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Abstract

A seller seeks to license the use of a product. She can design a mechanism to
allocate licenses to one, two, or several downstream competitors with unknown
productivities. How should she distribute the right to use her product? Under
a set of conditions satisfied by standard competition models, we characterize the
optimal mechanism: it can be implemented by an auction that licenses only the
highest bidder when that bid is sufficiently higher than the rest but licenses multi-
ple bidders otherwise. When profits depend only on a competitor’s own type and
the number of adversaries—but not the adversaries’ productivities—we show that
allocative inefficiencies are always present. Moreover, we show how the shape of
virtual valuations generates under- or over-provision of licenses compared to the
first-best.
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1 Introduction

Consider an inventor contemplating whether to license her invention to two candidate
firms, who compete in a downstreammarket. The benefit of the invention to their busi-
ness is private information for each firm, but their gain is larger if they can adopt the
innovation on their own. Although licensing the patent is freely replicable, licensing
both firms will drive their expected profits down through competition. Should the in-
ventor commit to scarcity and run an auction? Should she post a price for the license?
This paper studies the revenue-maximizingmechanism for the seller in this and similar
environments.

In multiple markets —e.g. the sale of information, the licensing of franchises, and
government procurement— sellers face similar trade-offs as the inventor. In particular,
there are three key elements that characterize the setting above: there are externalities
among buyers, the seller can freely replicate the good to be allocated, and buyers have
private information. Despite the ubiquity of such environnents, the optimal strategy
for the seller remains unknown. We aim to bridge this gap.

First, we study a baseline model with two ex-ante symmetric buyers, in which their
profits are determined exclusively by their private type when granted an exclusive li-
cense. To address the impact of competitive externalities, we model duopoly profits—
relevant when licenses are issued to two firms—–as a proportion of monopoly prof-
its. This basic setup is effective in representing various relevant market scenarios and
ensures considerable analytical simplicity. Further, it highlights the key assumption
in the paper: buyers have private information about their valuation, but the market
structure is common knowledge, so the seller knows how to map private types to the
valuation obtained when multiple buyers recieve the good. We later extend this model
to embrace more intricate interdependencies.

Our first main result is that information asymmetries give rise to novel inefficien-
cies not encountered in traditional auction setups. In particular, we show that the
seller might under-provide or over-provide the good—selling to fewer or more buy-
ers than what is prescribed in the symmetric information allocation. These inefficien-
cies are ubiquitous: the optimal mechanism is efficient if and only if the distribution
of buyer’s types is in the Pareto family. Further, we link the shape of the initial dis-
tribution of buyers’ types to the type of inefficiency—that is, whether the product
is under/over-provided. In standard auctions with symmetric buyers, inefficiencies
arise only if virtual valuations are either non-increasing or negative. In particular, as
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long as virtual valuations are monotonic, the most valuable bidder for the auctioneer
is the same whether information is private or not. When the auctioneer can sell to both
agents, however, their optimal strategy is determined by the ratio of valuations under
symmetric information, but by the ratio of their virtual valuations when information
is private. It is the gap between these two ratios that characterizes inefficiencies in our
model.

Next, we identify the optimal mechanism that maximizes buyer profits and pro-
pose a direct implementation method. The optimal mechanism allocates the good to
only one agent when his private valuation is much larger than the other one, and it
allocates to both otherwise. To implement that mechanism in dominant strategies, we
introduce what we term a threshold auction. In a threshold auction, each buyer sub-
mits a bid, and around these bids, specific neighborhoods are defined. If a bid is below
the neighborhood of a competitor’s bid, that buyer is excluded and incurs no cost. If a
bid falls within the neighborhood of a competitor’s bid, both buyers are awarded the
good, and pay the lowest price that is consistent with them being in their competitor’s
neighborhood. Finally, if a bid exceeds the neighborhood of a competitor’s bid, that
bidder alone is awarded the good paying a premium for it. Thus, in such an auction, it
is not solely the highest bid that is crucial; the entire distribution of bids influences the
outcome. If the bids cluster closely, multiple licenses are awarded; if they are widely
dispersed, only the highest bidder receives a license. Despite the complexities involved,
we find the implementation process to be straightforward, which makes its real-world
application feasible and practical.

; specifically, that profits depend not just on a buyer’s own type but also on that of
their competitor. This expanded framework requires additional assumptions, which
we identify.

Finally, we extend the model introduced in the initial part of the paper and provide
extra conditions under which the mechanism above is optimal. In this generalized
model, when multiple buyers win the auction, their payoffs—their profits in the post-
auction market—are influenced not only by their private types but also by the types
of their competitors. This addition introduces correlations among buyers’ valuations,
moving our analysis away from a framework of independent private values to one that
encompasses the complexities of common value auctions. A key factor aiding our anal-
ysis is the negative correlation between buyer types—whereby a higher competitor type
leads to lower profits. This natural feature of competition mitigates the winner’s curse
when the good is allocated to a single agent. When the allocation awards both agents,
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the winner’s curse poses difficulties for one to find the optimal mechanism. Neverthe-
less, we provide sufficient conditions, satisfied in several standard competitive models,
that guarantee the optimality of our mechanism.

The rest of the paper is structured as follows. In section 2 we go through the base-
line model, identify new inefficiencies that arise in this model, and characterize the
revenue-maximizing mechanism and a natural dominant strategies implementation.
In section 3.2 we expand the model to allow for correlated values and again identify
the optimal mechanism as well as the implementation. We finish by considering an ap-
plicationwhich needs themore general framework in section 4, and conclude in section
5.

1.1 Related Literature

This paper relates to several strands of the literature.

MechanismDesignwith Externalities First, it contributes to the literature on mech-
anism design with externalities. It closely relates with the works of Jehiel et al. (1996)
and Jehiel et al. (1999), which delve into multidimensional settings where the mar-
ket structure is unknown to the seller. In contrast, in our setup, the seller knows the
market structure but lacks knowledge of the realized values of the types of buyers. In
essence, we model the market structure as a function of all buyers’ types, which in turn
reduces the relevant dimensionality. While this distinction makes our setup more spe-
cialized, it enhances tractability and enables a comprehensive characterization of the
optimal mechanism. Additionally, our approach diverges from this existing literature
by permitting multiple sales of the good, as opposed to selling a single unit.

Optimal Licensing Our work also aligns with the existing body of work on optimal
licensing, as seen in the studies by Kamien et al. (1992), Katz and Shapiro (1986), Je-
hiel and Moldovanu (2000), and Sen (2005); Sen and Tauman (2007). However, our
approach diverges from these studies in two significant ways. First, the existing lit-
erature typically assumes no ex-ante uncertainty regarding the types of buyers. In
contrast, in our setup, while the distribution of buyers’ types is common knowledge,
their realized values are private. Second, this body of work identifies optimal licens-
ing within a constrained set of mechanisms, such as determining the optimal price to
charge. In contrast, we identify the optimal mechanism with no such restrictions.
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AuctionswithCommonValues Finally, our work also relates to the literature on auc-
tions with common values, including the classic studies by Milgrom and Weber (1982)
and Bulow and Klemperer (1994), as well as more recent approaches that identify the
optimal mechanism under specific setups, such as Bergemann et al. (2020). Our work
differs from this existing body of literature in two important ways. First, we allow for
multiple goods to be sold, as opposed to a single good. Second, in our setup, buyers’
types are negatively correlated. This negative correlation aids in characterizing the
optimal mechanism.

2 The Setup

An auctioneer has an item to sell to 𝑁 potential buyers, indexed in 𝒩 = {1, ..., 𝑁}. This
item differs from typical commodities in two respects. First, it generates externalities:
buyers’ valuations of the product depend on who else purchases it. Second, the item
can be replicated at zero cost—allowing the seller to sell multiple copies. Consider the
2𝑁 possible subsets of𝒩, and let the 𝑘th subset be denoted by𝒥𝑘. The cardinality of𝒥𝑘

is represented by 𝑛𝑘. For any subset 𝒥𝑘 ⊆ 𝒩, the utility of buyer i when all members
of 𝒥𝑘 receive the item is given by

𝑢(𝜃𝑖,𝒥𝑘) = 𝜃𝑖𝛼𝑖
𝑘.

We can think of 𝛼𝑖
𝑘 as the market share controlled by each buyer after the sale. For

agents who do not purchase the item, their share is normalized to zero i.e., when 𝑖 ∉ 𝒥𝑘,
to 𝛼𝑖

𝑘 = 0. Thus, utilities are characterized by a benefit from purchasing the good, 𝜃𝑖,
and a flexible market-share vector, 𝛼𝑖. By stacking the 𝛼𝑖 vectors, we form a matrix
𝐴 with dimensions 2𝑁 × 𝑁. Our main assumption is that 𝐴 is common knowledge,
reflecting the market structure in the post-allocation stage, while each agent’s taste for
the good is private information. Each 𝜃𝑖 is assumed to be independently drawn from
a regular distribution with cumulative distribution 𝐹 with full support. Additionally,
we assume 𝛼𝑖

𝑘 ∈ [0, 1] for all 𝑖 and 𝑘. Utilities are assumed to be quasilinear in money.
An allocation is a distribution over subsets of 𝒩, and due to replicability, the auc-

tioneer can supply any of these subsets. Let 𝒥 represent the set of all such subsets.
Given this setup, the revelation principle applies, allowing us to focus on finding the
truthful direct revelation mechanism that maximizes revenue.
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2.1 First Best Allocation

We start our analysis under the assumption of symmetric information. If the principal
knows the vector 𝜃 = (𝜃1, ...), she chooses transfers 𝜏𝑖 and an allocation 𝜎𝑘 to solve:

max
𝜎∈Δ𝒥,{𝜏𝑖}𝑖=1,...,𝑁


𝑖

𝜏𝑖

s.t. 𝜃𝑖 
𝑘

𝜎𝑘𝛼𝑖
𝑘 − 𝜏𝑖 ≥ 0 for all 𝑖 = 1, ..., 𝑁 (IR)

It is clear that (IR) must hold with equality in any solution. Thus, the problem can be
simplified to

max
𝜎∈Δ𝒥


𝑖

𝜃𝑖 
𝑘

𝜎𝑘𝛼𝑖
𝑘.

Because 𝜎 is a distribution, it must be that

supp𝜎 ⊂ argmax
𝑘

⎧⎪⎪⎨⎪⎪⎩

𝑖

𝜃𝑖𝛼𝑖
𝑘

⎫⎪⎪⎬⎪⎪⎭
.

Then, without loss of generality, we can then focus on deterministic allocations.

Lemma 1. Let 𝑘 be an optimal allocation for 𝜃, and 𝑘′ be optimal for 𝜃′ = ⒧𝑣𝑖, 𝜃−𝑖⒭, with
𝑣𝑖 > 𝜃𝑖. Then 𝛼𝑖

𝑘 ≤ 𝛼𝑖
𝑘′ .

In other words, keeping all other factors constant, as the realized benefit from pur-
chase for agent i increases, the seller optimally allocates to a group of agents that
boosts the market share of agent 𝑖. In many relevant scenarios, market shares 𝛼𝑖 de-
crease in the number of competitors. To capture this, define, for all 𝑖, 𝑛 = 1, .., 𝑁,
𝑎𝑖𝑛 = max𝑘{𝛼𝑖

𝑘 ∶ 𝑛𝑘 = 𝑛} and 𝑎𝑖𝑛 = min𝑘{𝛼𝑖
𝑘 ∶ 𝑛𝑘 = 𝑛}.

Assumption 1. Market shares decrease in the number of competitors: 𝑎𝑖𝑛 ≤ 𝑎𝑖𝑛−1 for all
𝑖 = 1, ..., 𝑁 and all 𝑛 > 1. Moreover, we normalize market shares to be zero for non-active
agents: 𝑖 ∉ 𝒥𝑘 ⟹ 𝛼𝑖

𝑘 = 0.

Lemma 2. Let Assumption 1 hold. Let 𝑘 be an optimal allocation for 𝜃 such that 𝑖 ∈ 𝒥𝑘. If
𝑘′ is optimal for 𝜃′ = ⒧𝑣𝑖, 𝜃−𝑖⒭, with 𝑣𝑖 > 𝜃𝑖, then: 𝑛𝑘 ≥ 𝑛𝑘′ and 𝑖 ∈ 𝒥𝑘′ .
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In other words, with everything else remaining constant, as the realized benefit
from the purchase for agent i increases, the seller optimally chooses to sell to a set of
agents that is no larger. Next, we consider the case where the market share is deter-
mined solely by the number of competitors and is equal among all active agents. Define
𝐼𝑛 = {𝑘 ∶ 𝑛𝑘 = 𝑛}.

Assumption 2. For all subsets with the same number of agents, market shares are the same.
For all 𝑘, 𝑘′ ∈ 𝐼𝑛, 𝑖 ∈ 𝒥𝑘, 𝑖′ ∈ 𝒥𝑘′ , 𝛼𝑖

𝑘 = 𝛼𝑖′
𝑘′ ≡ 𝑎𝑛.

Let 𝜃(𝑚) be the m-th largest element of 𝜃, and let (𝑚) be the individual associated
with that valuation.¹

Lemma3. Let Assumption 2 hold, and let 𝑘 be an optimal allocation for 𝜃. Then, generically,
𝒥𝑘 = {(1), (2), ..., (𝑛𝑘)}.

The lemma above implies that if, in the optimal allocation, 𝑘 agents are active, they
will be the 𝑘 agents with the highest realized 𝜃 values. Define 𝑓(𝑛) = 𝑎𝑛 ⋅ 𝑛. 𝑓 is the size
of the market share for subsets with 𝑛 active agents under Assumption 2.

Lemma 4. Let Assumption 1 and Assumption 2 hold. 𝑛 ∈ {1, ..., 𝑁} is the cardinality of an
optimal allocation for some realization 𝜃 if and only if 𝑓(𝑛) ≥ max𝑧≤𝑛−1 𝑓(𝑧).

This lemma implies that if it is optimal to serve n agents, then the total market size
must be larger than the market size in any possible allocation with fewer agents. The
intuition for this is rather straightforward. If we can achieve a higher totalmarket share
with fewer agents, then we can select a subset of the agents with higher 𝜃 values and,
thus, increase total transfers.

The above analysis characterizes the optimal allocation under complete informa-
tion. The seller will allocate the goods to a subset of agents. These will be the agents
with the highest realized 𝜃 values, and the seller will charge them exactly their utility
values, thus receiving all surplus. The problem faced by the principal can be easily
visualized for 𝑁 = 2, which we do in Figure 1 below. In this case, we normalize the
payoff of being allocated the good alone to 𝜃𝑖. Furthermore, we let 𝛼𝜃𝑖 be the payoff of
being allocated the good when one’s competitor also receives it.

¹Under continuous distributions, there is, generically, exactly one such individual.
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Figure 1: First Best Allocation Examples

Notes: The figure above displays the first-best allocation for different ratios of 𝜃𝑖/𝜃𝑗 . In the example in the
left, it is optimal to allocate the good exclusively to agent 𝑗. In the example in the middle, it is optimal to
allocate the good to both agents. Finally, in the example displayed on the right, it is optimal to allocate
only to agent 𝑖.

As displayed in the figure above, it is optimal to sell to 𝑖 alone if

𝜃𝑖 ≥ 𝛼(𝜃𝑖 + 𝜃𝑗) → 𝜃𝑖
𝜃𝑗

≥ 𝛼
1 − 𝛼.

It is optimal to sell to both 𝑖 and 𝑗 if

𝛼(𝜃𝑖 + 𝜃𝑗) ≥ 𝜃𝑖 𝑎𝑛𝑑 𝛼(𝜃𝑖 + 𝜃𝑗) ≥ 𝜃𝑗 → 𝛼
1 − 𝛼 ≥ 𝜃𝑖

𝜃𝑗
≥ 1 − 𝛼

𝛼 .

And finally, it is optimal to sell to 𝑗 alone if

𝛼(𝜃𝑖 + 𝜃𝑗) < 𝜃𝑗 → 1 − 𝛼
𝛼 > 𝜃𝑖

𝜃𝑗
.

The optimal allocation is driven by the ratio of valuations 𝜃𝑖/𝜃𝑗 , which in the figure above
serves the role of an iso-profit curve. The principal thus attempts to increase the iso-
profit curve as much as possible while still operating within the feasibility constraint,
which, as we elaborate in the next section, is a polytope.

2.2 Optimal Mechanism

Next, we characterize the profit-maximizing mechanism when the seller of the good
does not observe the realized 𝜃 values of the buyers. Our first observation is that we
can change the allocation space from Δ𝒥 to an interval in ℝ. To see this, start with any
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allocation 𝜎 ∈ Δ𝒥. This allocation leads to the following expected utility for agent 𝑖:

𝔼𝜎[𝑢(𝜃,𝒥𝑘)] = 𝜃 
𝑘

𝜎𝑘𝛼𝑖
𝑘


𝑞𝑖(𝜎)

We call 𝑞𝑖(𝜎) an assignment. Let 𝑞(𝜎) be the vector of assignments. Then, if Δ𝒥 is the
set of possible allocations, we can define the associated assignment set as

𝒬 = 𝑞 ∈ ℝ𝑁 ∶ ∃𝜎 ∈ Δ𝒥, 𝑞 = 𝑞(𝜎) .

Define 𝛼𝑘 = ⒧𝛼1
𝑘𝛼2

𝑘 , ..., 𝛼𝑁
𝑘 ⒭ . It is clear that:

Lemma 5. 𝒬 = co 𝛼𝑘 ∶ 𝑘 ∈ {1, ..., 2𝑁}. 𝒬 is a convex polytope.

For an expected market share vector 𝑞 define

𝑄𝑖(𝜃𝑖) = 𝑞𝑖 ⒧𝜎 ⒧𝜃𝑖, 𝜃−𝑖⒭⒭ 𝑑𝐹−𝑖(𝜃−𝑖),

and

𝑈𝑖(𝜃𝑖) = 𝜃𝑖𝑄𝑖(𝜃𝑖) − 
⎡⎢⎢⎢⎢⎣

𝑘

𝜎𝑘(𝜃𝑖, 𝜃−𝑖)𝜏𝑖𝑘(𝜃𝑖, 𝜃−𝑖)
⎤⎥⎥⎥⎥⎦
𝑑𝐹−𝑖(𝜃−𝑖)


𝑇𝑖(𝜃𝑖)

The expected utility of agent 𝑖, given their realized value 𝜃𝑖, is the net gains minus the
expected transfer.

Lemma 6. An allocation 𝜎 is implementable if and only if the following conditions hold:

1. Monotonicity: 𝑄𝑖 is increasing for all 𝑖;

2. Envelope Condition: 𝑈𝑖(𝜃𝑖) = 𝑈𝑖(𝜃) + ∫
𝜃
𝜃 𝑄𝑖(𝑣)𝑑𝑣;

3. Individual Rationality: 𝑈𝑖(𝜃𝑖) ≥ 0 for all 𝑖, 𝜃𝑖;

4. Feasibility: 𝑞(𝜎) ∈ 𝒬.

This represents the usual set of conditions for auction implementability, with the
exception of feasibility. In our context, feasibility requires that trade probabilities are
contained within the polytope 𝒬—a polytope that may extend beyond the unit sim-
plex. Conversely, in standard auctions, these probabilities must reside within the unit
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simplex, as detailed in (Myerson, 1981). The problem of the principal then reduces to

max
𝑈𝑖 ,𝑄𝑖 ,𝑞𝑖


𝑖

⒧𝜃𝑖𝑄𝑖(𝜃𝑖) − 𝑈𝑖(𝜃𝑖)⒭ 𝑓(𝜃)𝑑𝜃

s.t. 1 − 4.

Define the virtual valuation of a type 𝜃 agent as: 𝑣(𝜃𝑖) = 𝜃𝑖 − 1−𝐹𝑖(𝜃𝑖)
𝑓𝑖(𝜃𝑖) . Following the

standard integration by parts approach, the problem of the principal becomes

max
𝑞𝑖


𝑖

𝑣(𝜃𝑖)𝑞𝑖(𝜃)𝑓(𝜃)𝑑𝜃

s.t. 1 and 4.

We henceforth focus on the case in which Assumptions 1 and 2 hold — that is, the
number of competitors allocated the good alone determines the payoff of the buyer,
and the more competitors share the good, the lower is each bidders’ valuation.

2.3 Inefficiencies

In traditional auction theory, asymmetric information can lead to inefficiencies in two
primary ways. First, if virtual valuations are non-increasing or if agents are heteroge-
neous. This could result in scenarios where an agent with a lower realized type submits
a higher bid and thus wins the auction, causing an ex-post inefficient allocation. The
second type of inefficiency arises if the virtual values can be negative. If the realized
virtual values are negative across all agents, the good remains unsold even if all agents
value the good positively, which is suboptimal. In our model, we identify a novel form
of inefficiency. To differentiate from traditional suboptimal outcomes, we assume that
all agents draw their types from the same regular distribution 𝐹, this eliminates the
first inefficiency. Additionally, by ensuring that virtual values are positive for all real-
izations, we eliminate the second inefficiency.

Assumption 3. 𝑣 is increasing and 𝑣(𝜃) ≥ 0.

Definition 1. Let 𝑞𝑓 be the first-best allocation. We say that a mechanism inducing alloca-
tion 𝑞 under- (over-) provides if:

𝑞𝑖(𝜃) ≤ (≥)𝑞𝑖𝑓(𝜃) for all 𝜃 and 𝑖.
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An allocation is efficient if equality holds above.

Let ℎ(𝜃𝑖) represent the inverse hazard rate. Define 𝜆(𝜃𝑖) ≡ ℎ(𝜃𝑖)𝜃𝑖.²

Proposition 1. Let assumptions 1, 2 and 3 hold. The profit-maximizing mechanism

• Is Efficient if and only if 𝜆 is constant — that is, 𝐹 is in the Pareto family.

• Under-provides if 𝜆 is increasing.

• Over-provides if 𝜆 is decreasing.

The proposition posits that the profit-maximizing mechanism will prescribe the
same allocation as the first-best outcome for all realized values if and only if the buyer’s
types are distributed according to a family in the Pareto family. To build some intuition
about this result, we once again go back to an 𝑁 = 2 example. Note that, differently
from the first-best outcome, the behavior of the principal, while similar, is no longer
dictated by the ratio of valuations 𝜃𝑖/𝜃𝑗 . Rather, the iso-profit curve is nowdetermined by
the ratio of virtual valuations 𝑣(𝜃𝑖)/𝑣(𝜃𝑗 ). There is, of course, no reason for these two ratios
to be the same, especially not for any realization of 𝜃𝑖 and 𝜃𝑗 . In particular, 𝜃1

𝜃2 = 𝑣(𝜃1)
𝑣(𝜃2) for

all vectors 𝜃 if and only if 𝑣 is linear. We complete the proof by showing that 𝑣 is linear
if and only if 𝐹𝑖 belongs to the Pareto family. To see that, assume 𝑣(𝜃) = 𝜆𝜃, 𝜆 > 0. We
then have:

𝜃 − 1 − 𝐹(𝜃)
𝑓(𝜃) = 𝜆𝜃.

Solving this differential equation yields the unique solution:

𝐹(𝜃) = 1 + 𝑘𝜃− 1
1−𝜆 .

The only family of CDFs satisfying this equation is the Pareto family. For any other
distribution, the two ratios highlighted above will differ at least for some realizations.
We show two such examples in Figure 2 below.

²Which can be interpreted as the price-elasticity of demand.
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Figure 2: Examples of Under and Overprovision

Notes: The figure above displays the profit-maximizing and the first-best allocations for different re-
alized values of 𝜃𝑖 and 𝜃𝑗 . In the example in the left, it is efficient to allocate the good to both agents,
but it is profit-maximizing to allocate the good to agent 𝑖 exclusively—underprovision. In the example
in the right, it is efficient to allocate exclusively to to agent 𝑖, but it is profit-maximizing to allocate to
both—overprovision.

The figure above illustrates the profit-maximizing and the first-best allocations for
different realized values of 𝜃𝑖 and 𝜃𝑗 . In the example on the left, when behavior is gov-
erned by the ratio of valuations 𝜃𝑖/𝜃𝑗 , it is efficient to allocate the good to both agents.
However, in the case of asymmetric information, as previously discussed, behavior is
driven by the ratio of valuations 𝑣(𝜃𝑖)/𝑣(𝜃𝑗 ), leading to the good being allocated exclusively
to agent 𝑖 as the profit-maximizing outcome. Consequently, the good is underprovided.
In the example on the right, it is efficient to allocate the good exclusively to agent 𝑖, but
profit maximization dictates allocating to both agents. Thus, the good is overprovided.
The potential for overprovision and underprovision is not only theoretical; there exists
a nonempty set of distributions for which either outcome is possible. Figure 3 below
presents two such examples.

The figure displays the profit-maximizing and the first-best allocations for different
values of 𝜃𝑖 and 𝜃𝑗 . The shaded blue/orange areas indicate the regions where the good
is provided to both agents under the first-best/profit-maximizing allocation. In the
example on the left, the shaded orange region is entirely within the shaded blue region,
indicating that there are realizations of 𝜃𝑖 and 𝜃𝑗 for which both agents would receive
the good under the first-best allocation, but only one agent receives it under the profit-
maximizing allocation, leading to underprovision. Conversely, in the example on the
right, the shaded blue region is entirelywithin the shaded orange region, indicating that
there are realizations of 𝜃𝑖 and 𝜃𝑗 for which an agent would receive the good exclusively
under the first-best allocation, but both agents receive it under the profit-maximizing
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allocation, leading to overprovision. Therefore, it is not difficult to find distributions
of types for which either outcome occurs.

Figure 3: Examples of Distributions leading to Under and Overprovision

Notes: The figure above displays the profit-maximizing and the first-best allocations. The distributions
utilized for each example are displayed on top of the graphs.

It is worth emphasizing once again that these inefficiencies, whether they involve
under- or over-provision of the good, represent a novel inefficiency not present in stan-
dard auction examples. To underscore that typical inefficiencies are not driving these
results, we have assumed that all agents draw their types from the same distribution
𝐹 and that virtual values are positive for any realization. Under these two assump-
tions, standard auctions do not exhibit inefficiencies. Yet, in our setup, over- or under-
provision may occur.

12



Figure 4: Relevant 𝛼 Values

Notes: The figure above displays the relevant 𝛼 ∈ (0.5, 1) values for which the problem we analyze is
relevant. The value of 𝛽 has been normalized to 1. If 𝛼 ≤ 0.5, the principal never finds it optimal to
allocate to two agents. At the other extreme, if 𝛼 ≥ 1, there is no loss from providing to more agents,
and therefore, the principal always provides to both.

2.4 Implementation

Next, we turn to the implementation of the optimal mechanism. In particular, we look
for implementations that satisfy the following two desiderata:

1. Implements the optimal allocation truthfully and in dominant strategies.

2. Does not require payment from excluded agents.

Recall that for a type 𝑥, 𝑔(𝑥) ≡ max{𝜃, 𝑣−1 (𝑎𝑣(𝑥))} < 𝑥 is the lower-threshold for 𝑥:
the type such that, if the other bidder has a valuation below 𝑔(𝑥), the other bidder is
excluded. Accordingly, 𝑔−1(𝑦) is the type for which 𝑦 is the lower threshold.

Definition 2. A threshold auction: for each bid 𝑏 there exist thresholds 𝜏(𝑏) < 𝑏 < 𝜏(𝑏)
such that

𝑞𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if 𝑏𝑖 > 𝜏(𝑏−𝑖)

𝛼 if 𝜏(𝑏−𝑖) > 𝑏𝑖 > 𝜏(𝑏−𝑖)

0 otherwise

𝑡𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛼𝜏(𝑏−𝑖) + (1 − 𝛼)𝜏(𝑏−𝑖) if 𝑏𝑖 > 𝜏(𝑏−𝑖)

𝛼𝜏(𝑏−𝑖) if 𝜏(𝑏−𝑖) > 𝑏𝑖 > 𝜏(𝑏−𝑖)

0 otherwise

Proposition 2. Under assumptions 1, 2 and 3, the optimal mechanism is implemented in
dominant strategies by a threshold auction.
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In other words, the optimal allocation can be implemented truthfully and in domi-
nant strategies without loss of revenue to the seller. The mechanism works as follows:
ask both agents to bid. Assume, without loss, that 𝑏1 ≥ 𝑏2. If 𝑏1 < 𝑔−1(𝑏2), then allocate
the good to both agents, who pay 𝛼𝑔(𝑏−𝑖) each. If 𝑏1 ≥ 𝑔−1(𝑏2), then allocate the good
to the first bidder only. This bidder pays 𝛼𝑔(𝑏−𝑖) + (𝛽 − 𝛼)𝑔−1(𝑏−𝑖). We visualize the
workings of this mechanism in Figure 5 below.

Figure 5: Threshold Auction Implementation

Notes: The figure above visualizes the profit-maximizing implementation via a threshold auction.
Around the ibd of the opponent 𝑏−𝑖 there is a n neighborhood (𝜏(𝑏−𝑖), 𝜏(𝑏−𝑖)). If the agent’s bid falls
below this neighborhood, he is excluded and pays nothing 𝑡𝑖 = 0. If his bid falls within this neighbor-
hood, both agents are allocated the good and pay 𝑡𝑖 = 𝛼𝜏(𝑏−𝑖). Finally, if an agent bid falls above this
neighborhood, he is provided the good exclusively and pays 𝑡𝑖 = 𝛼𝜏(𝑏−𝑖) + (1 − 𝛼)𝜏(𝑏−𝑖).

Notice that in thismechanism, when both agents are allocated the product, the agent
with the lowest bid paysmore than the agent with the highest bid. Regardless, this does
not imply incentives to increase their own bid, as their payment does not depend on
their individual bid.

Figure 6: Revenue Comparison

Notes: For different 𝛼 values, the graph above compares the revenue from a posted price, a standard
auction in which the good is sold to one buyer, and the optimal mechanism.
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2.5 Revenue Comparison

In this and other applications, it is possible to compare the revenue difference from,
say, a posted price, a standard auction in which the good is sold to one buyer, and
the optimal mechanism identified in this paper. Figure 6 offers such a comparison.
It is clear that, for any 𝛼 ∈ (0.5, 1) value, threshold auctions outperform either mech-
anism. Importantly, when 𝛼 approaches 0.5, it becomes more and more likely that it
will be optimal to sell to one agent—the polytope discussed above converges to the unit
simplex—thus, the profit of threshold auctions converge to the profits from a regular
auction. Conversely, as 𝛼 approaches 1, the externalities from having two firms active
are reduced; therefore, profits converge to those of the posted price.

The comparison between the posted price, standard auction and optimal mecha-
nism revenues is actually tighter. To establish a formal result in that respect, consider
the revenue of each of these mechanisms. First, because virtual valuations are assumed
to be positive, it can be proved that the optimal posted price would entail setting a price
of 𝛼𝜃, in which both agents buy the product. By standard manipulations of the virtual
value function, one can show that the revenue obtained can be rewritten as:

𝑅𝑝 = 𝛼𝔼 𝑣 ⒧𝜃(1)⒭ + 𝑣 ⒧𝜃(2)⒭ .

By its turn, the revenue obtained in a standard auction, in which the designer com-
mits to sell only one product, is given by the expected value of the second highest,
which can also be written as:

𝑅𝑎 = 𝔼 𝑣(𝜃(1) .

Thus, a constrained seller who chooses between these two mechanisms would ob-
tain revenue:

𝑅𝑐 = max{𝑅𝑝, 𝑅𝑎}.

Now, consider the seller who chooses an optimal mechanism. We know the seller
sells to the buyer with the highest realization if 𝑣(𝜃(1)) ≥ 𝛼 ⒧𝑣(𝜃(1)) + 𝑣(𝜃(2))⒭. By the
virtual-valuation representation of the seller’s revenue, in that case the seller’s revenue
is exactly 𝑣(𝜃(1)). This simple logic establishes the following proposition, which states
that the difference between the unconstrained and the constrained revenues is precisely
quantified by a Jensen gap.
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Proposition 3. Under assumptions 1, 2 and 3, the difference between the optimal revenue,
𝑅 and the revenue constrained to posted prices and standard auctions is:

𝑅 − 𝑅𝑐 = 𝔼max 𝑣(𝜃(1)), 𝛼 ⒧𝑣(𝜃(1)) + 𝑣(𝜃(2))⒭

−max 𝔼 𝑣(𝜃(1)) , 𝛼𝔼 𝑣(𝜃(1)) + 𝑣(𝜃(2))

3 General Setup

We began our analysis in Section 2 with a simplified model that enabled us to visualize
many of the inner workings of the mechanism and thus helped us develop intuition.
This initialmodelwas advantageous as it did not require any assumptions beyond those
found in standard auction theory. Although this model is adequate for some applica-
tions, its limitations are clear. Notably, we assumed that when transitioning from being
awarded the good exclusively to sharing the market with another, the buyer’s profits
were simply multiplied by constant 𝛼 < 1. However, often the extent to which com-
petition reduces a firm’s profit depends on the private information of one’s competi-
tor. For instance, if our competitor’s production costs are extraordinarily high, then
𝛼 should be near 1, as they pose little threat to our market dominance. Conversely, if
our competitor is very efficient, they might capture most of the market for themselves,
warranting a lower 𝛼. In other words, when the market is shared, we want outcomes
for agent 𝑖 to depend not only on 𝜃𝑖 but also on the type of agent 𝑗, namely 𝜃𝑗 . This
section is dedicated to this goal.

We proceed in two steps. In Section 3.1, we begin by analyzing a setup in which
the dependence is assumed to be multiplicative, while in Section 3.2, we analyze the
most general model, allowing for any dependencies between agents’ types and payoffs.
In Table 1 below, we report the additional sufficient conditions needed for the analysis
of these alternative models. As can be seen, we require one additional assumption for
the multiplicative model, while to ensure that our analysis goes through for a general
model, we need two additional assumptions. We derive and provide intuition for these
assumptions in the sections below.

3.1 Multiplicative Model

We modify the setup in the following way. Let 𝑁 = 2, we have that individual’s types,
𝜃 are i.i.d. drawn from the same distribution 𝐹. If agent i, with type 𝜃𝑖, is allocated
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Table 1: Sufficient Conditions

Model Win Alone Win Together Additional Assumptions

𝛼 Model 𝜃𝑖 𝛼𝑖𝜃𝑖 ∅

Multiplicative 𝜃𝑖 ℎ(𝜃𝑗)𝜃𝑖 𝑣′(𝜃𝑖)
𝑣(𝜃𝑖) ≥

[1−ℎ(𝜃𝑖)]
′

1−ℎ(𝜃𝑖)

General 𝜃𝑖 𝑔(𝜃𝑖, 𝜃𝑗)
𝑣′(𝜃𝑖) ≥ 𝑣𝑔,1(𝜃𝑖, 𝜃𝑗) + 𝑣𝑔,2(𝜃𝑗 , 𝜃𝑖) ≥ 0

1 − 𝑔1(𝜃𝑖, 𝜃𝑗) ≥ 0
Notes: The table above reports the additional assumptions ensuring the analysis goes through.

the product alone, his payoff is 𝜃𝑖𝛽. On the other hand, if both agents are allocated the
product, their payoffs are 𝜃𝑖𝛼(𝜃−𝑖), for some decreasing function 𝛼(𝜃−𝑖), with 𝛽 ≥ 𝛼 ≥ 𝛽

2 .
In this setting, the allocation set can be enumerated as 𝑘 ∈ {0, 1, 2, 3}, where 𝑘 ∈ {1, 2}

means that agent 𝑖 is allocated alone, 𝑘 = 0 that nobody receives the good, and 𝑘 = 3
that both agents are allocated. Then, define for each realization 𝜗 = (𝜃1, 𝜃2):

𝒫(𝜗) = {𝑞 ∈ ℝ2 ∶ ∃𝛾 ∈ Δ{0, 1, 2, 3}, 𝑞𝑖 = 𝛾𝑖𝛽 + 𝛾3𝛼(𝜃−𝑖), 𝑖 = 1, 2}

Just as before, it is easy to see that𝒫(𝜗) is a polytope, representing feasible expected
payoffs given a type realization. Note that, in the space of expected payoff allocations,
buyers’ expected utilities can be written as:

𝑈𝑖(𝜗) = 𝜃𝑖𝑞𝑖(𝜗) − 𝑡(𝜗)

We can then follow the argument in Bulow and Klemperer (1996), Lemma 3 to
conclude that the principal solves:

max
𝑞

𝔼
⎡⎢⎢⎢⎢⎣

𝑖

𝑣(𝜃𝑖)𝑞𝑖(𝜗)
⎤⎥⎥⎥⎥⎦

s.t. 𝑞(𝜗) ∈ 𝒫(𝜗)

𝔼𝜃−𝑖 [𝑞𝑖(𝜃𝑖, 𝜃−𝑖)] increasing in 𝜃𝑖, for 𝑖 = 1, 2
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where 𝑣(𝜃𝑖) = 𝜃𝑖 − 1−𝐹(𝜃𝑖)
𝑓(𝜃𝑖) is the standard virtual valuation. We start by relaxing the

monotonicity assumption. Define 𝑎𝑖(𝜗) = 𝛼(𝜃𝑖)
𝛽−𝛼(𝜃−𝑖) . Note that 𝑎𝑖 is decreasing in 𝜃𝑖 and in

𝜃−𝑖. Then, it is easy to see that the optimal solution to the seller’s problem, 𝑞 solves:

𝑞𝑖(𝜗) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if 𝑣(𝜃−𝑖) > 𝑎−𝑖(𝜗)𝑣(𝜃𝑖),

𝛼(𝜃−𝑖) if 𝑣(𝜃𝑖)
𝑎𝑖 ≤ 𝑣(𝜃−𝑖) < 𝑎−𝑖(𝜗)𝑣(𝜃𝑖),

𝛽 if 𝑣(𝜃−𝑖) < 𝑣(𝜃𝑖)
𝑎𝑖 .

We now find conditions under which 𝑞 satisfies the monotonicity condition. Define
𝐹 = 𝐹 ∘ 𝑣−1, 𝛼 = 𝛼 ∘ 𝑣−1, and we have:

𝔼𝜃−𝑖 [𝑞𝑖(𝜃𝑖, 𝜃−𝑖)] = 
𝑎−𝑖()𝑣(𝜃𝑖)

𝑣(𝜃𝑖 )
𝑎𝑖 ()

𝛼(𝑧)𝑓(𝑧)𝑑𝑧 + 𝐹 ⒧𝑣(𝜃𝑖)𝑎𝑖(𝜗
⒭ 𝛽

Differentiating with respect to 𝜃𝑖 we obtain:

𝛼(𝑎−𝑖(𝜗)𝑣(𝜃𝑖))𝑓(𝑎−𝑖(𝜗)𝑣(𝜃𝑖)) ⒧𝑑𝑎−𝑖(𝜗)𝑑𝜃𝑖
𝑣(𝜃𝑖) + 𝑎−𝑖(𝜗)𝑣′(𝜃𝑖)⒭


>0: conditional on being the highest type you cannot lose

+ ⒧𝛽 − 𝛼 ⒧𝑣(𝜃𝑖)𝑎𝑖(𝜗)
⒭⒭ 𝑓 ⒧𝑣(𝜃𝑖)𝑎𝑖(𝜗)

⒭ ⒧𝑣
′(𝜃𝑖)
𝑎𝑖(𝜗)

− 𝑑𝑎𝑖(𝜗)
𝑑𝜃𝑖

𝑣(𝜃𝑖)
𝑎2𝑖 (𝜗)

⒭


><0? Conditional on being lowest you may lose

A sufficient condition for this expression ot be positive is that 𝑣′(𝜃𝑖)
𝑣(𝜃𝑖) ≥ [𝛽−𝛼(𝜃𝑖)]

′

𝛽−𝛼(𝜃𝑖) , that
is, virtual valuations are more increasing than 𝛽 − 𝛼(𝜃𝑖).

3.2 General Model

Let𝑁 = 2. Individuals have types 𝜃 i.i.d drawn from the same distribution 𝐹 ∈ ΔΘ, and
Θ is an interval of real numbers. If agent 𝑖 is allocated the product alone, her value for
the product is 𝛽(𝜃𝑖, 𝜃−𝑖). If agents share the product, agent i’s utility is 𝛼(𝜃𝑖, 𝜃−𝑖). Define
𝛾 = (𝛽, 𝛼) ∈ ℝ2. A symmetric allocation is a triple of functions {𝑞𝑖}𝑖=1,2, 𝑞𝛼 ∶ Θ × Θ →
[0, 1], such that, 𝑞𝛼 is symmetric and, for each realization 𝜃, 𝜈 ∈ supp𝐹:

𝑞1(𝜃1, 𝜃2) + 𝑞2(𝜃1, 𝜃2) + 𝑞𝛼(𝜃1, 𝜃2) ≤ 1 (F)

We interpret 𝑞𝑖 as the probability that 𝑖 is allocated alone, given 𝜃1, 𝜃2, and 𝑞𝛼 to
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be the probability they are allocated together. We define 𝑞𝑖 = (𝑞𝑖, 𝑞𝛼). In a truthfully
revealing direct mechanism, the expected utility of agent 𝑖 with type 𝜃 is:

𝑈𝑖(𝜃) = 𝔼 [𝛾 (𝜃, 𝜃−𝑖) ⋅ 𝑞𝑖 (𝜃, 𝜃−𝑖) − 𝑡 (𝜃, 𝜃−𝑖)]

We can then write the Bayesian incentive compatibility constraints as:

𝑈𝑖(𝜃) − 𝑈𝑖(𝜃′) ≥ 𝔼 ⒧𝛾(𝜃, 𝜃−𝑖) − 𝛾(𝜃′, 𝜃−𝑖)⒭ ⋅ 𝑞𝑖(𝜃′, 𝜃−𝑖) ,

for all 𝜃, 𝜃′. As usual, we say that an allocation is implementable if it satisfies
Bayesian Incentive Constraints.

Lemma 7. An allocation {𝑞1, 𝑞2, 𝑞𝛼} is implementable only if:

1. 𝑈𝑖(𝜃) = 𝑈𝑖(𝜃) + ∫
𝜃
0 𝔼[𝛾′(𝜈, 𝜃−𝑖) ⋅ 𝑞𝑖(𝜈, 𝜃−𝑖)]𝑑𝜈 for all 𝜃 ∈ Θ;

2. 𝔼 ⒧𝛾(𝜃, 𝜃−𝑖) − 𝛾(𝜃′, 𝜃−𝑖)⒭ ⋅ ⒧𝑞𝑖(𝜃, 𝜃−𝑖) − 𝑞𝑖(𝜃′, 𝜃−𝑖)⒭ ≥ 0 for all 𝜃, 𝜃′.

The lemma above provides necessary conditions for implementability, but these
conditions are, in general, not sufficient. We now provide sufficient conditions.

Assumption 4. Increasing differences: The difference between monopolist and duopolist
profits is increasing in own-type: 𝛽′(𝜃, 𝜃−𝑖) − 𝛼′(𝜃, 𝜃−𝑖) ≥ 0.

Proposition 4. Let Assumption 4 hold. When 𝑞𝑖 and 𝑞𝑖 + 𝑞𝛼 are increasing, condition 1 in
Lemma 7 is sufficient for implementability.

We can write expected transfers as 𝔼[𝛾(𝜃, 𝜃−𝑖) ⋅ 𝑞(𝜃, 𝜃−𝑖) − 𝑈𝑖(𝜃)]. Using the usual
integration by parts trick, we obtain that profits are:


𝑖


𝜃
𝔼−𝑖 [( 𝛾(𝜃, 𝜃−𝑖) −

1 − 𝐹(𝜃)
𝑓(𝜃) 𝛾′(𝜃, 𝜃−𝑖) )⋅𝑞𝑖(𝜃, 𝜃−𝑖)] 𝑓(𝜃)𝑑𝜃 (1)

Assumption 5. We make the following assumptions on virtual valuations:

Strong Regularity. 𝑣𝛽(𝜃, 𝜈), 𝑣𝛼(𝜃, 𝜈) are increasing in 𝜃 for all 𝜈.

Virtual Gains. 𝑣′𝛽(𝜃, 𝜈) ≥ 𝑣′𝛼(𝜃, 𝜈) + 𝑣′𝛼(𝜈, 𝜃) ≥ max{0, 𝑣𝛽,𝜈(𝜃, 𝜈)}

Proposition 5. Under Assumption 4 and Assumption 5, the revenue-maximizing mecha-
nism has allocations:
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𝑞𝑖(𝜃, 𝜃−𝑖) =
⎧⎪⎪⎨⎪⎪⎩

1 if 𝑣𝛽(𝜃, 𝜃−𝑖) > max 𝑣𝛼(𝜃, 𝜃−𝑖) + 𝑣𝛼(𝜃−𝑖, 𝜃), 𝑣𝛽(𝜃−𝑖, 𝜃)

0 otherwise
(2)

𝑞𝛼(𝜃, 𝜃−𝑖) =
⎧⎪⎪⎨⎪⎪⎩

1 if max{𝑣𝛽(𝜃, 𝜃−𝑖), 𝑣𝛽(𝜃−𝑖, 𝜃)} < 𝑣𝛼(𝜃, 𝜃−𝑖) + 𝑣𝛼(𝜃−𝑖, 𝜃)

0 otherwise
(3)

Proposition 5 completes the characterization for the general model. Next, we ex-
plore applications that are now feasible but would have been unmanageable with the
baseline model.

4 Applications

4.1 Application of the General Model: Hotelling Example

Consider a uniform distribution of consumers in the interval [0, 1]. Two potential fran-
chisees are positioned at the ends. A franchisor, henceforth referred to as the principal,
contemplates licensing a franchise to the franchisees, henceforth referred to as firms,
positioned at 0, to the one positioned at 1, or to both of them. Each firm has private
information regarding the quality of the products they will be able to offer. Let these
qualities be uniformly distributed 𝑞𝑗 ∼ 𝑈[𝑞, 𝑞], with 𝑗 ∈ {0, 1}, where 𝑗 indicates their
position in the interval. If a customer decides to purchase a good from a firm, say from
firm 𝑗 = 0, their utility will be 𝑞𝑗 − 𝑝𝑗 − 𝛿𝑥, where 𝑝𝑗 represents the price the firm
charges, 𝛿 represents the travel costs, while 𝑥 represents the consumer’s position in the
unit interval.

If the principal decides to license a franchise to only one firm, say 𝑗 = 0, then this
firm will be a monopolist. To find the profit-maximizing price, we first need to find
the marginal consumer, the last consumer who justifies the travel cost. This will be
the consumer positioned at ̃𝑥, where ̃𝑥 = {𝑥|𝑞𝑗 − 𝑝𝑗𝛿𝑥 = 0}. The firm then maximizes
max𝑝𝑗 𝑝𝑗 ̃𝑥(𝑝𝑗), and finds it optimal to charge 𝑝𝑀

𝑗 = 𝑞𝑗
2 , where𝑀 represents their monop-

olistic status. The marginal consumer will thus be ̃𝑥(𝑝𝑀
𝑗 ) = 𝑞𝑗

2𝛿 , while the firms profits

will be 𝜋𝑀
𝑗 = 𝑞2𝑗

4𝛿 .
If the principal opts to grant franchises to both firms, then consumers compare the

quality, price, and distance from each firm before deciding which one to buy from.
To the buyers, this is the externality caused by providing two franchises. Although
a franchise can be replicated at no cost, it intensifies competition, which may reduce
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profits by driving down the prices, leading to lower bids and potentially decreased
profitability. With two active firms, the marginal client, the client indifferent from
purchasing from 𝑗 = 0 or 𝑗 = 1, is

̃𝑥 = 𝑥𝑞0 − 𝑝0 − 𝛿𝑥 = 𝑞1 − 𝑝1 − 𝛿(1 − 𝑥) → ̃𝑥 = (𝑞0 − 𝑝0) − (𝑞1 − 𝑝1) + 𝛿
2𝛿 ,

Each firm then maximizes max𝑝𝑗 𝑝𝑗 ̃𝑥(𝑝𝑗 , 𝑝−𝑗), leading to the following optimal prices

𝑝𝐷
0 = 𝑞0 − 𝑞1 + 3𝛿

3 , 𝑝𝐷
1 = 𝑞1 − 𝑞2 + 3𝛿

3 .

And duopoly profits of

𝜋𝐷
0 = (𝑞0 − 𝑞1 + 3𝛿)2

18𝛿 , 𝜋𝐷
1 = (𝑞1 − 𝑞0 + 3𝛿)2

18𝛿 .

Importantly, note that the duopoly profits are not simply a fraction𝛼 of themonopoly
profits, nor can they be expressed in a multiplicative form as a function of the competi-
tors type 𝑞−𝑗 . Thus, the machinery developed in section 3.2 is necessary to handle this
example. It is trivial to check that for the right 𝑞, 𝑞, and 𝛿 parameters, all-sufficient
conditions specified in section 3.2 are met. Thus, the principal can maximize expected
profits by simply running a threshold auction.

5 Conclusions

This paper investigates the optimal mechanism for selling a replicable good with exter-
nalities relevant to a variety of scenarios—franchise operations, patent licensing, and
information sales, to name a few. Stemming from asymmetric information, we uncover
unique inefficiencies that do not arise in conventional auctions, that can lead a seller
to either overprovide or underprovide the good. These inefficiencies are closely tied
to the initial distribution of buyers. We identify both the optimal mechanism and a
straightforward implementation strategy in practical settings. We propose a threshold
auction, where the decision to sell is influenced not just by the highest bid but also by
the overall distribution of bids. In essence, if bids are closely grouped, it is advan-
tageous to sell the good to multiple bidders; conversely, if bids are widely dispersed,
selling exclusively to the highest bidder maximizes profits.
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6 Appendix

6.1 Proofs

Proof of Lemma 1

By optimality of 𝑘′:
𝑣𝑖𝛼𝑖

𝑘′ + 
𝑗≠𝑖

𝜃𝑗𝛼𝑗
𝑘′


𝑢𝑘′

≥ 𝑣𝑖𝛼𝑖
𝑘 + 

𝑗≠𝑖
𝜃𝑗𝛼𝑗

𝑘


𝑢𝑘

.

Similarly, by optimality of 𝑘

𝜃𝑖𝛼𝑖
𝑘′ + 𝑢𝑘′ ≤ 𝜃𝑖𝛼𝑖

𝑘 + 𝑢𝑘.

Summing up the two inequalities leads to

(𝑣𝑖 − 𝜃𝑖) ⒧𝛼𝑖
𝑘′ − 𝛼𝑖

𝑘⒭ ≥ 0.

Because 𝑣𝑖 > 𝜃𝑖, we conclude the result. ■

Proof of Lemma 2

The proof follows from Lemma 1. ■

Proof of Lemma 3

Let 𝒥𝑘 be an optimal allocation. The auctioneer’s profits are:

𝑎𝑛𝑘 
𝑖∈𝒥𝑘

𝜃𝑖 ≤ 𝑎𝑛𝑘 
𝑖∈1,...,𝑛𝑘

𝜃(𝑖),

with equality if and only if 𝒥𝑘 = {(1), ..., (𝑚)}. The result follows. ■

Proof of Lemma 4

First, assume 𝑓(𝑛) < max𝑧≤𝑛−1 𝑓(𝑧). By this assumption, there exists 𝑚 ≤ 𝑛 − 1 with
𝑓(𝑛) < 𝑓(𝑚). From Lemma 3 (Assumption 2), we know that the optimal way for the
principal to allocate to 𝑛 (𝑚) is to serve the buyers with the top 𝑛 (𝑚) valuations. We
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then have that profits satisfy:

𝑎(𝑛)
𝑛


𝑖=1

𝜃(𝑖) = 𝑓(𝑛)∑
𝑛
𝑖=1 𝜃

(𝑖)

𝑛 < 𝑓(𝑚)∑
𝑚
𝑖=1 𝜃

(𝑖)

𝑚 = 𝑎(𝑚)
𝑚


𝑖=1

𝜃(𝑖),

where the inequality comes from 𝑓(𝑚) > 𝑓(𝑛) and the fact that the average of the highest
𝑛 types is smaller than the average of the highest 𝑚 > 𝑛 types. We have then proved
that the auctioneer can profit from reducing the number of agents in the allocation.

Conversely, assume 𝑓(𝑛) ≥ max𝑧≤𝑛−1 𝑓(𝑧). Consider the profile (𝜃, ...𝜃
n times

,
(N-n) times

0, ..., 0 ).

Thus, for any 𝑚 < 𝑛:

𝑎(𝑚)
𝑚


𝑖=1

𝜃(𝑖) = 𝜃𝑎(𝑚)𝑚 < 𝜃𝑎(𝑛)𝑛 = 𝑎(𝑛)
𝑛


𝑖=1

𝜃(𝑖),

where the inequality follows from the assumption on 𝑓(𝑛). Thus, the principal chooses
no allocationwith less than 𝑛 agents. At the same time, for𝑚 > 𝑛, the principal’s profits
are:

𝑎(𝑚)
𝑚


𝑖=1

𝜃(𝑖) = 𝜃𝑎(𝑚)𝑛 < 𝜃𝑎(𝑛)𝑛 = 𝑎(𝑛)
𝑛


𝑖=1

𝜃(𝑖),

where the inequality follows from Assumption 1. Therefore, the optimal allocation
includes exactly 𝑛 agents. ■

Proof of Lemma 5

It follows from the definition that each 𝑞(𝜎) is a convex combination of 𝛼𝑘. Because 𝑄
is the convex hull of a finite set of points, it is a polytope by the vertex description of
polytopes.

Proof of Proposition 1

Given Assumption 2, we can parameterize the problem by 𝛼, 𝛽 > 0, where 𝛼 is the
payoff the multiplier when bot agents are served, while 𝛽 is the multiplier when they
are the only ones receiving the product. By Assumption 1, 𝛼 ≤ 𝛽, and the payoff of not
receiving the product is zero.

By ignoring constraint 1, the problem of the principal is a linear programming prob-
lem, which can be solved by an extreme point of the polytope𝒬: that is, by a degenerate
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allocation. Moreover, the problem can be solved realization by realization.
Fix 𝜃 and assume, without loss of generality, 𝜃1 ≥ 𝜃2. By Assumption 3, virtual val-

uations are positive, so at least one agent is served, thus any allocation includes buyer 1.
Then, in the first best allocation—under symmetric information—the principal serves
both agents only if

𝛼(𝜃1 + 𝜃2) ≥ 𝛽𝜃1 ⟺ 𝛼
𝛽 − 𝛼 ≥ 𝜃1

𝜃2 . (4)

By contrast, the optimal mechanism serves both agents only if

𝛼 ⒧𝑣(𝜃1) + 𝑣(𝜃2)⒭ ≥ 𝛽𝑣(𝜃1) ⟺ 𝛼
𝛽 − 𝛼 ≥ 𝑣(𝜃1)

𝑣(𝜃2) . (5)

Therefore, the allocation is efficient for all vectors 𝜃 if and only if 𝜃1

𝜃2 = 𝑣(𝜃1)
𝑣(𝜃2) , for all

𝜃2 ≤ 𝜃1, which happens if and only if 𝑣 is linear. We complete the proof by showing
that 𝑣 is linear if and only if 𝐹𝑖 is the Pareto distribution. To see that, assume 𝑣(𝜃) = 𝜆𝜃,
𝜆 > 0. We then have:

𝜃 − 1 − 𝐹(𝜃)
𝑓(𝜃) = 𝜆𝜃.

Solving this differential equation yields the unique solution:

𝐹(𝜃) = 1 + 𝑘𝜃− 1
1−𝜆 .

The only family of CDFs satisfying this equation is the Pareto family.
Next, define 𝑓(𝑥) = 𝑣(𝑥)

𝑥 . 𝑓 is decreasing if and only if 𝑣′(𝑥)𝑥 − 𝑣(𝑥) < 0, which is
guaranteed by strict concavity of 𝑣, given 𝑣 ≥ 0. Similarly, 𝑓 is increasing if 𝑣 is strictly
convex.

Assume first 𝑣 is strictly concave. Consider a realization 𝜃 such that 𝜃1

𝜃2 = 𝛼
𝛽−𝛼 and

𝜃1 > 𝜃2. By the argument above, 𝑓(𝜃1) < 𝑓(𝜃2) which implies:

𝜃1

𝜃2 = 𝛼
𝛽 − 𝛼 > 𝑣(𝜃1)

𝑣(𝜃2) .

Moreover, for small enough 𝜀 we have, by continuity of 𝑣:

𝜃1 + 𝜀
𝜃2 > 𝛼

𝛽 − 𝛼 > 𝑣(𝜃1 + 𝜀)
𝑣(𝜃2) .

By inequalities 4 and 5, this implies that the optimal mechanism provides the good
for both agents, whereas the first best allocation only provides it for agent 1. The argu-
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ment for under-provision is symmetric. ■

Proof of Proposition 2

Start with any mechanism that implements the optimal allocation and charges 𝑡𝛼(𝜃−𝑖)
in case the agent shares, and 𝑡𝛽(𝜃−𝑖) if the agent does not share. It is clear that, con-
ditional on an allocation, bids cannot depend on own-type under Dominant-Strategy
implementation. In what follows I omit the argument of 𝑡𝛼, 𝑡𝛽 whenever possible.

Case 1 𝜃2 ≤ 𝑔−1(𝜃2) < 𝜃1. Agent 1 is allocated the good alone. There is clearly no
benefit in deviating to a higher bid, as that does not change either the allocation or the
payment. So consider a deviation to a lower bid that makes the seller allocate the goods
to both. Then, it must be the case that:

𝜃1𝛽 − 𝑡𝛽 ≥ 𝜃1𝛼 − 𝑡𝛼 ⟺ 𝑡𝛽 − 𝑡𝛼 ≤ 𝜃1(𝛽 − 𝛼).

Because this has to hold for all 𝜃1 in this set, we have the first constraint:

𝑡𝛽 − 𝑡𝛼 ≤ 𝑔−1(𝜃2)(𝛽 − 𝛼). (6)

A similar argument holds for deviations that exclude agent 1. Because under exclu-
sion there are no payments, we have:

𝑡𝛽 ≤ 𝑔−1(𝜃2)𝛽. (7)

Case 2 𝑔(𝜃2) ≤ 𝜃1 < 𝑔−1(𝜃2). In this case, both agents get the product. The deviation
to higher types is avoided if:

𝜃1𝛼 − 𝑡𝛼 ≥ 𝜃1𝛽 − 𝑡𝛽 ⟺ 𝑡𝛽 − 𝑡𝛼 ≥ 𝜃1(𝛽 − 𝛼).

For this second constraint to hold for any 𝜃1 in this set, we have: 𝑡𝛽 −𝑡𝛼 ≥ 𝑔−1(𝜃2)(𝛽 −
𝛼). Combining this equality with 6, we obtain an expression for the difference in pay-
ments:

𝑡𝛽 − 𝑡𝛼 = 𝑔−1(𝜃2)(𝛽 − 𝛼). (8)

Conversely, the downward deviation is avoided if 𝑡𝛼 ≤ 𝜃1𝛼, which is satisfied for all
𝜃1 in this set only if 𝑡𝛼 ≤ 𝑔(𝜃2)𝛼.

Case 3 𝜃1 < 𝑔(𝜃2). We are finally in the case in which 1 is excluded. For this to
be optimal we have 𝑡𝛽 ≥ 𝜃1𝛽 and 𝑡𝛼 ≥ 𝜃1𝛼, which imply, respectively, 𝑡𝛽 ≥ 𝑔(𝜃2)𝛽,
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and 𝑡𝛼 ≥ 𝑔(𝜃2)𝛼. The last inequality pins down 𝑡𝛼 given the discussion in the previous
paragraph. We have then proved that 𝑡𝛼 and 𝑡𝛽 − 𝑡𝛼 are pinned down by dominant-
strategy ICs, and satisfy the mechanism in the statement. Therefore, this mechanism
not only implements the optimal allocation in dominant strategies, but it also is the
only one to do so conditional on the excluded agent not paying anything.

Proof of Lemma 7

By switching the order of 𝜃 and 𝜃′ in the BIC inequality above and putting the two
together we obtain:

𝔼 ⒧𝛾(𝜃, 𝜃−𝑖) − 𝛾(𝜃′, 𝜃−𝑖)⒭ ⋅ 𝑞𝑖(𝜃′, 𝜃−𝑖) ≤ 𝑈𝑖(𝜃) − 𝑈𝑖(𝜃′) ≤ 𝔼 ⒧𝛾(𝜃, 𝜃−𝑖) − 𝛾(𝜃′, 𝜃−𝑖)⒭ ⋅ 𝑞𝑖(𝜃, 𝜃−𝑖)

Divide all three terms by 𝜃 −𝜃′ and take the limit as 𝜃′ → 𝜃 to obtain condition (1).
By combining the first and second inequality, we obtain condition (2):

𝔼 ⒧𝛾(𝜃, 𝜃−𝑖) − 𝛾(𝜃′, 𝜃−𝑖)⒭ ⋅ ⒧𝑞𝑖(𝜃, 𝜃−𝑖) − 𝑞𝑖(𝜃′, 𝜃−𝑖)⒭ ≥ 0.

■

Proof of Proposition 4

Start by writing 𝛾 = (𝛽 − 𝛼, 𝛼), and 𝑞𝑖 = 𝑞𝑖, 𝑞𝑖 + 𝑞𝛼. Assume first 𝜃 > 𝜃′. Then:

𝑈(𝜃) − 𝑈(𝜃′) = 
𝜃

𝜃′
𝔼 𝛾′(𝜈, 𝜃−𝑖) ⋅ 𝑞𝑖(𝜈, 𝜃−𝑖) 𝑑𝜈

= 𝔼
⎡⎢⎢⎢⎣


𝜃

𝜃′
𝛾′(𝜈, 𝜃−𝑖) ⋅ 𝑞𝑖(𝜈, 𝜃−𝑖)𝑑𝜈

⎤⎥⎥⎥⎦
= 𝔼

⎡⎢⎢⎢⎣


𝜃

𝜃′
𝛾′(𝜈, 𝜃−𝑖) ⋅ 𝑞𝑖(𝜈, 𝜃−𝑖)𝑑𝜈

⎤⎥⎥⎥⎦

≥ 𝔼
⎡⎢⎢⎢⎣


𝜃

𝜃′
𝛾′(𝜈, 𝜃−𝑖)𝑑𝜈 ⋅ 𝑞𝑖(𝜃

′, 𝜃−𝑖)
⎤⎥⎥⎥⎦

= 𝔼 ⒧𝛾(𝜃, 𝜃−𝑖) − 𝛾(𝜃′, 𝜃−𝑖)⒭ ⋅ 𝑞𝑖(𝜃′, 𝜃−𝑖) ,

where the first equality comes from condition 1, the second equality switches the
order of integration, the third equality rewrites the integrand using the definitions of
𝛾 and 𝑞, and the inequality uses the fact that, by Assumption 4, both entris of 𝛾′ are
positive and, by the statement of the result, both entries of 𝑞𝑖 are increasing.
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The symmetric argument holds for 𝜃′ > 𝜃, so we proved that BIC is satisfied. ■

Proof of Proposition 5

We solve the relaxed problem of maximizing profits subject to condition 1 in Lemma 7
and feasibility, (F). By usual arguments, the solution to that relaxed problem is the one
above. We next show that the solution above satisfies incentive compatibility.

We start by proving 𝑞𝑖 is increasing in 𝜃 for any 𝜃−𝑖. Fix 𝜃. By the the third inequality
on virtual gains there is a threshold in the opponent’s type space, call it 𝑥, such that
the allocation rule 𝑞𝑖(𝜃, 𝜃−𝑖) is one if and only if 𝜃−𝑖 < 𝑥. That threshold satisfies:

𝑣𝛽(𝜃, 𝑥) = 𝑣𝛼(𝜃, 𝑥) + 𝑣𝛼(𝑥, 𝜃)

By total differentiation, we obtain:

⒧𝑣′𝛽(𝜃, 𝑥) − ⒧𝑣′𝛼(𝜃, 𝑥) + 𝑣𝛼,𝜈(𝑥, 𝜃)⒭⒭
>0 by virtual gains,inequality 1

𝑑𝜃 = − ⒧𝑣𝛽,𝜈(𝜃, 𝑥) − ⒧𝑣𝛼,𝜈(𝜃, 𝑥) + 𝑣′𝛼(𝑥, 𝜃)⒭⒭
<0 by virtual gains, inequality 2

𝑑𝑥.

Thus, the threshold 𝑥 is increasing with 𝜃. Then, if 𝑞𝑖(𝜃, 𝜃−𝑖) = 1, and 𝜃′ > 𝜃, it must
be that 𝑞𝑖(𝜃′, 𝜃−𝑖) = 1. Thus, 𝑞𝑖 is increasing, as we wanted to prove.

We now show that 𝑞𝛼 + 𝑞𝑖 is increasing. Again fix any 𝜃. Once more, using virtual
gains it is easy to see that there is a threshold in the adversaries’ type space, 𝑦 > 𝜃 > 𝑥
such that 𝑞𝛼 + 𝑞𝑖 = 1 if and only if 𝜃−𝑖 < 𝑦. 𝑦 is defined by:

𝑣𝛽(𝑦, 𝜃) = 𝑣𝛼(𝜃, 𝑦) + 𝑣𝛼(𝑦, 𝜃).

Using total differentiation again:

⒧𝑣′𝛽(𝑦, 𝜃) − 𝑣𝛼,𝜈(𝜃, 𝑦) − 𝑣′𝛼(𝑦, 𝜃)⒭
>0 by virtual gains, inequality 1

𝑑𝑦 = − ⒧𝑣𝛽,𝜈(𝑦, 𝜃) − 𝑣′𝛼(𝜃, 𝑦) − 𝑣𝛼,𝜈(𝑦, 𝜃)⒭
<0 by virtual gains, inequality 2

𝑑𝜃

Again, the threshold 𝑦 grows. So if 𝑞𝑖(𝜃, 𝜃−𝑖) + 𝑞𝛼(𝜃, 𝜃−𝑖) = 1, the same holds for
𝜃′ > 𝜃, which guarantees that this sum is increasing.

We have now proved 𝑞𝑖 and 𝑞𝑖 +𝑞𝛼 are increasing, and we are thus in the conditions
of Proposition 2.

■
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