns net

of transaction costs generated by different priors consistently outperform those of the bench-

mark equal-weight portfolio and BSV, and (2) thin-tailed priors that prioritise shrinkage over

sparsity outperform heavy-tailed, sparsity-inducing priors in expanding the mean-variance

efficient frontier.

7 Conclusions

This paper explore the role of firm characteristics for optimal portfolio allocation and ul-

timately for cross-sectional stock returns predictability. By employing a flexible Bayesian

variable selection prior, we investigate the trade-off between sparsity and shrinkage on mean-

variance portfolio performance.

Our findings emphasize the pervasive nature of model uncertainty and question the practi-

cality of sparsity from a portfolio allocation perspective. Heavy-tailed priors, while reducing
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uncertainty about the most relevant firm characteristics for return prediction, produce more

concentrated portfolios with extreme weights and elevated turnover. In contrast, thin-tailed

priors or those calibrated to transaction costs favor the inclusion of firm characteristics at the

extensive margin rather than the intensive margin. This approach results in more diversified

portfolios with lower turnover and superior economic performance. These findings underscore

the need to balance sparsity and shrinkage in portfolio allocation models, particularly in the

presence of market frictions.

Overall, our study demonstrates that the choice between sparse and dense models to map

firm characteristics into the cross-section of stock returns can have importance economic

implications. Broadly incorporating firm characteristics enhances portfolio diversification

and delivers more robust out-of-sample performance, especially when transaction costs are

accounted for.
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Supplementary appendix for:

Rethinking Sparsity: Parametric Portfolios

and Firm Characteristics

In this appendix, we provide a more detailed description of the posterior derivations outlined

in the main text. The steps follow the algorithm proposed by Giannone et al. (2021) with

the modifications required by the Student-t component of the spike-and-slab (e.g., Fava and

Lopes, 2021). We also provide descriptive statistics for the returns on characteristic-managed

portfolios used in the main empirical analysis. Finally, we also provide additional in-sample

and out-of-sample empirical results.

A Student-t as a scale mixture of normals

We show that the Student-t with θj ∼ Tν (0, σ
2γ2) can be derived from a scale mixture of

normals θj ∼ N
(
0, σ2γ2λ2

j

)
with λ2

j ∼ IG (ν/2, ν/2). The joint distribution can be written

as p(θj, λ
2
j) = p(θj | λ2

j)p(λ
2
j) with

p(θj | λ2
j) =

1√
2πσ2γ2λ2

j

exp

(
−

θ2j
2σ2γ2λ2

j

)
p(λ2

j) =

(
ν
2

)ν/2
Γ(ν/2)

(λ2
j)

−(ν/2+1) exp

(
− ν

2λ2
j

)
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The marginal distribution of θj is obtained by integrating out λ2
j as p (θj) =

∫∞
0

p(θj, λ
2
j)dλ

2
j =∫∞

0
p(θj | λ2

j)p(λ
2
j)dλ

2
j . Substituting the corresponding densities

p (θj) =

∫ ∞

0

1√
2πσ2γ2λ2

j

exp

(
−

θ2j
2σ2γ2λ2

j

)
·
(
ν
2

)ν/2
Γ(ν/2)

(λ2
j)

−(ν/2+1) exp

(
− ν

2λ2
j

)
dλ2

i

=

(
ν
2

)ν/2√
2πσ2γ2Γ(ν/2)

·
∫ ∞

0

(λ2
j)

−(ν/2+1/2) exp

(
−
(

θ2j
2σ2γ2

+
ν

2

)
1

λ2
j

)
dλ2

j︸ ︷︷ ︸
this simplifies to
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(A.1)

Simplifying the constant in Eq.(A.1) we obtain

p (θj) =
Γ(ν+1

2
)

Γ(ν/2)
√

πνσ2γ2

(
1 +

θ2j
νσ2γ2

)−(ν+1)/2

(A.2)

which is the probability density function of the Student-t distribution with mean zero, variance

σ2γ2, and ν degrees of freedom.

B Gibbs sampler

Let us define F as a T × k matrix of returns on the k characteristic-managed portfolios and

θ the corresponding k-dimensional vector of regression coefficients. It is useful to rewrite

the model in terms of a set of latent variables z = [z1, . . . , zk] which takes value 1 if the

corresponding managed portfolio is included in the parametric portfolio and 0 otherwise.

Given the prior structure outlined in the main text, the joint posterior of the model parameters
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takes the form

p(θ, σ2, R2, z, q, λ | Y, F ) ∝ p(Y | F, θ, σ2) · p(θ | σ2, λ, z) · p(z | q) · p(λ) · p(σ2) · p(R2, q)

∝
(

1

2πσ2

)T
2

exp
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− 1

2σ2
(Y − Fθ)⊤ (Y − Fθ)

)
·

k∏
i=1
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1√

2πσ2γ2λi
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− θ2i
2σ2γ2λi

))zi

(δ (θi))
1−zi

·
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2
−1
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2λi
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· qs(z) (1− q)k−s(z)

· qa−1 (1− q)b−1 ·
(
R2
)A−1 (

1−R2
)B−1 · 1

σ2

where γ2 = 1
kvxq

· R2

1−R2 , δ(·) is a Dirac-delta function, and s(z) =
∑k

i=1 zi. As customary

in the Bayesian literature, we can sample from the joint posterior distribution by using a

Gibbs sampling algorithm. We can sample from the joint posterior using a Gibbs sampling

algorithm with blocks (i) θ, (ii) σ2, (iii) λ2
i , (iv) z, and (v) R2, q. In the following, we specify

the conditional posterior for each sampler block.

B.1 Posterior distribution of θ

To simplify the derivation denote with θz, λz the non-zero components of θ, λ, i.e., θz = (θj :

zj = 1) and λ2
z = (λ2

j : zj = 1) and with Fz the selected managed portfolios. The hierarchical

prior for θz can be written as,

p(θz | σ2, γ2, λ2
z) ∝ exp

(
− 1

2σ2
θ⊤z D

−1
z θz

)
where Dz = γ2diag(λ2

z) is a diagonal matrix. The conditional posterior of θz takes the form,
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This is recognised as the kernel of a multivariate normal distribution

θz | rest ∼ N
(
µθz , σ

2Σ−1
θz

)
(B.1)

where µθz = Σ−1
θz
F⊤
z Y and Σθz =

(
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)
. We note that the posterior p(θ2z | rest)

can be further simplified by marginalising over λz as Dz = γ2E [diag (λz)], such that Dz =

γ2 ν
ν−2

Is(z). As a result, the marginal distribution of θz is a multivariate normal of the form
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(B.2)
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B.2 Posterior distribution of λ2
j

The prior for λ2
j is:
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where α = ν+1
2

and β =
θ2j

2σ2γ2 +
ν
2
are the shape and scale parameters, respectively.

B.3 Posterior distribution of σ2

To derive the full conditional distribution of σ2 we consider the joint posterior distribution

p(σ2, θz | rest) ∝ p(Y | Fz, θz, σ
2) · p(σ2, θz | λz, z) · p(σ2) and then marginalising over θz.

Given the Jeffreys’ prior for σ2, i.e., p(σ2) ∝ 1
σ2 , we obtain

p(σ2, θz | λz, z) = p(θz | σ2, λz, z) · p(σ2) ∝ (σ2)−(
s(z)
2

+1) exp
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2σ2
θ⊤z D

−1
z θz

)
Substituting the expressions for the likelihood and the joint prior, we get,
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∫
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)
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z Y the generalised residual sum of squares. We

note that the posterior p(σ2 | rest) can be further simplified by marginalising over λz as

Dz = γ2E [diag (λz)], such that Dz = γ2 ν
ν−2

Is(z). As a result, the marginal posterior for σ2 is

recognised as an Inverse-Gamma distribution with shape T+s(z)
2
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(B.6)

where Sν = Y ⊤Y − Y ⊤Fz

(
F⊤
z Fz +

ν−2
ν
γ−2Is(z)

)−1
F⊤
z Y .

B.4 Posterior distribution of zi

To derive the full conditional distribution of zi we begin by defining the joint posterior

p(θz, σ
2, z | rest) ∝ p(Y | Fz, θz, σ

2) · p(σ2, θz, z). This is defined by multiplying the joint
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prior and the likelihood as

p(θz, σ
2, z | rest) ∝ qs(z)(1− q)k−s(z)

(
2πσ2
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2
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This can be simplified by marginalising over λ2
i as

p(θz, σ
2, z | rest) ∝ qs(z)(1− q)k−s(z)
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2πσ2
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To obtain the marginal posterior for z we first integrate out θz as

p(σ2, z | rest) =
∫

p(θz, σ
2, z | rest)dθz

= qs(z)(1− q)k−s(z)
(
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1
2 exp

(
− 1

2σ2
Sν
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(
F⊤
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γ−2Is(z)

)−1
F⊤
z Y and Σν =

(
F⊤
z Fz +
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)
.

Then, we integrate out σ2 as

p(z | rest) =
∫

p(σ2, z | rest)dσ2

= qs(z)(1− q)k−s(z)|Σν |−
1
2S

−T
2

ν

(
ν

ν − 2
γ2

)− s(z)
2

(B.9)

Therefore, we can use the same strategy as in Giannone et al. (2021) and draw iteratively

zi | rest, z−i for i = 1, . . . , k using a nested Gibbs sampler.
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B.5 Posterior of R2 and q

We follow Giannone et al. (2021) and derive the joint posterior distribution for R2 and q as

p
(
R2, q | rest

)
= p(θ | σ2, λ, z) · p(z | q) · p(R2, q) (B.10)

This can be derived similarly to Giannone et al. (2021) by marginalising over λ2
i such that

p
(
R2, q | rest

)
∝
(

ν

ν − 2
γ2

)− s(z)
2

exp

(
− ν − 2

2σ2γ2ν
θ⊤diag(z)θ

)
· qs(z)(1− q)k−s(z)qa−1 (1− q)b−1 (R2

)A−1 (
1−R2

)B−1
(B.11)

We can substitute the definition γ2 = 1
kvxq

· R2

1−R2 such that

p
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R2, q | rest

)
∝
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ν

ν − 2

1

kvx

)− s(z)
2

q
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2

(
R2
)− s(z)

2
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· exp
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exp
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(B.12)

We follow Giannone et al. (2021) and sample from a discrete approximation of this distri-

bution. More specifically, we discretize the support of R2 and q by interlacing two grids

defined over the unit interval, each with 0.01 increments and finer 0.001 increments near the

boundaries.

B.6 A possible prior for ν

Assuming a prior ν ∼ Gamma(α, β) and given the likelihood λ2
i |ν ∼ IG

(
ν
2
, ν
2

)
, the conditional

posterior of ν can be derived as:

p(ν|λ2
i , . . .) ∝ να−1e−βν

k∏
i=1

(λ2
i )

−( ν
2
+1) exp

(
− ν

2λ2
i

)
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This can be sampled using a Metropolis-Hastings step:

1. Propose a new value νnew using a proposal distribution (e.g., Gaussian) centered at

νcurrent.

2. Calculate the acceptance ratio:

α = min

(
1,

p(νnew|λ2
i , . . .)

p(νcurrent|λ2
i , . . .)

· q(νcurrent|νnew)
q(νnew|νcurrent)

)
3. Accept νnew with probability α, otherwise retain νcurrent.
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C Data and Descriptive Statistics

(a) Sharpe ratios (annualised) (b) Volatility (%) (c) Kurtosis

Figure C.1: Descriptive statistics on characteristic-managed portfolios. The figure
reports the sample average (left), volatility (middle), and kurtosis (right) of the characteristic-
managed portfolios considered in the empirical application. The sample period is from Jan-
uary 1980 to December 2023.
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(a) Distribution of half bid-ask spreads (b) Average bid-ask by market cap

Figure C.2: Half bid-ask spreads distribution. The left panel reports the 10th, 50th,
and 90th percentile of the cross-sectional distribution of the effective bid-ask spread (in dec-
imals) over the out-of-sample period. The right panel reports the average bid-ask spread
(in decimals) for stocks sorted by market capitalisation (quintile sort). The effective bid-ask
spread is calculated based on the Corwin and Schultz (2012) divided by the stock price. The
out-of-sample period is from January 2000 to December 2023.

D Additional empirical results

D.1 Full-sample estimates

Figure 2 in Section 3.1 shows that the share of relevant firm characteristics for the cross-section

of stock returns changes with the degrees of freedom ν; that is, the degree of average sparsity,

as proxied by the posterior density of q, is smaller for smaller values of ν. We now investigate

whether the identity of these firm characteristics can be recovered for different levels of ν.

To this end, we calculate the posterior inclusion probability of each firm characteristic in the

optimal portfolio choice. Figure D.3 shows the results. Each horizontal stripe corresponds to

a firm characteristic, and darker shades denote higher inclusion probabilities.19 The estimates

19Note that the probability of inclusion of a single predictor may differ from q. The latter can be considered
the average probability of inclusion across firm characteristics. As such, it should not coincide with the
inclusion probability of a single characteristic.
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obtained from different prior specifications are labeled by column.

Figure D.3: In-sample posterior inclusion probabilities. The figure shows the in-sample posterior
probability of inclusion for each characteristic in the cross-section of stock returns for different levels of
ν = [4,TC1,TC2, 100]. The sample period is from January 1980 to December 2023.

The results show that a heavy-tailed prior does not alter the selection of strong charac-

teristics but reduces the inclusion probability of those weakly associated with future stock

returns, thereby reducing the uncertainty about which firm characteristics should be included

in the optimal portfolio policy. In this respect, when applying a conventional 50% cutoff for
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the selection of a given characteristic (e.g., Barbieri and Berger, 2004), the identification of

strong characteristics does not depend on the prior, but the identification of weaker predictors

does. Table D.1 illustrates this point.

When applying a simple threshold of 0.5 (or 50%) to each posterior inclusion probability,

some key characteristics—such as liquidity (Amihud, 2002), operating profitability (Fama and

French, 2006), short interest (Dechow et al., 2001), analysts’ forecast dispersion (Diether et al.,

2002), 12-month momentum (Jegadeesh and Titman, 1993), enterprise multiple (Loughran

and Wellman, 2011), co-skewness (Ang et al., 2006), size (Banz, 1981), among others—always

emerge as significant for the cross-section of stock returns irrespective of the prior tails.

However, the number of selected characteristics increases as the value of ν increases.

D.2 Recursive estimates

In the main text we report the recursive posterior estimates of some of the key parameters

for ν = [4, 10, 30, 100]. In this Section, we report additional recursive estimates for ν =

[4,TC1,TC2, 100]. Figure D.4 reports the recursive posterior mean of q and γ2. Figure D.5

reports the recursive estimates of the HHI and the weights range when the prior tails are

calibrated as ν = [4,TC1,TC2, 100].

D.3 Low vs high volatility state
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GLP-t(ν)

4 10 30 100 TC1 TC2

size size size size size size

AbnormalAccruals AbnormalAccruals

AM AM AM AM AM
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Frontier Frontier Frontier Frontier Frontier Frontier
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hire hire hire hire

IdioVolAHT IdioVolAHT IdioVolAHT IdioVolAHT

Illiquidity Illiquidity Illiquidity Illiquidity Illiquidity Illiquidity

IndRetBig IndRetBig IndRetBig IndRetBig IndRetBig IndRetBig

IntanBM IntanBM IntanBM IntanBM IntanBM IntanBM

IntanCFP IntanCFP IntanCFP IntanCFP IntanCFP

IntanSP IntanSP IntanSP IntanSP IntanSP

Leverage Leverage Leverage Leverage Leverage

LRreversal LRreversal LRreversal LRreversal LRreversal LRreversal

MaxRet MaxRet MaxRet MaxRet

Mom12m Mom12m Mom12m Mom12m Mom12m Mom12m
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NetEquityFinance NetEquityFinance NetEquityFinance NetEquityFinance

NetPayoutYield NetPayoutYield NetPayoutYield NetPayoutYield NetPayoutYield NetPayoutYield

OPLeverage OPLeverage OPLeverage OPLeverage OPLeverage OPLeverage

RD RD RD RD RD RD

RDS RDS RDS RDS RDS RDS

REV6 REV6 REV6 REV6 REV6 REV6

RevenueSurprise RevenueSurprise RevenueSurprise RevenueSurprise RevenueSurprise RevenueSurprise

ShareIss1Y ShareIss1Y ShareIss1Y ShareIss1Y ShareIss1Y ShareIss1Y

std turn std turn std turn std turn std turn std turn

Tax Tax Tax Tax

XFIN XFIN XFIN XFIN XFIN XFIN

zerotrade6M zerotrade6M zerotrade6M zerotrade6M zerotrade6M zerotrade6M

BetaFP BetaFP BetaFP BetaFP

Coskewness Coskewness Coskewness Coskewness Coskewness Coskewness

FirmAge FirmAge

High52 High52 High52 High52 High52 High52

OperProf OperProf OperProf OperProf OperProf

OperProfRD OperProfRD OperProfRD OperProfRD OperProfRD

RoE RoE

ShortInterest ShortInterest ShortInterest ShortInterest ShortInterest

SP SP SP SP SP

VolumeTrend VolumeTrend VolumeTrend VolumeTrend VolumeTrend VolumeTrend

Table D.1: Characteristics selected for different prior thickness. The table reports the
selected variables based on a 50% cutoff of the posterior inclusion probability for different levels of
ν = [4, 10, 30, 100,TC1,TC2]. The sample period is from January 1980 to December 2023.
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(a) Posterior mean of q (b) Posterior mean of
√

γ2

Figure D.4: Recursive estimates of q and γ2. The figure shows the posterior mean of q (left panel) and√
γ2 (right panel) for different levels of ν = [4, TC1, TC2, 100]. The estimates are based on a rolling window

of 240 months. The out-of-sample period is from January 2000 to December 2023.
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(a) Herfindahl-Hirschman Index (TC) (b) Portfolio Weights Range (TC)

Figure D.5: Portfolio diversification and leverage. The figure shows the Herfindahl-Hirschman Index
(HHI) (left panel) and the weights range (right panel) obtained for the recursive parametric portfolio allocation
for different prior specifications ν = [4, 100,TC1,TC2]. The value of the HHI is rescaled in the interval [0, 1].
The optimal allocation is based on a rolling window of 240 months. The sample period is from January 2000
to December 2023.
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Panel A: High volatility

EW BSV GLP-t(ν)
4 10 30 100 TC1 TC2

Mean 0.007 0.063 0.078 0.079 0.075 0.067 0.073 0.069
Std 0.077 0.145 0.185 0.158 0.130 0.121 0.129 0.121
ES(5%) -0.142 -0.203 -0.244 -0.234 -0.168 -0.182 -0.179 -0.168
SR (annual) 0.247 1.475 1.437 1.699 1.974 1.887 1.915 1.950
pval(∆SR)boot 0.005 0.007 0.003 0.000 0.000 0.001 0.000
∆CER 0.009 -0.014 0.009 0.028 0.028 0.026 0.030
Performance Fee 0.012 - 0.014 0.038 0.036 0.036 0.038

Panel B: Low volatility

Mean 0.020 0.043 0.062 0.054 0.046 0.047 0.053 0.046
Std 0.040 0.086 0.110 0.091 0.074 0.066 0.094 0.068
ES(5%) -0.061 -0.106 -0.141 -0.109 -0.085 -0.062 -0.119 -0.065
SR (annual) 1.621 1.663 1.926 2.003 2.094 2.389 1.899 2.262
pval(∆SR)boot 0.812 0.444 0.360 0.290 0.086 0.509 0.142
∆CER 0.005 0.008 0.012 0.014 0.018 0.010 0.016
Performance Fee 0.006 0.011 0.014 0.015 0.019 0.012 0.017

Table D.2: Out-of-sample portfolios based volatility states. This table reports the out-of-sample
performance net of transaction costs during periods of high volatility (Panel A) vs low volatility (Panel B).
Transaction costs are proxied by the stock-specific half bid-ask spread and are imputed each month based on
the portfolio rebalancing (turnover) as in DeMiguel et al. (2009). The out-of-sample period is from January
2000 to December 2023.
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E Alternative priors

Bayesian Lasso. The Bayesian Lasso model was based on Park and Casella (2008). The

priors take the following form:

θ | σ2, τ 21 , . . . , τ
2
p ∼ N

(
0, σ2D

)
,

τ 2j | λ2 ∼ Exp

(
λ2

2

)
,

λ2 ∼ G(a, b)

with p(σ2) ∝ 1
σ2 , D = diag(τ 21 , . . . , τ

2
p ), a = 1, and b = 2. Considering the hierarchical prior

structure proposed by Park and Casella (2008), the conditional posteriors can be derived as:

θ | σ2, τ 21 , . . . , τ
2
p , y ∼ N

(
A−1F⊤y, σ2A−1

)
,

τ 2j | θj, y ∼ IG

(√
λ2σ2

θ2j
, λ2

)

and

λ2 | τ 21 , . . . , τ 2p ∼ G

(
a+ p, b+

∑p
j=1 τ

2
j

2

)
,

σ2 | θ, y ∼ IG

(
s0 + p

2
,
s+ θ⊤D−1θ

2

)
where A = (F⊤F +D−1)−1, s = (y − Fθ)⊤(y − Fθ), and D = diag(τ 21 , . . . , τ

2
p ).

Horseshoe. We implemented the Horseshoe model under a hierarchical specification of the

horseshoe prior proposed by Makalic and Schmidt (2015). The prior takes the following form:

θ | λ1, . . . , λp, τ, σ
2 ∼ N

(
0, σ2τ 2Λ

)
,

λ2
j | νj ∼ IG

(
1

2
,
1

νj

)
,

νj ∼ IG

(
1

2
, 1

)
, j = 1, . . . , p,

τ 2 | ξ ∼ IG

(
1

2
,
1

ξ

)
,

ξ ∼ IG

(
1

2
, 1

)
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where Λ = diag(λ2
1, . . . , λ

2
p) and p(σ2) ∝ σ−2. The conditional posteriors can be derived as:

θ | . . . ∼ N
(
A−1F⊤y, σ2A−1

)
,

λ2
j | . . . ∼ IG

(
1,

1

νj
+

θ2j
2τ 2σ2

)
,

νj | . . . ∼ IG

(
1, 1 +

1

λ2
j

)
, j = 1, . . . , p,

τ 2 | . . . ∼ IG

(
1 + p

2
,
1

ξ
+

1

2σ2

p∑
j=1

θ2j
λ2
j

)
,

ξ | . . . ∼ IG

(
1, 1 +

1

τ 2

)
,

σ2 | . . . ∼ IG

(
n+ p

2
,
s+ θ⊤D−1

λ θ

2

)
where A = (F⊤F +D−1

λ )−1, s = (y − Fθ)⊤(y − Fθ), and Dλ = diag(τ 2λ2
1, . . . , τ

2λ2
p).

Stochastic Search Variable Selection A computationally convenient approach to Bayesian

variable selection is the stochastic search variable selection (SSVS) as originally proposed by

George and McCulloch (1993, 1997),

θj|γj ∼ (1− γj)N
(
0, τ 20

)︸ ︷︷ ︸
spike

+γj N
(
0, τ 21

)︸ ︷︷ ︸
slab

, (E.1)

where both τ 20 and τ 21 are fixed, and τ 20 << τ 21 . This is a mixture of two continuous distri-

butions, whereby for τ 20 → 0 the spike becomes a Dirac at zero. Notice that for τ 20 ̸= 0, the

spike is unable to shrink exactly βj = 0, i.e., H0 : βj ≈ 0.

The elicitation of τ 20 , τ
2
1 is critical for variable selection given the prior in Eq.(E.1). We

follow Narisetty et al. (2019) and calibrated the value of the prior variance parameters as

τ 20 = var(y)/10 ∗ T and τ 21 = var(y) ∗max(k2/100 ∗ T, log(T )), where T is the length of the

sample size and k the number of firm characteristics. They also recommend to set a prior

inclusion probability π0 ∼ Beta(0.1, 0.1) which corresponds to a uniform prior.

Consider the prior in Eq.(E.1) with γj ∼ Beta (c, d) and σ2 ∼ IG (a, b), the posterior takes
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the form

θ| . . . ∼ N
(
A−1X ′y, σ2A−1

)
, where A−1 = (F ′F +D)

−1
,

σ2| . . . ∼ IG

(
a+

T + k

2
, b+

s+ θ′D−1θ

2

)
,

γj| . . . ∼ Ber

(
N (θj|0, σ2τ 21 ) π0

N (θj|0, σ2τ 21 ) π0 +N (θj|0, σ2τ 20 ) (1− π0)

)
, j = 1, . . . , p

π0| . . . ∼ Beta

(
c+

k∑
j=1

γj, d+
k∑

j=1

(1− γj)

)
, j = 1, . . . , k

where D is a diagonal matrix with elements (1− γj) τ
2
0 + γjτ

2
1 (see George and McCulloch,

1993, 1997, for more details).

E.1 Sparsifying the posterior estimates

The posterior estimates of θj, j = 1, . . . , k under the Bayesian lasso and the horseshoe are non-

sparse and thus can not provide exact differentiation between significant vs non-significant

characteristics. The latter is particularly relevant since we ultimately want to assess the

performance of alternative priors compared to variable selection tools such as our heavy-

tailed spike-and-slab prior.

To address this issue, we build upon Ray and Bhattacharya (2018) and implement a Signal

Adaptive Variable Selector (SAVS) algorithm to induce sparsity in θ̂, conditional on a given

prior. The SAVS is a post-processing algorithm which divides signals and nulls on the basis

of the point estimates of the regression coefficients (see, e.g., Hauzenberger et al., 2021).

Specifically, let θ̂j be the posterior estimate of θj and Fj be the associated characteristic-

managed portfolios. If |θ̂j| ||Fj||2 ≤ |θ̂j|−2 we set θ̂j = 0, where || · || denotes the euclidean

norm.

The SAVS post-processing to induce sparsity in the posterior estimates is threefold. First,

as highlighted by Ray and Bhattacharya (2018), the SAVS represents an automatic procedure

in which the sparsity-inducing property directly depends on the effectiveness of the shrinkage

performed on θ̂j. This refers to the precision of the posterior mean estimates; that is, the

more accurate is θ̂j, the more precise the identification of the non-negligible characteristics.

Second, the SAVS is “agnostic” with respect to the shrinkage prior or estimation approach

adopted, so it represents a natural tool to compare different estimation methods. Third,
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it is decision-theoretically motivated as it grounds on the idea of minimizing the posterior

expected loss (see, e.g., Huber et al., 2021).
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