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Abstract 

In this study, we investigate the boundaries of low and high concentration regimes for the BET equation, deriving a novel 
form for BET equation applied do liquids. The new isotherm form integrates the Langmuir model, which accounts for 
monolayer adsorption, with an additional term that explicitly describes the formation of multilayers over the initial 
monolayer. This perturbative approach offers a significant advantage by distinguishing the fraction of adsorbate in the 
first monolayer from that in subsequent multilayers. This differentiation is crucial for a more accurate representation of 
adsorption dynamics, as it provides deeper insights into the distribution of adsorbed molecules across different layers of 
the adsorbent surface. By refining the classic BET model, our proposed isotherm not only broadens the theoretical 
framework but also enhances the analytical tools available for the precise characterization of adsorption in liquid systems. 
This dual-terms interpretation allows for a more comprehensive understanding of adsorption processes, particularly in 
complex systems where multilayer formation is prevalent. The improved model can be applied to a wide range of practical 
scenarios, from environmental engineering to chemical manufacturing, offering a robust method for predicting and 
analyzing adsorption behavior. 
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1. Introduction 

Adsorption in solid-liquid systems is crucial in 
various scientific and technological applications, 
such as water purification and catalyst optimization 
in chemical reactions [1]. Historically, the 
Brunauer-Emmett-Teller (BET) model has been 
fundamental in understanding multilayer adsorption 
on solid surfaces. This model, based on statistical 
assumptions, considers the formation of successive 
multilayers on an adsorbed monolayer [2]. 
However, the complexity of solid-liquid adsorption 
systems, characterized by diverse interactions and 
varying environmental conditions, often requires a 
more refined approach [3]. 

This study introduces a new equation that 
combines the Langmuir model with an additional 
term to account for multilayer adsorption on the 
initial monolayer. By addressing the dynamic 
coexistence of adsorbed layers, the equation offers a 

more accurate representation of adsorption 
processes and enhances the modeling of 
experimental data. 

The proposed equation is grounded in solid 
physical principles and aims to provide a 
comprehensive tool for characterizing adsorption 
isotherms in solid-liquid systems. The study 
discusses the derivation of the equation, its 
applicability, and the implications of its parameters, 
contributing to a deeper understanding of adsorption 
phenomena and advancing practical applications. 

2. Theoretical development 

Adsorption in solid-liquid systems has been 
extensively investigated due to its importance in 
various fields such as compound separation, water 
purification, and industrial processes. The BET 
model has traditionally been used to describe 
adsorption isotherms, considering the formation of 
multilayers over an adsorbed monolayer. However, 



 
 

in this study, we present a new approach based on 
the linear combination of two distinct terms: the 
Langmuir equation, which describes monolayer 
adsorption, and an additional term that models 
multilayer adsorption. 

The term qn>1 (multilayer adsorption) is 
introduced as an extension of the Langmuir model 
to capture the contribution of multilayers to the total 
adsorption. Its formulation is derived from physical 
considerations of the sequential adsorption of 
additional layers over the initial monolayer, 
incorporating parameters that reflect the interaction 
between the adsorbed layers. 

Derivation: 

The reduction of the BET equation to Langmuir 
in the limit of low concentrations and/or negligible 
KM is already known [1,3]. Since KM ≪1, the 
product KM∙Ceq → 0. 

 

 
  

S eq
m

M eq M eq S eq1 1

K C
q q

K C K C K C


  
 (1) 

And the equation 1 becomes the Langmuir 
equation: 
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By definition, KM = 1/Cmax, where Cmax is the 
highest possible concentration admitted by the 
model, where all additional adsorbate must be 
adsorbed onto the surface of the adsorbent, 
effectively leaving the liquid phase. 

So, as Ceq increases, Ceq → Cmax, such that the 
term KM∙Ceq → 1. Simultaneously, with the increase 
in Ceq, the term KS∙Ceq becomes dominant, implying: 
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Then, at high concentrations, the equation 1 can 
be reduced to: 
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At Ceq = 0, the equation gives q = qm leading to 
deducing that the function gives the continuous 
multilayer adsorption over the first monolayer (qm) 
along the increasing Ceq. 

To extract the contribution of only n layers with 
n > 1, we need to subtract qm from the equation: 
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Now we can approximate the multilayer BET 
equation by a linear combination of the monolayer 
Langmuir equation (eq. 2) and the n > 1 multilayer 
equation (eq. 7), that becomes: 
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To interpret the equation, the first term 
(Langmuir) is a function that goes from zero to one 
(which represents the complete monolayer 
formation), while the second term (multilayers) 
goes from zero to infinity, adding up to the first 
layer.  The qm consists in a scale factor of the 
function, that gives de magnitude of the function to 
fits the physical units used experimentally. 

In fact, after the presented approximations and 
algebraic manipulations, equation 8 remains an 
identity of the BET equation (eq. 1). This can be 
deduced from the proposition below. 

Proposition 1: the BET equation (1) is equal to 
equation (8) since the monolayer equilibrium 
constant term KS is a composite constant for BET, 
taken as an apparent equilibrium constant KS

† added 
with the multilayer equilibrium constant KM, 
according to the equation: 

 †
S S MK K K   (9) 

While the monolayer constant for equation 8 is, 
in fact, KS

†. 

Proof of proposition 1: 

Assume the equation 8 present an apparent 
monolayer equilibrium constant: 
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With a simple algebraic rearrangement: 
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The equation 8 becomes exactly the BET 
equation: 
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Isotherms that deviate from the ideal form of the 

BET function: 
  
Besides, when an adsorption isotherm presents 

multilayer formation but does not fit properly with 
BET equation, many factors can produce such 
deviations. The modular characteristic of equation 8 
for BET isotherm shows useful to perform 
adaptations in the isotherm model, such as insert a 
new parameter “n” as an exponential factor to 
modulate de rate of multilayer formation along the 
increase of equilibrium concentration, as follows: 

Using the multilayer form in equation 6, the 
equation 8 can be written in the following form: 
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Now, we can modify the denominator of the term 
related to the multilayer formation, to modulate the 
magnitude of the response to change in equilibrium 
concentration: 
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Is important to note that this adaptation is just 
empirical and serves to fit the model to specific 
experimental data. However, this adaptation 
preserves the accuracy of some important physical 
meanings of the equation such as the values of 
monolayer capacity qm and the values of 
equilibrium constants. If the experimental data does 
not agree perfectly with the original BET equation, 
numerical solutions will estimate wrongly all the 
parameters, trying to better fit the data at the limits 
of high multilayer formation. 

Fun fact: despite the multilayer part of the 
equation has absolutely no relation with relativity, 
when coefficient n = 2, the equation assumes the 
same format of Lorentz factor (γ) [4]. 

Determine when a given fraction of the surface is 
covered by the adsorbate: 

Following the Langmuir theory, the full surface 
coverage of the adsorbent will be reached only at 
infinite concentration. However, eventually there 
will be a need to determine when a certain fraction 
of the surface is covered by the adsorbate, e.g., for 
a 95% of available surface coverage, the following 
equality must be truth: 
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rewrite the right side as rational fraction: 
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thus, for 50% coverage the solution will be as 
follows: 
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The same logic can be used to any fraction (θ) of 
monolayer coverage and knowing KS is possible to 
estimate de surface coverage at any equilibrium 
concentration Ceq(θ): 
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Performance comparison of BET isotherm 
against Langmuir-Freundlich isotherm type (the 
case of Sips model): 

Models that incorporate additional parameters to 
modulate the adsorption curve, such as the exponent 
in the Langmuir-Freundlich equation, often achieve 
a good fit to experimental data [5]. However, they 
can produce estimated parameters that challenge the 
physical interpretation of the phenomena involved. 
For example, an estimate of a very high maximum 
adsorption capacity (qm) might not be supported by 
experimental results and could even exceed the 
observed values. Moreover, the disparity between 
the model's estimated values and the experimental 
data often calls into question the validity of the fit 
achieved. Examples based on experimental data 
from literature fitted for Sips model, and 
recalculated for BET model, are shown in Table 1 
and Figure 1. 



 
 

Table 1. Isotherms presented in the literature 
where adsorption is modeled according to the Sips 
model, compared with the application of the BET 
model from this work. 

Isotherm Parameters REF 
 qm (mg g−1) KSips n  
Sips 175.2 0.024 0.541 [6] 
 qm (mg g−1) KS KM  
BET 129.9 0.056 1.63×10−4 This work 
 qm (mg g−1) KSips n  
Sips  210.01 2.53 0.31 [7] 
 qm (mg g−1) KS KM  
BET 112.37 765.8 0.396 This work 

 

 
Figure 1. Adsorption isotherm of MB (Methylene Blue) 
in A-CNF/DT. Experimental data published by Radjai et 
al. [6]. 

In his original article, Sips elegantly describes the 
distribution of adsorption energies on catalyst sites 
[8]. However, upon deeper exploration of isotherm 
models, the assumption that the Freundlich isotherm 
best characterizes the adsorption process (as 
suggested in equation 7 of the original article) 
begins to falter. Later, in equation 10, the issue 
becomes more apparent where a modification of the 
original Freundlich equation is introduced to better 
align it with observed reality. At this point, a hybrid 
Langmuir/Freundlich equation emerges, which is 
widely used in the literature to fit experimental 
isotherm data [5]. However, its application often has 
only a limited connection to the energy distribution 
on sites as originally deduced by Sips. The 
Langmuir/Freundlich isotherm, known as the Sips 
isotherm, more closely resembles a Langmuir 
isotherm with an adjustable parameter that fits the 
curve under various conditions, rather than 
necessarily representing an isotherm for sites with 
different energies. 

4. Conclusions 

The proposed equation was compared to 
experimental data from adsorption isotherms for 
various solid-liquid systems, demonstrating 
excellent agreement. The equation's ability to 
describe adsorption under different experimental 
conditions underscores its robustness and 
versatility. Additionally, the analysis of the 
equations provided valuable insights into the nature 
of multilayer adsorption, offering deeper 
information about the relative contributions of 
monolayer and multilayer adsorption to the overall 
adsorption process. 
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